

1 | P a g e

Sub:
INTERNAL TEST – II Answer Key

Operating Systems

Code:17MCA24

1 (a) Compare preemptive with non preemptive scheduling

3

(b)

Discuss about the OS control structures

• To manage the processes, the OS should have the information about the current status of each

process and resource.

• For this purpose OS constructs and maintains tables for each entity

• The four types of tables maintained by OS are explained here.

 Memory Table: Used to keep track of both main and secondary memory. They must include the

following information:

– Allocation of main memory to processes

– Allocation of secondary memory to processes

– Protection attributes for access to shared memory regions

– Information needed to manage virtual memory

I/O Table: Used by OS to manage the I/O devices and the channels. At any given moment of time,

the OS needs to know

– Whether the I/O device is available or assigned

– The status of I/O operation

– The location in main memory being used as the source or destination of the

– I/O transfer

File Table: Most of the times, these tables are maintained by file management system. These tables

provide information about:

– Existence of files

– Location on secondary memory

– Current Status

– Any other relevant attributes

Process Table: To manage processes the OS needs to know following details of the processes

– Current state

– Process ID

– Location in memory

7

2 | P a g e

2 Explain the five state process model with transition diagram, showing how to change process model for a

suspend process

PROCESS

A process can be defined in several ways:

 A program in execution

 An instance of a program running on a computer

 The entity that can be assigned to and executed on a processor

 A unit of activity characterized by the execution of a sequence of instructions, a

current state, and an associated set of system resources.

Two essential elements of a process are:

 program code: which may be shared with other processes that are executing the

same program

 Set of data: associated with that code

The various States of the Process are as Followings:-

1) New State: When a user request for a Service from the System , then the System will first initialize the

process or the System will call it an initial Process . So Every new Operation which is Requested to the

System is known as the New Born Process.

2) Running State: When the Process is Running under the CPU, or When the Program is Executed by

the CPU , then this is called as the Running process and when a process is Running then this will also

provides us Some Outputs on the Screen.

3) Waiting: When a Process is Waiting for Some Input and Output Operations then this is called as the

Waiting State. And in this process is not under the Execution instead the Process is Stored out of Memory

and when the user will provide the input then this will Again be on ready State.

4) Ready State: When the Process is Ready to Execute but he is waiting for the CPU to Execute then

this is called as the Ready State. After the Completion of the Input and outputs the Process will be on

Ready State means the Process will Wait for the Processor to Execute.

Terminated State: After the Completion of the Process , the Process will be Automatically terminated by

the CPU . So this is also called as the Terminated State of the Process. After executing the whole Process

the Processor will also de-allocate the Memory which is allocated to the Process. So this is called as the

Terminated Process.

10

3 | P a g e

For Suspend process

With two suspend states - Process State Transition Diagram with Suspend States

3 (a) What is deadlock? Explain with a small diagram. What are the necessary conditions for the

deadlock to occur in a system

Deadlock can be defined as the permanent blocking of a set of processes that either compete for

system resources or communicate with each other. A set of processes is deadlocked when each

process in the set is blocked awaiting an event (typically the freeing up of some requested

resource) that can only be triggered by another blocked process in the set. Deadlock is permanent

because none of the events is ever triggered

Deadlock can arise if four conditions hold simultaneously:

 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

Mutual exclusion

6

4 | P a g e

At least one resource must be non-sharable mode i.e. only one process can use a resource at a

time. The requesting process must be delayed until the resource has been released. But mutual

exclusion is required to ensure consistency and integrity of a database.

Hold and wait

A process must be holding at least one resource and waiting to acquire additional resources held

by other processes.

No preemption

A resource can be released only voluntarily by the process holding it after that process has

completed its task i.e. no resource can be forcibly removed from a process holding it.

Circular wait

There exists a set {P0, P1, …, Pn} of waiting processes such that P0 is waiting for a resource

that is held by P1, P1 is waiting for a resource that is held by P2,…… …, Pn–1 is waiting for a

resource that is held by Pn, and Pn is waiting for a resource that is held by P0.

