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1 (a) What are decision trees? Explain with example, how decisions trees are used to prove 

lower bound of sorting problem. 

 

Sol: 

Definition Decision Trees with uses - 4M 

Example+Explanation of decision tree for sorting - 6M 

 

 
 Sol: Decision tree is a mechanism for studying the performance of comparison 

based algorithms such as sorting and searching. For example : for the problem 

of finding max of 3 numbers the decision tree is a binary tree. Each internal 

node  

of a binary decision tree represents a key comparison indicated in the node, 

e.g., k < k  

. The node’s left subtree contains the information about subsequent 

comparisons made if k' < k , and its right subtree does the same for the case of 
k' >k. Each leaf represents a possible outcome of the algorithm’s run on some 

input of size n. The number of leaves can be greater than the number of 

outcomes because, for some algorithms, the same outcome can  
be arrived at through a different chain of comparisons but the number leaves 

cannot be lesser than the number of possible outcomes because if so, the 

algorithm is not correct since for a particular combination which should result 
in the missing outcome, the algorithm would not produce the correct result. The 

algorithm’s work on a particular input of size n can be traced by a path from the 

root to a leaf in its decision tree, and the number of comparisons made by the  
algorithm on such a run is equal to the length of this path. Hence, the number of 
comparisons in the worst case is equal to the height of the algorithm’s decision tree. 
The central idea behind this model lies in the observation that a tree with a given 
number of leaves, which is dictated by the number of possible outcomes, hasto be tall 
enough to have that many leaves. We use the lemma that for any binary tree with l 
leaves and height h, h ≥ log2 l. Indeed, a binary tree of height h with the largest number 
of leaves has all its leaves on the last level. Hence, the largest number of leaves in such 
a tree is 2h. In other words, 2h ≥ l, which immediately implies, h ≥ log2 l. Inequality given 
above puts a lower bound on the heights of binary decision trees and hence the worst-
case number of comparisons made by any comparison-based algorithm for the 
problem in question. Such a bound is called the information theoretic lower bound.  
Decision trees are an alternate way of representing comparison based algorithms and 
thus have the following advantages:  
1. they provide a visual representation of the algorithm and in understanding the 
comparisons made.  
2. The height of the decision tree automatically conveys the worst case performance of 
the algorithm.  
3. They can be used to prove the lower bound on any problem. This is useful since a 
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person would attempt a problem for which lower bound is proved only if there is a gap 
between the lower bound and the best solution available. Otherwise a person can give 
up trying to obtain a better solution.  
 
Sorting:  
We can interpret an outcome of a sorting algorithm as finding a permutation of the 
element indices of an input list that puts the list’s elements in ascending order. 
Consider, as an example, a three-element list a, b, c of orderable items such as real 
numbers or strings. For the outcome a < c<b obtained by sorting this list, the 
permutation in question is 1, 3, 2. In general, the number of possible outcomes for 
sorting an arbitrary n-element list is equal to n!.  
Inequality above implies that the height of a binary decision tree for any comparison-

based sorting algorithm and hence the worst-case number of comparisons made by such 

an algorithm cannot be less than  

Using Stirling’s formula for n!, we get:  
In other words, about n log2 n comparisons are necessary in the worst case to sort an 
arbitrary n-element list by any comparison-based sorting algorithm. An example of of 
decision tree for sorting of 3 numbers is shown.  

 
In other words, about n log2 n comparisons are necessary in the worst case to sort an 
arbitrary n-element list by any comparison-based sorting algorithm. An example of of 
decision tree for sorting of 3 numbers is shown.  

 
2 (a) Define with examples the following classes: P, NP and  NP-Complete. 

 

Sol: P,Np,Np-Complete, NP-Hard - 2.5x4=10M 

 

Class P: There are many algorithms for which polynomial time solution exists and thus 
are tractable(i.e. solvable in a reasonable amount of time). Informally P consists of the 
set of problems which are tractable. A formal definition of P is:  
Class P is a class of decision problems that can be solved in polynomial time by 

(deterministic) algorithms. This class of problems is called polynomial.The main reason 

for only considering decision problems is that many naturally occurring problems can be 

posed as a decision problem and decision problems in general are deemed to be “easier” 

to solve that their non decision counterparts, i.e. if a natural   

version of the problem is tractable then there is a tractable algorithm available for the 
decision version as well. Examples: Whether an element is present in the array(O(n), 
element uniqueness problem(O(nlgn). Etc.  
Decision problems fall under 3 categories:  
1. No solution: For example for the halting problem which is the problem of 
determining whether a given algorithm would halt on a given input does not have any 
algorithm for it. Thus it is undecidable.  
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2. Decidable but exponential time: There are other decidable problems which are 
intractable. The natural problems in this category are very rare  
3. No polynomial solution till date and nobody has been able to prove a lower bound. 
Many important problems fall under this category.  
a. Hamiltonian circuit problem Determine whether a given graph has a Hamiltonian 
circuit  
b. Graph coloring: Can a graph be colored with n colors?  
 
