\EARS
v | [[[[[[]

§% CMRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.

ACCREDITED WITH A+ GRADE BY NAAC

Internal Assessment Test 2Answer Key — April. 2018

Sub: | System Software CoSduet? 17MCA25 |Branch: | MCA
. . Max
Date: | 19/04/2018 |Duration: | 90 min’s 50 Sem Il OBE
Marks:

1 (a) Discuss literals Symbol-defining Statements and Expressions with suitable examples? [06]

1) Literals

A literal is defined with a prefix = followed by a specification of the literal value.
Example:

45 001A ENDFIL LDA =C“EOF"

All the literal operands used in a program are gathered together into one or more literal pools. This
is usually placed at the end of the program.

The assembly listing of a program containing literals usually includes a listing of this literal pool,
which shows the assigned addresses and the generated data values. In some cases it is placed at
some other location in the object program.

An assembler directive LTORG is used. Whenever the LTORG is encountered, it creates a literal pool
that contains all the literal operands used since the beginning of the program.

2) Symbol-Defining Statements

1) EQU

Most assemblers provide an assembler directive that allows the programmer to define symbols and
specify their values. The directive used for this is EQU (Equate). The general form of the statement is
Symbol EQU value

This statement defines the given symbol (i.e., enter it into SYMTAB) and assigning to it the value
specified.

3) Expressions

J Assemblers also allow use of expressions in place of operands in the instruction. Each such
expression must be evaluated to generate a single operand value or address.

J Assemblers generally allow arithmetic expressions formed according to the normal rules using
arithmetic operators +, - *, /.

J Individual terms in the expression may be constants, user-defined symbols, or special terms.

J The common special term used is * (the current value of location counter) which indicates

the value of the next unassigned memory location. Thus the statement BUFFEND EQU *

1 (b) Explain Multi-pass Assembler [04]

Consider the following example

ALPHA EQU BETA

BETA EQU DELTA

DELTARESW 1

The symbol BETA cannot be assigned a value when it is encountered during the first pass because
DELTA has not yet been defined. As a result, ALPHA cannot be evaluated during second pass. This
means that any assembler that makes only two sequential passes over the source program cannot
resolve such a sequence of definition.

Prohibiting forward references in symbol definition is not a serious inconvenience. Forward
references tend to create difficulty for a person reading the program as well as for the assembler.

Page 1 of 10

The general solution is multi pass assembler that can make has many passes are needed to process
the definition of symbols.

It is not necessary for such an assembler to make more than two passes over the entire program.
Instead, the portions of the program that involve forward references in symbol definition are saved
during pass. Additional passes through these stored definitions are made as the assembly
progresses.

There are several ways to accomplish the task outlined above.

J Store those symbol definitions that involve forward references in the symbol table.

J This table also indicates which symbols are dependent on the values of others, to facilitate
symbol evaluation.

2 (a) Discuss Program Block and Control section & program linking with example for each. [04]
1)Program block

Program block refers to segment of code that are rearranged within a single object program unit
and control section to refer to segments that are translated into independent object program units.
Assembler Directive USE indicate which portion of the source program belong to various blocks

USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block.

If no USE statements are included, the entire program belongs to this single block.

Each program block may actually contain several separate segments of the source program.
Assemblers rearrange these segments to gather together the pieces of each block and assign
address.

Passl

A separate location counter for each program block is maintained. Save and restore LOCCTR when
switching between blocks. At the beginning of a block, LOCCTR is set to 0. Assign each label an
address relative to the start of the block. Store the block name or number in the SYMTAB along with
the assigned relative address of the label Indicate the block length as the latest value of LOCCTR for
each block at the end of Passl Assign to each block a starting address in the object program by
concatenating the program blocks in

a particular order
Pass2 : Calculate the address for each symbol relative to the start of the object program by adding:
The location of the symbol relative to the start of its block. The starting address of this block

2) Control Sections and program linking

e A control section is a part of the program that maintains its identity after assembly; each control
section can be loaded and relocated independently of the others.

e Different control sections are most often used for subroutines or other logical subdivisions. The
programmer can assemble, load, and manipulate each of these control sections separately.

e Because of this, there should be some means for linking control sections together. For example,
instructions in one control section may refer to the data or instructions of other control sections.
Since control sections are independently loaded and relocated, the assembler is unable to process
these references in the usual way. Such references between different control sections are called
external references.