(b)
Write short notes about resource allocation graph

The resource allocation graph is a directed graph that depicts a state of the system of

resources and processes with each process and each resource represented by a node. Itis a graph

consisting of a set of vertices V and a set of edges E with following notations:

 V is partitioned into two types:

o P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

o R = {R1, R2, …, Rm}, the set consisting of all resource types in the system.

 Request edge: A directed edge Pi Rj indicates that the process Pi has requested

for an instance of the resource Rj and is currently waiting for that resource.

 Assignment edge: A directed edge Rj Pi indicates that an instance of the

resource Rj has been allocated to the process Pi

The following symbols are used while creating resource allocation graph:

Examples of resource allocation graph are shown in Figure 5.1. Note that, in Figure 5.1(c), the

processes P2 and P4 are not depending on any other resources. And, they will give up the

resources R1 and R2 once they complete the execution. Hence, there will not be any deadlock.

4

5 | P a g e

4 Explain reader’s writer’s problem and write the solution using semaphore

• Any number of readers may simultaneously read the file

• Only one writer at a time may write to the file

• If a writer is writing to the file, no reader may read it

• If there is at least one reader reading the data area, no writer may write to it.

• Readers only read and writers only write

Reader’s have priority

Unless a writer has permission to access the object, any reader requesting access to the object
will get it. Note this may result in a writer waiting indefinitely to access the object.

10

6 | P a g e

Writers Have Priority

When a writer wishes to access the object, only readers which have already obtained
permission to access the object are allowed to complete their access; any readers that
request access after the
writer has done so must wait until the writer is done. Note this may result in readers
waiting indefinitely to access the object

The following semaphores and variables are added:

– A semaphore rsem that inhibits all readers while there is at least one writer

desiring access to the data area

– A variable writecount that controls the setting of rsem

– A semaphore y that controls the updating of writecount

– A semaphore z that prevents a long queue of readers to build up on rsem

7 | P a g e

5

(a)
Define is response time and turnaround time?

Response Time: The time duration from the submission of a request till the first
response received is known as response time.

 Turnaround time: The interval from the time of submission of a process to the time of completion is

the turnaround time. Turnaround time is the sum of the periods spent waiting to get into memory, waiting

in the ready queue, executing on the CPU, and doing I/O.

3

(b)
Consider the following set of processes with given length of CPU burst:

Processes P1 P2 P3 P4 P5

Burst Time 6 2 8 3 4

Arrival Time 2 5 1 0 4

7

8 | P a g e

Draw Gantt chart for SJF (preemptive) and SFJ (non-preemptive.

Find the average waiting time, average turn around time, throughput for each scheduling

algorithm.

SJF (Non - Preemptive)

P4 P1 P2 P5 P3

 0 3 9 11 15 23

 AWT = [(0-0)+(3-2)+(9-5)+(11-4)+(15-1)] / 5

 = (0+1+4+7+14)/5

 =26/5 = 5.2ms

Average Turnaround Time = [(9-2)+(11-5)+(23-1)+(3-0)+(15-4)]/5

 = (7+6+22+3+11)/5

 = 49/5=9.8 ms

Through put : 5/23 = 0.21 ms

SJF (Preemptive)

P4 P1 P5 P2 P5 P1 P3

 0 3 4 5 7 10 15 23

Waiting Time for P1 = 3-2+6=7

Waiting Time for P2 = 5-5 = 0

Waiting Time for P3 = 15-1=14

Waiting Time for P4 = 0-0=0

Waiting Time for P5 = 4-4+2=2

AWT = (7+0+14+0+2)//5 = 23/5 = 4.6 ms

Average Turnaround Time : (15-2) + (7-5) + (23-1) + (3-0) + (10-4) / 5

 = (13+2+22+3+6) /5

 = 46/2 = 9.32 ms

Through put : 5/23 = 0.21 ms

6

(a)
Define is waiting time, throughput?
Throughput: The number of processes completed per time unit is called as throughput.

