

USN

Internal Test 2 – April 2018

Sub: Database Management System Sub Code: 17MCA23 Branch: MCA

Date: 17/04/18 Duration: 90 min’s Max Marks: 50 Sem II OBE

Answer all FIVE FULL Questions

MARK

S

CO RBT

Part I-1

(a)

. Write about embedded SQL. Explain with code how to retrieve multiple tuples in

Embedded SQL

 OR

[10] CO3 L2

2 (a)

Explain aggregate or group functions in SQL with suitable example

[10] CO3 L1

Part II-3

(a)

(b)

Discuss INSERT, DELETE and UPDATE statements in the modification of the

database with examples

Write short notes on : 1, NOT NULL 2, UNIQUE Constraint with examples.

[7+3] CO1 L2

 OR

4 (a) What are DDL and DCL commands in SQL? Give an example of any one

command from each.

[10] CO3 L2

PartIII
-5(a)

What are views in SQL? How is view created and dropped? what problems are

associated with updating of views.
[10] CO3 L2

 OR

6(a) Explain ON DELETE CASCADE, ON UPDATE CASCADE and CHECK

clauses with examples
[10] CO3 L2

Part IV-7(a) Give a brief note on different types of joins with examples10M [10] CO3 L2

 OR

8(a) Explain how GROUP BY & ORDERED BY clause works? What is

 the difference between the WHERE & HAVING clause?

[10] CO3 L2

Part V-9(a) Write about authorization in SQL [10] CO3 L3

 OR

10(a) Consider the following structure of a database that keeps employees details

and complete the queries given:

Name Null? Type

EMPID NOT NULL NUMBER(5)

FNAME VARCHAR2(25)

LNAME VARCHAR2(25)

EMAIL VARCHAR2(20)

PHONE NUMBER(10)

DOJ DATE

JOBID VARCHAR2(4)

SAL NUMBER(8)

MGRID NUMBER(3)

DID NUMBER(3)

 ----------Continuation---------
1.Write a query to get unique department ID from employee table

[10] CO3 L3

2. Write a query to get all employee details from the employee table
order by first name, descending
3.Write a query to get the employee ID, names (first_name, last_name), salary
in ascending order of salary.
4.Write a query to get the number of jobs available in the employee table.
5.Write a query to select fname having ma.

1a. Write about embedded SQL. Explain with code how to retrieve multiple tuples in Embedded SQL. 10M

Specify the cursor using a DECLARE CURSOR statement.

Perform the query and build the result table using the OPEN statement.

Retrieve rows one at a time using the FETCH statement.
Process rows with the DELETE or UPDATE statements (if required).

Terminate the cursor using the CLOSE statement.

2a. Explain aggregate or group functions in SQL with suitable example 10M

Aggregate functions are functions that take a collection (a set or multiset) of values as input and return a

single value. SQL offers five built-in aggregate functions:

 Average: avg

 Minimum: min

 Maximum: max

 Total: sum

 Count: count

The input to sum and avg must be a collection of numbers, but the other operators can operate on

collections of nonnumeric data types, such as strings, as well.

To apply the aggregate function not only to a single set of tuples, but also to a group of sets of tuples;

we specify in SQL using the group by clause. The attribute or attributes given in the group by clause

are used to form groups. Tuples with the same value on all attributes in the group by clause are placed in

one group.

 “Find the average salary in each department.”

select dept name, avg (salary) as avg salary from instructor group by dept name;

 The specified aggregate is computed for each group.

When an SQL query uses grouping the attributes that appear in the select statement without being

aggregated are those that are present in the group by clause. Any attribute that is not present in the group

by clause must appear only inside an aggregate function if it appears in the select clause, otherwise the query

is treated as erroneous.

3a. Discuss INSERT, DELETE and UPDATE statements in the modification of the database with

 Examples 7M

Insertion

To insert data into a relation, we either specify a tuple to be inserted or write a query whose result is

 a set of tuples to be inserted. Similarly, tuples inserted must have the correct number of attributes.

Ex : There is a course CS-437 in the Computer Science department with title “Database Systems”, and

4 credit hours.

insert into course values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 We can delete only whole tuples; we cannot delete values on only particular attributes. SQL expresses

a deletion by delete from r where P; where P represents a predicate and r represents a relation.

Deletion

A delete command operates on only one relation. If we want to delete tuples from several relations, we

must use one delete command for each relation.