* The assembler generates the information about each of the external references that will allow the
loader to perform the required linking. When a program is written using multiple control sections,
the beginning of each of the control section is indicated by an assembler directive — assembler
directive: CSECT The syntax secname CSECT

e separate location counter is maintained for each control section Control sections differ from
program blocks in that they are handled separately by the assembler.

Page 2 of 10

2 (b) Explain design of one pass assembler [04]

The main problem in designing the assembler using single pass was to resolve forward references.
We can avoid to some extent the forward references by:

e Eliminating forward reference to data items, by defining all the storage reservation statements at
the beginning of the program rather at the end.

Unfortunately, forward reference to labels on the instructions cannot be eliminated as easily.
Assembler provides some provision for handling forward references by prohibiting forward
references to data items.

There are two types of one-pass assemblers:

1) One that produces object code directly in memory for immediate execution (Load-and-go
assemblers).

2) The other type produces the usual kind of object code for later execution.

Load-and-Go Assembler

* Load-and-go assembler generates their object code in memory for immediate execution.

* No object program is written out, no loader is needed.

e It is useful in a system with frequent program development and testing. The efficiency of the
assembly process is an important consideration.

* Programs are re-assembled nearly every time they are run; efficiency of the assembly process is an
important consideration.

3 Write short note on
i) MASM Assembler
i) SPARC Assembler

i)MASM Assembler

The Microsoft Macro Assembler (MASM) is an x86 assembler that uses the Intel syntax for MS-DOS
and Microsoft Windows. Beginning with MASM 8.0 there are two versions of the assembler - one for
16-bit and 32-bit assembly sources, and another (ML64) for 64-bit sources only.

MASM is maintained by Microsoft, but since version 6.12 has not been sold as a separate product, it
is instead supplied with various Microsoft SDKs and C compilers. Recent versions of MASM are
included with Microsoft Visual Studio.

i) SPARC Assembler
Sun OS SPARC assembler
Assembler language program is dived into units called sections.
Predefine section names
.TEXT — Executable instruction
.DATA- Initialized read/write data
.RODATA- Read only data
.BSS — uninitialized data areas
Programmer can switch between sections at any times using assembler directives. Separate location
counter for each section.
When assembler switches to new section it also switches to location counter associated with that

4 (a) Describe all the data structures of linking loader [06]

1) External Symbol Table (ESTAB)

This table is analogous to SYMTAB ESTAB is used to stores the name and address of each external
symbol in the set of control section being loaded. The table also often indicates in which control
section the symbol is defined. A Hashed organization is typically used for this table.

Page 3 of 10

Carrol section Synbol Addres Length

PROGA 4000 3
TISTA 4040

PROGB 4063 F
1ISIB 403
ENDB 4008

PROGC 40E2 51
IISTC 4112
ENDC 124

2) Program Load Address (PROGADDR)
PROGADDR is the beginning address in memory where the linked program is to be loaded. Its value
is supplied to the loader by the operating system.

3) Control Section Address (CSADDR)

CSADDR is the starting address assigned to the control section currently being scanned by the
loader. This address is added to all relative address within the control section to convert them to
actual address.

