
Page 1 of 15

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - III

 Sub: Analysis and Design of Algorithms Code: 13MCA41

Date: 29 / 05 / 2017 Duration: 90 mins Max Marks: 50 Sem: III Branch: MCA

Answer Any FIVE FULL Questions

 Marks

OBE

CO RBT

1 (a) What are decision trees? Explain with example, how decisions trees are used to prove

lower bound of sorting problem.

Sol:

Definition Decision Trees with uses - 4M

Example+Explanation of decision tree for sorting - 6M

 Sol: Decision tree is a mechanism for studying the performance of comparison

based algorithms such as sorting and searching. For example : for the problem

of finding max of 3 numbers the decision tree is a binary tree. Each internal

node

of a binary decision tree represents a key comparison indicated in the node,

e.g., k < k

. The node’s left subtree contains the information about subsequent

comparisons made if k' < k , and its right subtree does the same for the case of
k' >k. Each leaf represents a possible outcome of the algorithm’s run on some

input of size n. The number of leaves can be greater than the number of

outcomes because, for some algorithms, the same outcome can
be arrived at through a different chain of comparisons but the number leaves

cannot be lesser than the number of possible outcomes because if so, the

algorithm is not correct since for a particular combination which should result
in the missing outcome, the algorithm would not produce the correct result. The

algorithm’s work on a particular input of size n can be traced by a path from the

root to a leaf in its decision tree, and the number of comparisons made by the
algorithm on such a run is equal to the length of this path. Hence, the number of
comparisons in the worst case is equal to the height of the algorithm’s decision tree.
The central idea behind this model lies in the observation that a tree with a given
number of leaves, which is dictated by the number of possible outcomes, hasto be tall
enough to have that many leaves. We use the lemma that for any binary tree with l
leaves and height h, h ≥ log2 l. Indeed, a binary tree of height h with the largest number
of leaves has all its leaves on the last level. Hence, the largest number of leaves in such
a tree is 2h. In other words, 2h ≥ l, which immediately implies, h ≥ log2 l. Inequality given
above puts a lower bound on the heights of binary decision trees and hence the worst-
case number of comparisons made by any comparison-based algorithm for the
problem in question. Such a bound is called the information theoretic lower bound.
Decision trees are an alternate way of representing comparison based algorithms and
thus have the following advantages:
1. they provide a visual representation of the algorithm and in understanding the
comparisons made.
2. The height of the decision tree automatically conveys the worst case performance of
the algorithm.
3. They can be used to prove the lower bound on any problem. This is useful since a

[10] CO3 L3

Page 2 of 15

person would attempt a problem for which lower bound is proved only if there is a gap
between the lower bound and the best solution available. Otherwise a person can give
up trying to obtain a better solution.

Sorting:
We can interpret an outcome of a sorting algorithm as finding a permutation of the
element indices of an input list that puts the list’s elements in ascending order.
Consider, as an example, a three-element list a, b, c of orderable items such as real
numbers or strings. For the outcome a < c<b obtained by sorting this list, the
permutation in question is 1, 3, 2. In general, the number of possible outcomes for
sorting an arbitrary n-element list is equal to n!.
Inequality above implies that the height of a binary decision tree for any comparison-

based sorting algorithm and hence the worst-case number of comparisons made by such

an algorithm cannot be less than

Using Stirling’s formula for n!, we get:
In other words, about n log2 n comparisons are necessary in the worst case to sort an
arbitrary n-element list by any comparison-based sorting algorithm. An example of of
decision tree for sorting of 3 numbers is shown.

In other words, about n log2 n comparisons are necessary in the worst case to sort an
arbitrary n-element list by any comparison-based sorting algorithm. An example of of
decision tree for sorting of 3 numbers is shown.

2 (a) Define with examples the following classes: P, NP and NP-Complete.

Sol: P,Np,Np-Complete, NP-Hard - 2.5x4=10M

Class P: There are many algorithms for which polynomial time solution exists and thus
are tractable(i.e. solvable in a reasonable amount of time). Informally P consists of the
set of problems which are tractable. A formal definition of P is:
Class P is a class of decision problems that can be solved in polynomial time by

(deterministic) algorithms. This class of problems is called polynomial.The main reason

for only considering decision problems is that many naturally occurring problems can be

posed as a decision problem and decision problems in general are deemed to be “easier”

to solve that their non decision counterparts, i.e. if a natural

version of the problem is tractable then there is a tractable algorithm available for the
decision version as well. Examples: Whether an element is present in the array(O(n),
element uniqueness problem(O(nlgn). Etc.
Decision problems fall under 3 categories:
1. No solution: For example for the halting problem which is the problem of
determining whether a given algorithm would halt on a given input does not have any
algorithm for it. Thus it is undecidable.