For a majority of these problems the number of choices while constructing a solution 
rises exponentially but checking whether a proposed solution actually solves the 
problem is computationally easy. This observation gives rise to the notion of non 
deterministic algorithm. A nondeterministic algorithm is a two-stage procedure that 
takes as its input an instance I of a decision problem and does the following.  

 Nondeterministic (“guessing”) stage: An arbitrary string S is generated that can be 
thought of as a candidate solution to the given instance I (but may be complete 
gibberish as well).  

 Deterministic (“verification”) stage: A deterministic algorithm takes both I and S as its 
input and outputs yes or no if S represents a solution to instance I or no if it doesn’t.  
 
We say that a nondeterministic algorithm solves a decision problem if and only if for 
every yes instance of the problem it returns yes on some execution.  
Class NP is the class of decision problems that can be solved by nondeterministic 
polynomial algorithms. This class of problems is called nondeterministic polynomial.  
The problems in class P are in NP because the polynomial time solution can be used for 
guessing and the result of verification can be ignored and hence . But in addition P also 
contains decision problems which currently don’t have a polynomial time solution e.g. 
Hamiltonian circuit problem, knapsack, graph coloring etc. The question as to whether 
P = NP remains unanswered.  
A decision problem D is said to be NP-complete if:  
1. it belongs to class NP  
2. every problem in NP(Q) is polynomially reducible to D i.e. it should be possible to 

change an instance of Q to an instance of D and get the answer of Q from the output of 

D in polynomial time.  

The first example of NP complete problem(proved by Cook) is CNF-satisfiability 
problem which is to determine given a Boolean expression in CNF form whether or 
not one can assign values true and false to variables to make the entire expression 
true. Other examples of NP-Complete problems are : Hamiltonian circuit, traveling 
salesman, partition, bin packing,  
and graph coloring etc.NP complete problems are very important because even if one 
of the problems are solvable in polynomial time then a wide variety of important 
problems would have a polynomial time solution.  
NP Hard problems:  
A decision problem D is said to be NP-Hard if every problem in NP is polynomially 
reducible to D  
In some sense NP- hard problems are harder than NP problems. All problems in NP 

complete are in NP hard. In addition Halting problem which is not solvable(and hence 

not in NP- complete) is also NP-Hard which means that if there is ever a polynomial 

time solution to Halting problem then every problem in NP would be solvable in 

polynomial time.  

 

3 (a) Explain backtracking. Describe the 8-queen’s problem and discuss the possible solution. 

 

Sol:  Explanation backtracking - 4M 

NQueen's problem description - 2M 

Solution using backtracking - 4M 

 

There are certain problems encountered that require finding an element with a special 
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property in a domain that grows exponentially fast (or faster) with the size of the 
problem’s input. For such problems the exhaustive-search technique suggests 
generating all candidate solutions and then identifying the one with a desired property. 
Backtracking is a more intelligent variation of this approach where the main idea is to 
construct solutions one component at a time and evaluate such partially constructed 
candidates as follows. If a partially constructed solution can be developed further 
without violating the problem’s constraints, it is done by taking the first remaining 
legitimate option for the next component. If there is no legitimate option for the next 
component, no alternatives for any remaining component need to be considered. In 
this case, the algorithm backtracks to replace the last component of the partially 
constructed solution with its next option.  
This kind of processing can be done by a state-space tree. Its root represents an initial 

state before the search for a solution begins. The nodes of the first level in the tree 

represent the choices made for the first component of a solution, the  

nodes of the second level represent the choices for the second component, and so on. 

A node in a state-space tree is said to be promising if it can lead to a complete 
solution. A DFS is used to implement backtracking.  

The n-queens problem. is to place n queens on an n × n chessboard so that no two 

queens attack each other by being in the same row or in the same column or on the 
same diagonal.  