4 (b) Write short note on Bootstrap Loader [04]

When a computer is first turned on or restarted, a special type of absolute loader, called bootstrap
loader is executed. This bootstrap loads the first program to be run by the computer -- usually an
operating system. The bootstrap itself begins at address 0. It loads the OS starting address 0x80. No
header record or control information, the object code is consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin
X=0x80 (the address of the next memory location to be loaded
Loop

A<&GETC (and convert it from the ASCII character code to the value of the hexadecimal digit)
save the value in the high-order 4 bits of S

A<&GETC combine the value to form one byte A& (A+S) store the value (in A) to the address in
register X

X&X+1
End

5 Write the Algorithm for pass-1 and pass-2 of Linking Loader [10]

Page 4 of 10

Fass 1

bagin
get PROCAODR from operaling systsm
gt USA0DR To FROGADDR |for firsh cnotrsl ssstion)
while sot end of 1nput do
bagin
read next input record {Heades record for ouputral sectisng
set G51.7H Lo centrol section langlh
search ESTAE for conirol secticn naae
1f fpun] then
get arrar fleg !duplicats sxteronl uynboli
alka
antar goalrol section name weto ESTAR with valie CEALUR
while rooord dype 0 'E7 do
badin
read nexl abput record
if record type = '0° then
for cact gymbol in Lhe record do
hagin
gesron WETAR Top synbol neme
11 foand them
sal corar flag fduplicabe sxicreal symbell
elee
cnter gymbol inte BETAR kith value
[LIAGDR 1 iadicated address:
and |Cor!
emd [while (3 B}
aJd CSLTH Lo OSADDR lstarting sddress for next control sectlond
amd {whilc not EOF|
end |Pess |

Pass 2:

begin

ceb CSADTE to PROGANDR

se< FXECAGTR to PROGALLR

while nat cnd of input Ao

bedin

read next imput resord JHomder ragerd)
el CSLTH 1o vcobsrol soction length
while rocored typs {3 'E’ ae

begin
=agd rext input rocord
if record typo — U7 them
bagin
{if okjsct code is 10 chavasler form, coavert
ints inte-nal reprosentationd
mova chjeet ende from record to Tocalicn
(O3AIDR ¢ specified addeess)
end J1f ‘T
glsa if record type - ‘M7 them
bagin

zaarch ESTAR tor redirylng =ymhol oame
11 found then
adel or =nbtract sywbol valae ol logation
- i CHADDH + sponi Mied addrsse)
alge
et error lag [wndeliced sxteronl symball]
end i if MU}
emA while () E'}
Af an address is specitied [in End secord) then
st EXECANCR to {CHADDR | spAcificd address)
add C5LTH ta CSADUR
amd [while nnt EOF}
sump to lopation_giver by EXECATUR {to start exgeniion ol Josded progral

Page 5 of 10

6 Explain following loader design options [10]
i) Linkage Editors
i) Dynamic Linking
1. Linkage Editor
The figure below shows the processing of an object program using Linkage editor.

FIGURE 3,17 Processing of an object program using {a) linking loader and (b) linkage

aditor
Object . Qbject
program(s) program(s)

<D D
Library Linking Library Linkage
ipader editar
Memary

(a)

Relocating
loader

:

Memory

(b)

A linkage editor produces a linked version of the program — often called a load module or an
executable image, which is written to a file or library for later execution. The linked program
produced is generally in a form that is suitable for processing by a relocating loader.

Linkage editor can perform many useful functions besides simply preparing an object program for
execution.

produce core image if actual address is known in advance

improve a subroutine (PROJECT) of a program (PLANNER) without going back to the original
versions of all of the other subroutines

INCLUDE PLANNER(PROGLIB) DELETE PROJECT {delete from existing PLANNER} INCLUDE
PROJECT(NEWLIB) {include new version} REPLACE PLANNER(PROGLIB) external references are
retained in the linked program

Linkage editors can also be used to build packages of subroutines or other control sections that
are generally used together.

Linkage editors often allow the user to specify that external references are not to be resolved by
automatic library search. Compared to linking loader, Linkage editors in general tend to offer more
flexibility and control, with a corresponding increase in complexity and overhead

2. Dynamic Linking

The scheme that postpones the linking functions until execution. A subroutine is loaded and linked
to the rest of the program when it is first called. This type of functions is usually called dynamic
linking, dynamic loading or load on call. The advantages of dynamic linking are, it allow several
executing programs to share one copy of a subroutine or library. In an object oriented system,
dynamic linking makes it possible for one object to be shared by several programs.