[10] CO5 L1

Page 3 of 15

2. Decidable but exponential time: There are other decidable problems which are
intractable. The natural problems in this category are very rare
3. No polynomial solution till date and nobody has been able to prove a lower bound.
Many important problems fall under this category.
a. Hamiltonian circuit problem Determine whether a given graph has a Hamiltonian
circuit
b. Graph coloring: Can a graph be colored with n colors?

For a majority of these problems the number of choices while constructing a solution
rises exponentially but checking whether a proposed solution actually solves the
problem is computationally easy. This observation gives rise to the notion of non
deterministic algorithm. A nondeterministic algorithm is a two-stage procedure that
takes as its input an instance I of a decision problem and does the following.

 Nondeterministic (“guessing”) stage: An arbitrary string S is generated that can be
thought of as a candidate solution to the given instance I (but may be complete
gibberish as well).

 Deterministic (“verification”) stage: A deterministic algorithm takes both I and S as its
input and outputs yes or no if S represents a solution to instance I or no if it doesn’t.

We say that a nondeterministic algorithm solves a decision problem if and only if for
every yes instance of the problem it returns yes on some execution.
Class NP is the class of decision problems that can be solved by nondeterministic
polynomial algorithms. This class of problems is called nondeterministic polynomial.
The problems in class P are in NP because the polynomial time solution can be used for
guessing and the result of verification can be ignored and hence . But in addition P also
contains decision problems which currently don’t have a polynomial time solution e.g.
Hamiltonian circuit problem, knapsack, graph coloring etc. The question as to whether
P = NP remains unanswered.
A decision problem D is said to be NP-complete if:
1. it belongs to class NP
2. every problem in NP(Q) is polynomially reducible to D i.e. it should be possible to

change an instance of Q to an instance of D and get the answer of Q from the output of

D in polynomial time.

The first example of NP complete problem(proved by Cook) is CNF-satisfiability
problem which is to determine given a Boolean expression in CNF form whether or
not one can assign values true and false to variables to make the entire expression
true. Other examples of NP-Complete problems are : Hamiltonian circuit, traveling
salesman, partition, bin packing,
and graph coloring etc.NP complete problems are very important because even if one
of the problems are solvable in polynomial time then a wide variety of important
problems would have a polynomial time solution.
NP Hard problems:
A decision problem D is said to be NP-Hard if every problem in NP is polynomially
reducible to D
In some sense NP- hard problems are harder than NP problems. All problems in NP

complete are in NP hard. In addition Halting problem which is not solvable(and hence

not in NP- complete) is also NP-Hard which means that if there is ever a polynomial

time solution to Halting problem then every problem in NP would be solvable in

polynomial time.

3 (a) Explain backtracking. Describe the 8-queen’s problem and discuss the possible solution.

Sol: Explanation backtracking - 4M

NQueen's problem description - 2M

Solution using backtracking - 4M

There are certain problems encountered that require finding an element with a special

[10] CO4,C

O1

L2

Page 4 of 15

property in a domain that grows exponentially fast (or faster) with the size of the
problem’s input. For such problems the exhaustive-search technique suggests
generating all candidate solutions and then identifying the one with a desired property.
Backtracking is a more intelligent variation of this approach where the main idea is to
construct solutions one component at a time and evaluate such partially constructed
candidates as follows. If a partially constructed solution can be developed further
without violating the problem’s constraints, it is done by taking the first remaining
legitimate option for the next component. If there is no legitimate option for the next
component, no alternatives for any remaining component need to be considered. In
this case, the algorithm backtracks to replace the last component of the partially
constructed solution with its next option.
This kind of processing can be done by a state-space tree. Its root represents an initial

state before the search for a solution begins. The nodes of the first level in the tree

represent the choices made for the first component of a solution, the

nodes of the second level represent the choices for the second component, and so on.

A node in a state-space tree is said to be promising if it can lead to a complete
solution. A DFS is used to implement backtracking.

The n-queens problem. is to place n queens on an n × n chessboard so that no two

queens attack each other by being in the same row or in the same column or on the
same diagonal.