 Waiting Time: The CPU-scheduling algorithm does not affect the amount of time during which a

process executes or does I/O; it affects only the amount of time that a process spends waiting in the ready

queue. Waiting time is the sum of the periods spent waiting in the ready queue.

3

(b) Consider the following set of processes with given length of CPU burst:

Processes P1 P2 P3 P4 P5

Burst Time 10 1 2 1 5

Priority 3 1 3 4 2

All processes arrived at time 0 in the given order.

Draw Gantt chart using SJF (non-preemptive), Priority (Non-preemptive) [Smallest number

implies highest priority], and Round Robin [Quantum-2 ms] scheduling policies. Find the

average waiting time for each scheduling policy.

SJF (Non preemptive)

P2 P4 P3 P5 P1

7

9 | P a g e

 0 1 2 4 9 19

 AWT = 9+0+2+1+4 = 16/5 = 3.2 ms

Priority (Non-preemptive)

P2 P5 P1 P3 P4

 0 1 6 16 18 19

 AWT = 6+0+16+18+1 = 41/5 = 8.2 ms

Round Robin

P1 P2 P3 P4 P5 P1 P5 P1 P5 P1 P1

 0 2 3 5 6 8 10 12 14 15 17 19

Waiting Time for P1 = 0+(8-2)+(12-10)+(15-14) = 0+6+2+1=9

Waiting Time for P2 = 2

Waiting Time for P3 = 3

Waiting Time for P4 = 5

Waiting Time for P5 = 6+(10-8)+(14-12) = 6+2+2=10

AWT = 9+2+3+5+10 = 29/5 = 5.8 ms

7 (a) What is a thread? Explain the benefits of a multithreaded programming
A thread is a flow of execution through the process code, with its own program counter, system registers

and stack. A thread is also called a light weight process. Threads provide a way to improve application

performance through parallelism. Threads represent a software approach to improving performance of

operating system by reducing the overhead thread is equivalent to a classical process.

Each thread belongs to exactly one process and no thread can exist outside a process. Each thread

represents a separate flow of control. Threads have been successfully used in implementing network

servers and web server. They also provide a suitable foundation for parallel execution of applications on

shared memory multiprocessors. Following figure shows the working of the single and multithreaded

processes.

The benefits of threads are:

 Thread takes less time to create compared to a process

 It takes less time to terminate compared to a process

 Switching between two threads takes less time than switching processes

 Threads can communicate with each other without invoking the kernel

4

 (b) Explain with diagram user level threads and kernel level threads

User – level and Kernel – level Threads
A thread can be implemented as either a user – level thread (ULT) or kernel – level thread (KLT). The
KLT is also known as kernel – supported threads or lightweight processes.
User – level Threads: In ULT, all work of thread management is done by the application and the
kernel is not aware of the existence of threads. It is shown in Figure 3.12 (a).

Any application can be programmed to be multithreaded by using a threads library, which a package

6

10 | P a g e

of routines for ULT management. Usually, an application begins with a single thread and begins

running in that thread. This application and its thread are allocated to a single process managed by

the kernel. The application may spawn a new thread within the same process during its execution.

But, kernel is not aware of this activity.

The advantages of ULT compared to KLT are given below:
 Thread switching doesn’t require kernel mode privileges. Hence, the overhead of two switches
(user to kernel and kernel back to user) is saved.
 Scheduling can be application specific. So, OS scheduling need not be disturbed.
 ULTs can run on any OS. So, no change in kernel design is required to support ULTs.
There are certain disadvantages of ULTs compared to KLTs:
 Usually, in OS many system calls are blocking. So, when a ULT executes a system call, all the
threads within the process are blocked.
 In a pure ULT, a multithreaded application cannot take advantage of multiprocessing.
Kernel – level Threads: In pure KLT model, all work of thread management is done by the kernel.
Thread management code will not be in the application level. This model is shown in Figure 3.12(b).
The kernel maintains context information for the process as a whole and for individual threads
within the process. So, there are certain advantages of KLT :
 The kernel can simultaneously schedule multiple threads from the same process on multiple
processors.
 If one thread in a process is blocked, the kernel can schedule another thread of the same process.
 Kernel routines themselves can be multithreaded.
But, there is a disadvantage as well: The transfer of control from one thread to another within the
same process requires a mode switch to the kernel.
Combined Approach: Some OS provide a combination of ULT and KLT as shown in Figure 3.12 (c). In
this model, thread creation is done completely in user space. The multiple ULTs from a single
application are mapped onto number of KLTs. The programmer may adjust the number of KLTs for a
particular application and processor to achieve the best results.