Dynamic linking provides the ability to load the routines only when (and if) they are needed. The
actual loading and linking can be accomplished using operating system service request. Instead of
executing a JSUB instruction that refers to an external symbol, the program makes a load-and-call
service request to the OS. The OS examines its internal tables to determine whether or not the

Page 6 of 10

routine is already loaded. Control is then passed from the OS to routine being called. When the
called subroutine completes its processing, it returns to its caller. OS then returns control to the
program that issued the request.

Load-and-call

Bynamic
loader
(part of the
aperating
system)

Dynamic
loader

Dynarmic
leader

Dynamic S

loader

Dynamic
loader

ERRHANDL

bEoad-and-call
ERRARHANDL

Library

- User P User User User User
frogram fprogram program program program

ERRHANDL

ERRHANDE ERRHANDL

ERRHANDL

(3] {d) (8}

FIGURE 3.18 Lcading and salling of U subrounne useng dynaric v ng

7 What are the Basic Functions of Loader? Explain design of absolute loader and Bootstrap
loader [10]

A loader is a system program that performs the loading function. It brings object program into
memory and starts its execution. Translator may be assembler/complier, which generates the object
program and later loaded to the memory by the loader for execution. The translator is specifically
an assembler, which generates the object loaded, which becomes input to the loader. The different
types of loaders are, absolute loader, bootstrap loader, relocating loader (relative loader), and,
direct linking loader.

1) Design of Absolute Loader:

The operation of absolute loader is very simple. The object code is loaded to specified locations in
the memory. At the end the loader jumps to the specified address to begin execution of the loaded
program. The role of absolute loader The advantage of absolute loader is simple and efficient. But
the disadvantages are, the need for programmer to specify the actual address, and, difficult to use
subroutine libraries.

Begin

read Header record

verify program name and length

read first Text record

while record type is <> ‘E’ do

begin

{if object code is in character form, convert into internal representation} move object code to
specified location in memory

read next object program record

end

jump to address specified in End record
end

Page 7 of 10

8

Discuss Relocation using Modification record and Bit Mask (Relocation Bit) [10]

Loaders that allow for program relocation are called relocating loaders or relative loaders There are
two methods for specifying relocation as part of the object program.

i)

Modification record
A Modification record is used to describe each part of the object code that must be when
program is relocated. There is one modification record for each value that must be changed
during relocation. Each modification record specifies the starting address and length of the
field whose value is to be altered. It then describes modification to be performed.
Begin
Get PROGADDR from OS Relocation Loader Algorithm
While not end of input do
{ read next record
while record type != ‘E' do
{
read next input record
while record type = ‘T' do
{ move object code from record to location
ADDR + specified address
}
while record type = ‘M’

add PROGADDR at the location PROGADDR +
specified address

end

Relocation bit (Bit Mask)
If a machine primarily uses direct addressing and has a fixed instruction format, it is often
more efficient to specify relocation using relocation bit
Each instruction is associated with one relocation bit. It Indicates that the corresponding
word should be modified or not.
0: no modification is needed
1: modification is needed
This is specified in the columns 10-12 of text record (T), the format of text record, along with
relocation bits is as follows.
Text record:

col1: T

col 2-7: starting address

col 8-9: length (byte)

col 10-12: relocation bits

col 13-72: object code
These relocation bits in a Text record are gathered into bit masks.
Twelve-bit mask is used in each Text record (col:10-12 — relocation bits), since each text
record contains less than 12 words, unused words are set to 0, and, any value that is to be
modified during relocation must coincide with one of these 3-byte segments.