Delete all tuples in the instructor relation pertaining to instructors in the Finance department.

delete from instructor where dept name= ’Finance’;

The delete request can contain a nested select that references the relation from which tuples are to be

deleted.

Updates

To change a value in a tuple without changing all values in the tuple. For this purpose, the update

statement can be used. As we could for insert and delete, we can choose the tuples to be updated by using

a query.

If a salary increase is to be paid only to instructors with salary of less than $70,000, we can write:

update instructor

set salary = salary * 1.05

where salary < 70000;

The where clause of the update statement may contain any construct legal in the where clause of the

 select statement (including nested selects). As with insert and delete, a nested select within an update

statement may reference the relation that is being updated. As before, SQL first tests all tuples in the relation

to see whether they should be updated, and carries out the updates afterward.

3b. Write short notes on : 1, NOT NULL 2, UNIQUE Constraint with examples. 3M

Domain Constraints: Each attribute value must be either null (which is really a non-value) or drawn from the

domain of that attribute. Note that some DBMS's allow you to impose the not null constraint upon an attribute,

which is to say that that attribute may not have the (non-)value null.

NOT NULL

name varchar(20) not null

budget numeric(12,2) not null

The not null specification prohibits the insertion of a null value for the attribute.Any database modification

that would cause a null to be inserted in an attribute declared to be not null generates an error diagnostic.

There are many situations where we want to avoid null values.

SQL prohibits null values in the primary key of a relation schema. Thus, in our university example, in the

department relation, if the attribute dept name is declared as the primary key for department, it cannot take a

null value. As a result it would not need to be declared explicitly to be not null.

 Unique Constraint

SQL also supports an integrity constraint:

unique (Aj1 , Aj2, . . . , Ajm)

The unique specification says that attributes Aj1 , Aj2, . . . , Ajm form a candidate key; that is, no two tuples

in the relation can be equal on all the listed attributes. Candidate key attributes are permitted to be null

unless they have explicitly been declared to be not null.

4a.What are DDL and DCL commands in SQL? Give an example of any one command from each. 10M

 DDL (Data Definition Language)

DDL statements are used to alter/modify a database or table structure and schema. These statements handle

the design and storage of database objects.

CREATE – create a new Table, database, schema

ALTER – alter existing table, column description

DROP – delete existing objects from database

DCL (Data Control Language)

DCL statements control the level of access that users have on database objects.

GRANT – allows users to read/write on certain database objects

REVOKE – keeps users from read/write permission on database objects

5a. What are views in SQL? How is view created and dropped? what problems are associated with
 updating of views. 10M

SQL allows a “virtual relation” to be defined by a query, and the relation conceptually contains the result

 of the query. The virtual relation is not precomputed and stored, but instead is computed by executing the

query whenever the virtual relation is used.

Any such relation that is not part of the logical model, but is made visible to a user as a virtual relation, is

called a view.

The form of the create view command is: create view v as <query expression>;

where <query expression> is any legal query expression. The view name is represented by v.

Ex: create view faculty as select ID, name, dept name from instructor;

The view relation is created whenever needed, on demand.

Views are usually implemented as follows.

When we define a view, the database system stores the definition of the view itself, rather than the result

of evaluation of the query expression that defines the view. Wherever a view relation appears in a query,

it is replaced by the stored query expression. Thus, whenever we evaluate the query, the view relation is

recomputed.

One view may be used in the expression defining another view.

In general, an SQL view is said to be updatable (that is, inserts, updates or deletes can be applied on the

view) if the following conditions are all satisfied by the query defining the view:

• The from clause has only one database relation.

• The select clause contains only attribute names of the relation, and does not have any expressions,

 aggregates, or distinct specification.

• Any attribute not listed in the select clause can be set to null; that is, it does not have a not null

 constraint and is not part of a primary key.

• The query does not have a group by or having clause.

6a.Explain ON DELETE CASCADE,ON UPDATE CASCADE and CHECK clauses with examples 10M

create table course(. . .foreign key (dept name) references department

on delete cascade

on update cascade,. . .);

Because of the clause on delete cascade associated with the foreign-key declaration, if a delete of a tuple in

department results in this referential-integrity constraint being violated, the system does not reject the delete.

Instead, the delete “cascades” to the course relation, deleting the tuple that refers to the department that was

deleted. Similarly, the system does not reject an update to a field referenced by the constraint if it violates

the constraint; instead, the system updates the field dept name in the referencing tuples in course to the new

value as well.