To solve this using backtracing we use the following strategy:

We start with the empty board and then place queen 1 in the first possible position
of its row, which is in column 1 of row 1. Then we place queen 2, after trying

unsuccessfully columns 1 and 2, in the first acceptable position for it, which is square

(2, 3), the square in row 2 and column 3. This proves to be a dead end because there
is no acceptable position for queen 3. So, the algorithm backtracks and puts queen 2

in the next possible position at (2, 4). Then queen 3 is placed at (3, 2), which proves

to be another dead end. The algorithm then backtracks all the way to queen 1 and
moves it to (1, 2). Queen 2 then goes to (2, 4), queen 3 to (3, 1), and queen 4 to (4, 3),

which is a solution to the problem. The state space tree is shown below:

Page 5 of 15

4 (a) Solve the following assignment problem using branch and bound(Fig 4(a))

 Fig. 4(a) Fig. 4(b)

Sol: Solution 4 levels in the tree - 1.5x4 = 6M

To find the lower bound,the cost of any solution, including an optimal one, cannot be

smaller than the sum of the smallest elements in each of the matrix’s rows. For the

instance here, this sum is 2 + 3+ 1+ 4 = 10. We can apply the same thinking to partially

constructed solutions. For example, for anylegitimate selection that selects 9 from the

first row, the lower bound will be 9 + 3 + 1+ 4 = 17. Constructed in this way the search tree is

Expanding the state with the least lb(i.e. state 2)

Now state 5 has the least lb among all states . So expanding it

[6] CO2 L3

Page 6 of 15

We find that all the other solutions or partially constructed solutions are inferior to the

best solution till now i.e. state 8 since they have a lower bound greater than the best

solution till now i.e. 13. So we do not expand any of the other states and the best

solution is : a-->2, b-->1 , c-->3, d-->4 with a total cost of 13.

(b) Write the psedocode for sum of subsets problem using backtracking method.

Pseudocode - 4M

// s - set of numbers

// n- number of items

// N - sum required

//sum - sum of the partially constructed subset

//i - position of the number to be considered for inclusion/exclusion

//r - sum of the rest of numbers

//x - binary solution - if x[i]= 1 then 'i'th element is included, else it is not included

Algorithm SOS(s[1..n], N , sum, i, r,x[1..n])

{

 If (i <= n)

 {

 x[i] = 1 // include the ith item in subset

 If (sum + x[i] = N) // if we found the solution

 Print "Solution is ",x

 else if (sum+x[i]+x[i+1]=N

 SOS(s,N,sum+x[i],i+1,r-x[i],x)

 x[i]=0 //case when ith object is not included

 if (sum+r-x[i] >=N and sum+x[i+1] <= N)

 SOS(s,N,sum,i+1,r-x[i],x)

 }

}

[4] CO5 L3

5 (a) Draw state space tree of branch-and-bound technique to find optimal tour for travelling

salesperson for the given graph Fig. 4(b)

Sol: Explanation of lower bound - 2M

Drawing 4 levels - 2M each - 2x4 = 8M

[10] CO1,C

O6

L2,L4

Page 7 of 15

Page 8 of 15

6 (a) Using backtracking solve sum of subsets problem for the following instance n=5, d=9,

set S= { 1,2,5,6,8}.

Sol:

4 levels - 1,5x4 = 6M

[6] CO3 L1

Page 9 of 15

(b) Distinguish between backtracking and branch and bound methods.

Sol: 2 differences in details - 2x2M = 4M

Backtracking and branch and bound are similar to each other because they are
normally used to solve problems whose state space grows exponential. To save time

[4] CO2 L2,L3

7 (a) Find a Hamiltonian circuit using backtracking method for the graph below ignoring the

weights.

[5] CO6 L4

Page 10 of 15

Sol: Steps in the solution. Atleast 3 solutions - One of which is shown below - 5M

(b) For the above graph find he minimal spanning tree using Kruskal's algorithm.

Sol: 5 edges in the tree - 1x5 = 5M

[5] CO3 L3

Page 11 of 15

Hence the edges in the minimal spanning tree using Kruskal’s is: 1-2,

2-4, 4-6,3-5 and 1-3, having cost of 1+2+3+4+4 = 14

8(a) Write and Analyze the pseudo code for Kruskal's algorithm for finding spanning tree

Sol: Algorithm - 3M

Analysis - 2M

Kruskal’s algorithm is used for solving the minimal spanning tree

problem. Spanning tree of an undirected connected graph is its

connected acyclic subgraph(tree) that contains all the vertices of the

graph. If such a graph has weights assigned to its edges, a minimum

spanning tree is its spanning tree of the smallest weight, where the

weight of a tree is defined as the sum of the weights on all its edges.

The minimum spanning tree problem is the problem of finding a

minimum spanning tree for a given weighted connected graph.