E.g. FFC=111111111100
E00=111000000000

000000 00107A TAOOOOOOA1EAFFCA140033A481039A000036A280030A300015A...A3C0003
TAOOOO1EA15AEOO0NAOC0O036A481061A080033A4C0O000A...A000003A000000
TAO01039A1EAFFCAO040030A000030A...A30103FAD8105DA280030A... TAOO1057A0AA
800A100036A4C0O000AF1A001000
TAO01061A19AFEOAO40030AE01079A...A508039ADC1079A2C0036A... EAOO0OOOO

Page 8 of 10

9 Write short note on [10]

i) Automatic Library Search

ii) Loader options
i) Automatic Library Search
This feature allows a programmer to use standard subroutines without explicitly including them in
the program to be loaded.
The routines are automatically retrieved from a library as they are needed during linking.
This allows programmer to use subroutines from one or more libraries. The subroutines called by
the program being loaded are automatically fetched from the library, linked with the main program
and loaded.
The loader searches the library or libraries specified for routines that contain the definitions of
these symbols in the main program.

ii) Loader Options

Loader options allow the user to specify options that modify the standard processing. The options
may be specified in three different ways. They are, specified using a command language, specified
as a part of job control language that is processed by the operating system, and an be specified
using loader control statements in the source program. Here are the some examples of how option
can be specified. INCLUDE program-name (library-name) - read the designated object program from
a library DELETE csect-name — delete the named control section from the set pf programs being
loaded CHANGE namel, name2 - external symbol namel to be changed to name2 wherever it
appears in the object programs

LIBRARY MYLIB — search MYLIB library before standard libraries NOCALL STDDEV, PLOT, CORREL — no
loading and linking of unneeded routines Here is one more example giving, how commands can be
specified as a part of object file, and the respective changes are carried out by the loader.

LIBRARY UTLIB

INCLUDE READ (UTLIB)

INCLUDE WRITE (UTLIB)

DELETE RDREC,WRREC

CHANGE RDREC, READ

CHANGE WRREC, WRITE

NOCALL SQRT, PLOT

The commands are, use UTLIB (say utility library), include READ and WRITE control sections from
the library, delete the control sections RDREC and WRREC from the load, the change command
causes all external references to the symbol RDREC to be changed to the symbol READ, similarly
references to WRREC is changed to WRITE, finally

10 (a) Write a short note on Ms-DOS Linker [05]

This explains some of the features of Microsoft MS-DOS linker, which is a linker

for Pentium and other x86 systems. Most MS-DOS compilers and assemblers (MASM)
produce object modules, and they are stored in .OBJ files. MS-DOS LINK is a linkage
editor that combines one or more object modules to produce a complete executable
program - .EXE file; this file is later executed for results.

The following table illustrates the typical MS-DOS object module
Record Types Description

THEADR Translator Header

TYPDEF,PUBDEF, EXTDEF External symbols and references
LNAMES, SEGDEF, GRPDEF Segment definition and grouping
LEDATA, LIDATA Translated instructions and data

FIXUPP Relocation and linking information

Page 9 of 10

MODEND End of object module

THEADR specifies the name of the object module. MODEND specifies the end

of the module. PUBDEF contains list of the external symbols (called public names).
EXTDEF contains list of external symbols referred in this module, but defined elsewhere.
TYPDEF the data types are defined here. SEGDEF describes segments in the object
module (includes name, length, and alignment). GRPDEF includes how segments are
combined into groups. LNAMES contains all segment and class names. LEDATA

contains translated instructions and data. LIDATA has above in repeating pattern. Finally,
FIXUPP is used to resolve external references.

10 (b) Write a short note on Cray MPP Linker [05]

Cray MPP (massively parallel processing) Linker is developed for Cray T3E

systems. A T3E system contains large number of parallel processing elements (PEs) — Each PE has
local memory and has access to remote memory (memory of other PEs). The

processing is divided among PEs - contains shared data and private data.

The loaded program gets copy of the executable code, its private data and its portion of the shared
data. The MPP linker organizes blocks containing executable code, private data and

shared data. The linker then writes an executable file that contains the relocated and

linked blocks. The executable file also specifies the number of PEs required and other

control information. The linker can create an executable file that is targeted for a fixed

number of PEs, or one that allows the partition size to be chosen at run time. Latter type

is called plastic executable.

Page 10 of 10