SQL also allows the foreign key clause to specify actions other than cascade, if the constraint is violated:

The referencing field (here, dept name) can be set to null (by using set null in place of cascade), or to the

default value for the domain (by using set default).

If a cascading update or delete causes a constraint violation that cannot be handled by a further cascading

operation, the system aborts the transaction. As a result, all the changes caused by the transaction and its

cascading actions are undone.

Null values complicate the semantics of referential-integrity

7a. Give a brief note on different types of joins with examples. 10M

 The different types of the JOINs in SQL:

 (INNER) JOIN: Returns records that have matching values in both tables

 LEFT (OUTER) JOIN: Return all records from the left table, and the matched records from the

right table

 RIGHT (OUTER) JOIN: Return all records from the right table, and the matched records from

the left table

 FULL (OUTER) JOIN: Return all records when there is a match in either left or right table

 NATURAL JOIN : Returns all records only with the same value on those attributes that appear

in both tables.

 SELF JOIN : Returns all records in the table where the table is joined with itself.

The join . . .using clause, which is a form of natural join that only requires values to match on specified

attributes. The on condition allows a general predicate over the relations being joined.

This predicate is written like a where clause predicate except for the use of the keyword on rather than

where. Like the using condition, the on condition appears at the end of the join expression.

Consider the following query, which has a join expression containing the on

condition.

select * from student join takes on student.ID= takes.ID;

The outer join operation works in a manner similar to the join operations we have already studied, but

preserve those tuples that would be lost in a join, by creating tuples in the result containing null values.

There are in fact three forms of outer join:

• The left outer join preserves tuples only in the relation named before (to the left of) the left outer join

operation.

The right outer join preserves tuples only in the relation named after (to the right of) the right outer join

operation.

• The full outer join preserves tuples in both relations.

In contrast, the join operations studied earlier that do not preserve non matched tuples are called inner join

operations, to distinguish them from the outer-join operations.

To compute the left outer-join operation as follows.

First, compute the result of the inner join as before.

 Then, for every tuple t in the left-hand-side relation that does not match any tuple in the right-hand-side

relation in the inner join, add a tuple r to the result of the join constructed as follows:

• The attributes of tuple r that are derived from the left-hand-side relation are filled in with the values from

 tuple t.

• The remaining attributes of r are filled with null values.

select * from student natural left outer join takes;

The right outer join is symmetric to the left outer join. Tuples from the right hand-side relation that do not

match any tuple in the left-hand-side relation are padded with nulls and are added to the result of the right

outer join. Thus, if we rewrite our above query using a right outer join and swapping the order in which

we list the relations as follows:

select * from takes natural right outer join student;

The full outer join is a combination of the left and right outer-join types.

After the operation computes the result of the inner join, it extends with nulls those tuples from the left-

hand-side relation that did not match with any from the right-hand side relation, and adds them to the result.

Similarly, it extends with nulls those tuples from the right-hand-side relation that did not match with any

tuples from the left-hand-side relation and adds them to the result.

To distinguish normal joins from outer joins, normal joins are called inner joins in SQL. A join clause can

thus specify inner join instead of outer join to specify that a normal join is to be used. The keyword inner

is, however, optional. The default join type, when the join clause is used without the outer prefix is the

inner join.

EX: select * from student join takes using (ID);

is equivalent to: select * from student inner join takes using (ID);

Similarly, natural join is equivalent to natural inner join.

The natural join operation operates on two relations and produces a relation as the result. Unlike the

Cartesian product of two relations, which concatenates each tuple of the first relation with every tuple of

 the second, natural join considers only those pairs of tuples with the same value on those attributes that

appear in the schemas of both relations.

8a. Explain how GROUP BY & ORDERED BY clause works? What is the difference between

 the WHERE & HAVING clause? 10M

To apply the aggregate function not only to a single set of tuples, but also to a group of sets of tuples;

 we specify in SQL using the group by clause. The attribute or attributes given in the group by clause

are used to form groups. Tuples with the same value on all attributes in the group by clause are placed

 in one group.

Ex: “Find the average salary in each department.”

select dept name, avg (salary) as avg salary from instructor group by dept name;

When an SQL query uses grouping, the only attributes that appear in the select statement without being

aggregated are those that are present in the group by clause. Any attribute that is not present in the group

by clause must appear only inside an aggregate function if it appears in the select clause, otherwise the

query is treated as erroneous.

SQL applies predicates in the having clause after groups have been formed, so aggregate

functions may be used.