Kruskal’s algorithm looks at a minimum spanning tree of a weighted

connected graph G = (V, E) as an acyclic subgraph with |V| − 1 edges

for which the sum of the edge weights is the smallest. Consequently,

[5] CO6 L3

Page 12 of 15

the algorithm constructs a minimum spanning tree as an expanding

sequence of subgraphs that are always acyclic but are not necessarily

connected on the intermediate stages of the algorithm. The

algorithm begins by sorting the graph’s edges in nondecreasing order

of their weights. Then, starting with the empty subgraph, it scans

this sorted list, adding the next edge on the list to the current

subgraph if such an inclusion does

not create a cycle and simply skipping the edge otherwise.

Thepseudocode is outlined below:

We can consider the algorithm’s operations as a progression through

a series of forests containing all the vertices of a given graph and

some of its edges. The initial forest consists of |V | trivial trees,

each comprising a single vertex of the graph. The final forest

consists of a single tree, which is a minimum spanning tree of the

graph. On each iteration, the algorithm

takes the next edge (u, v) from the sorted list of the graph’s edges,

finds the trees containing the vertices u and v, and, if these trees

are not the same, unites them in a larger tree by adding the edge (u,

v). There are efficient algorithms for doing so, including the crucial

check for whether two vertices belong to the same tree. They are

called unionfind algorithms which uses two operations: union and find

, find to find the representative element and union for combining two

disconnected components whdn an edge is added between them. union

operation takes O(1) time since a max of 3 operations are performed,

whereas find can be performed in time O(lgn). Since the find has to

be done every time an edge is considered fpr addition in the tree the

time taken for performing the find across all iterations would be

atmost Elg|V|.. Across all iterations the union would take O(|E|) time.

The time taken for sorting the edges would take O(Elg|E|) time for a

total time complesity of :

O(|E|lg|E|+|E|lg|V|+|E|) = O(|E|lg|E|) since for a connected graph

|V| < |E|.
(b) Write and Analyze the pseudo code for Dijkstra's algorithm for finding the single source

shortest path.

[5] CO6 L2

Page 13 of 15

Sol: Algorithm - 3M

Analysis - 2M

Dijkstra’s algorithm is an algorithm for solving the single-source

shortest-paths problem: for a given vertex called the source in a

weighted connected graph with non negative edges, find shortest

paths to all its other vertices. Some of the applications of the

problem are transportation planning, packet routing in communication

networks finding shortest paths in social networks, etc. First, it finds

the shortest path from the source. to a vertex nearest to it, then to

a second nearest, and so on. In general, before its ith iteration

starts, the algorithm has already identified the shortest paths to i −

1 other vertices nearest to the source. These vertices, the source,

and the edges of the shortest paths leading to them from the source

form a subtree Ti of the given graph. The set of vertices adjacent to

the vertices in T called “fringe vertices”; are the candidates from

which Dijkstra’s algorithm selects the next vertex nearest to the

source. To identify the ith nearest vertex, the algorithm computes,

for every fringe vertex u, the sum of the distance to the nearest

tree vertex v and the length dv of the shortest path from the

source to v and then selects the vertex with the smallest such d

value. d indicates the length of the shortest path from the source to

that vertex till that point. We also associate a value p with each

vertex which indicates the name of the next-to-last vertex on such a

path, . After we have identified a vertex u* to be added to the tree,

we need to perform two operations.

The psuedocode for Dijkstra’s is as given below:

Page 14 of 15

Analysis:

The time efficiency of Dijkstra’s algorithm depends on the data

structures used for implementing the priority queue and for

representing an input graph itself.

Graph represented by adjacency matrix and priority queue by array:

In loop for initialization takes time |V| since the insertion into the

queue would just involve appending the vertices at the end(since it is

an array implementation). For the second loop, the loop runs |V|

times. Each time the DeleteMin operation would take a maximum of

θ(|V|) time since it would involve finding the vertex in the array with

min d value, for a total time of |V|2. The for loop (for iupdating the

neighbor vetices) would run |V| times again. However the Decrease

would take θ(1) time because the index of the vertex would be known.

Thus the total time complexity is θ(|V|2).

Graph represented by adjacency list and priority queue by binary

heap:

All heap operations take θ(lg|V|) time. Thus the first loop runs |V|

times and each time the Insert would take θ(lg|V|) time. The second

loop runs |V| times and the DeleteMin would again take lg|V| time.

Thus the total number of time DecreaseMin would run across all

iterations is θ(Vlg|V|). In the second loop the basic operation is

Decrease(Q,u,du) whoch is run the maximum number of times. Across

all iterations using adjacency list, since for each vertex Decrease is

Page 15 of 15

called for a maximum of all its adjacent vertices, the number of

times Decrease is invoked |E| times. For each time it is onvoked , it

takes O(lg|V|) time to execute. Thus the total time complexity is

θ((|E|+|V|)lg|V|).