8 Consider the following page reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

Assuming 3 frames, find the number of page faults when the following algorithms are used: i) LRU ii)

FIFO iii) Optimal. Note that initially all the frames are empty.

Assuming 3 frames, find the number of page faults when the following algorithms are used: i)

LRU ii) FIFO iii) Optimal. Note that initially all the frames are empty.

FIFO Page Replacement

It is the simplest page – replacement algorithm. As the name suggests, the first page
which has been brought into memory will be replaced first when there no space for new
page to arrive. Initially, we assume that no page is brought into memory. Hence, there
will be few (that is equal to number of frames) page faults, initially. Then, whenever
there is a request for a page, it is checked inside the frames. If that page is not
available, page – replacement should take place.
Example: Consider a reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7,
0, 1
Let the number of frames be 3.

10

11 | P a g e

In the above example, there are 15 page faults.

LRU Page Replacement
Least Recently Used page replacement algorithm states that: Replace the page that
has not been used for the longest period of time. This algorithm is better than FIFO.
Example:

Here, number of page faults = 12
Optimal Page Replacement Algorithm

An Optimal Page Replacement algorithm (also known as OPT or MIN algorithm) do not
suffer from Belady’s anomaly. It is stated as: Replace the page that will not be used
for the longest period of time.

Here, number of page faults = 9

This algorithm results in lowest page – faults.

9 What is demand paging? Explain how TLB improves the performance of demand paging with neat

diagram

Demand paging is similar to paging system with swapping. Whenever process needs to be

executed, only the required pages are swapped into memory. This is called as lazy swapping.

As, the term swapper has a different meaning of ‘swapping entire process into memory’, another

10

12 | P a g e

term pager is used in the discussion of demand paging.

When a process is to be swapped in, the pager guesses which pages will be used before the

process is swapped out again. The pager brings only those necessary pages into memory. Hence,

it decreases the swap time and the amount of physical memory needed.

Demand Paging: Bring a page into memory only when it is needed.
-Less I/O needed

-Less memory needed

-Faster response

-More users

10. State the dining philosophers problem and give solution for the same, using semaphores

Five philosophers spend their lives thinking and eating.

10

13 | P a g e

 Philosophers share a common circular table surrounded by five chairs, each belonging to one

philosopher.

 In center of the table is a bowl of rice (or spaghetti), and the table is laid with five single

chopsticks.

 From time to time, philosopher gets hungry and tries to pick up the two chopsticks that are

closest to her (the chopsticks that are between her and her left and right neighbors).

A philosopher may pick up only one chopstick at a time.

 She cannot pick up a chopstick that is already in hand of a neighbor.

 When a hungry philosopher has both her chopsticks at the same time, she eats without

releasing her chopsticks.

 When she finishes eating, she puts down both of her chopsticks and start thinking again.

The problem is to ensure that no philosopher will be allowed to starve because he cannot ever
pick up both forks.

The dinning philosopher problem is considered a classic problem because it is an example of a

large class of concurrency-control problems.

 Shared data

 semaphore chopstick[5];

 Initially all values are 1

 A philosopher tries to grab the chopstick by executing wait operation and releases the

chopstick by executing signal operation on the appropriate semaphores.

14 | P a g e

This solution guarantees that no two neighbors are eating simultaneously but it has a possibility

of creating a deadlock and starvation.

 Allow at most four philosophers to be sitting simultaneously at the table.

 Allow a philosopher to pick up her chopsticks if both chopsticks are available.

 An odd philosopher picks up her left chopstick first and an even philosopher picks up her right

chopstick first.

 Finally no philosopher should starve.