We express this query in SQL as follows:

select dept name, avg (salary) as avg salary from instructor group by dept name

having avg (salary) > 42000;

As was the case for the select clause, any attribute that is present in the having clause without being

aggregated must appear in the group by clause, otherwise the query is treated as erroneous.

The meaning of a query containing aggregation, group by, or having clauses is defined by the

 following sequence of operations:

1. As was the case for queries without aggregation, the from clause is first evaluated to get a relation.

2. If a where clause is present, the predicate in the where clause is applied on the result relation of the

from clause.

3. Tuples satisfying the where predicate are then placed into groups by the group by clause if it is

present. If the group by clause is absent, the entire set of tuples satisfying the where predicate is

treated as being in one group.

4. The having clause, if it is present, is applied to each group; the groups that do not satisfy the having

clause predicate are removed.

5. The select clause uses the remaining groups to generate tuples of the result of the query, applying the

aggregate functions to get a single result tuple for each group.

To illustrate the use of both a having clause and a where clause in the same query, we consider the query

“For each course section offered in 2009, find the average total credits (tot cred) of all students enrolled in

the section, if the section had at least 2 students.”

select course id, semester, year, sec id, avg (tot cred)

from takes natural join student

where year = 2009

group by course id, semester, year, sec id

having count (ID) >= 2;

9a. Write about authorization in SQL 10M

We may assign a user several forms of authorizations on parts of the database.

Authorizations on data include:
1. Authorization to read data.

2. Authorization to insert new data.

3. Authorization to update data.

4. Authorization to delete data.

Each of these types of authorizations is called a privilege. We may authorize the user all, none, or a

combination of these types of privileges on specified parts of a database, such as a relation or a view.

When a user submits a query or an update, the SQL implementation first checks if the query or update

 is authorized, based on the authorizations that the user has been granted. If the query or update is not

authorized, it is rejected.

In addition to authorizations on data, users may also be granted authorizations on the database

schema, allowing them, for example, to create, modify, or drop relations. A user who has some form

 of authorization may be allowed to pass on (grant) this authorization to other users, or to withdraw

(revoke) an authorization that was granted earlier. In this section, we see how each of these

authorizations can be specified in SQL. The ultimate form of authority is that given to the database

administrator.

Granting and Revoking of Privileges

The SQL standard includes the privileges select, insert, update, and delete. The privilege all

 privileges can be used as a short form for all the allowable privileges. A user who creates a new

 relation is given all privileges on that relation automatically. The SQL data-definition language

 includes commands to grant and revoke privileges.

The grant statement is used to confer authorization.

The basic form of this statement is:

grant <privilege list> on <relation name or view name> to <user/role list>;

The privilege list allows the granting of several privileges in one command.

The select authorization on a relation is required to read tuples in the relation.

 The following grant statement grants database users Amit and Satoshi select authorization on the

department relation:

grant select on department to Amit, Satoshi;

This grant statement gives users Amit and Satoshi update authorization on the budget attribute of the

department relation:

grant update (budget) on department to Amit, Satoshi;

The insert authorization on a relation allows a user to insert tuples into the relation. The insert privilege

may also specify a list of attributes; any inserts to the relation must specify only these attributes, and the

system either gives each of the remaining attributes default values (if a default is defined for the attribute)

or sets them to null.

The delete authorization on a relation allows a user to delete tuples from a relation.

The user name public refers to all current and future users of the system.

Thus, privileges granted to public are implicitly granted to all current and future users.

To revoke an authorization, we use the revoke statement. It takes a form almost identical to that of grant:

revoke <privilege list> on <relation name or view name> from <user/role list>;

Thus, to revoke the privileges that we granted previously, we write

revoke select on department from Amit, Satoshi;

revoke update (budget) on department from Amit, Satoshi;

Revocation of privileges is more complex if the user from whom the privilege is revoked has granted the

privilege to another user.

10a. Queries
1.Write a query to get unique department ID from employee table
select *from gemp where did in (select did from gemp group by did having count(*)=1);
2. Write a query to get all employee details from the employee table order by first name, descending
select *from gemp order by fname desc;
3.Write a query to get the employee ID, names (first_name, last_name), salary in ascending order of salary.
select empid, fname, lname, sal from gemp order by sal ;

4.Write a query to get the number of jobs available in the employee table.
select count(distinct(jobid)) "Number of Jobs" from gemp;

5.Write a query to select fname having ma.
select * from gemp where fname like '%ma%' ;