To solve this using backtracing we use the following strategy:  

We start with the empty board and then place queen 1 in the first possible position 
of its row, which is in column 1 of row 1. Then we place queen 2, after trying 

unsuccessfully columns 1 and 2, in the first acceptable position for it, which is square 

(2, 3), the square in row 2 and column 3. This proves to be a dead end because there 
is no acceptable position for queen 3. So, the algorithm backtracks and puts queen 2 

in the next possible position at (2, 4). Then queen 3 is placed at (3, 2), which proves 

to be another dead end. The algorithm then backtracks all the way to queen 1 and 
moves it to (1, 2). Queen 2 then goes to (2, 4), queen 3 to (3, 1), and queen 4 to (4, 3), 

which is a solution to the problem. The state space tree is shown below:  
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4 (a) Solve the following assignment problem using branch and bound(Fig 4(a)) 

                     
        Fig. 4(a)                                                Fig. 4(b) 

 

 

Sol: Solution 4 levels in the tree - 1.5x4 = 6M 

 

To find the lower bound,the cost of any solution, including an optimal one, cannot be 

smaller than the sum of the smallest elements in each of the matrix’s rows. For the 

instance here, this sum is 2 + 3+ 1+ 4 = 10. We can apply the same thinking to partially 

constructed solutions. For example, for anylegitimate selection that selects 9 from the 

first row, the lower bound will be 9 + 3 + 1+ 4 = 17. Constructed in this way the search tree is  

 
Expanding the state with the least lb(i.e. state 2) 

 
Now state 5 has the least lb among all states . So expanding it 
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We find that all the other solutions or partially constructed solutions are inferior to the 

best solution till now i.e. state 8 since they have a lower bound greater than the best 

solution till now i.e. 13. So we do not expand any of the other states and the best 

solution is : a-->2, b-->1 , c-->3, d-->4 with a total cost of 13. 

 

(b) Write the psedocode for sum of subsets problem using backtracking method. 

 

Pseudocode - 4M 

 

//  s - set of numbers 

// n- number of items 

// N  - sum required 

//sum - sum of the partially constructed subset 

//i - position of the number to be considered for inclusion/exclusion 

//r - sum of the rest of numbers 

//x - binary solution - if x[i]= 1 then 'i'th element is included, else it is not included 

Algorithm SOS(s[1..n], N , sum, i, r,x[1..n]) 

{ 

     If ( i <= n) 

     { 

            x[i] = 1 // include the ith item in subset 

            If ( sum + x[i] = N ) // if we found the solution 

                  Print  "Solution is ",x 

            else if (sum+x[i]+x[i+1]=N 

                    SOS(s,N,sum+x[i],i+1,r-x[i],x) 

   

           x[i]=0   //case when ith object is not included 

          if (sum+r-x[i] >=N and sum+x[i+1] <= N ) 

               SOS(s,N,sum,i+1,r-x[i],x) 

     } 

} 

[4] CO5 L3 

5 (a) Draw state space tree of branch-and-bound technique to find optimal tour for travelling 

salesperson for the given graph Fig. 4(b) 

 

Sol: Explanation of lower bound - 2M 

 

Drawing 4 levels - 2M each - 2x4 = 8M 
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6 (a) Using backtracking solve sum of subsets problem for the following instance n=5, d=9, 

set S= { 1,2,5,6,8}.  

 

Sol: 

4 levels - 1,5x4 = 6M 
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(b) Distinguish between backtracking and branch and bound methods. 

 

Sol: 2 differences in details - 2x2M = 4M 

 

Backtracking and branch and bound are similar to each other because they are 
normally used to solve problems whose state space grows exponential. To save time  

 

[4] CO2 L2,L3 

7 (a) Find a Hamiltonian circuit using backtracking method for the graph below ignoring the 

weights.  

[5] CO6 L4 
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Sol:  Steps in the solution. Atleast 3 solutions - One of which is shown below - 5M 

 

 
 

 

 

(b) For the above graph find he minimal spanning tree using Kruskal's algorithm. 

 

Sol: 5 edges in the tree  - 1x5 = 5M 
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Hence the edges in the minimal spanning tree using Kruskal’s is: 1-2, 

2-4, 4-6,3-5 and 1-3, having cost of 1+2+3+4+4 = 14 

8(a) Write and Analyze the pseudo code for Kruskal's algorithm for finding spanning tree  

 

Sol: Algorithm - 3M 

Analysis - 2M 

 

Kruskal’s algorithm is used for solving the minimal spanning tree 

problem. Spanning tree of an undirected connected graph is its 

connected acyclic subgraph(tree) that contains all the vertices of the 

graph. If such a graph has weights assigned to its edges, a minimum 

spanning tree is its spanning  tree of the smallest weight, where the 

weight of a tree is defined as the sum of the weights on all its edges. 

The minimum spanning tree problem is the problem of finding a 

minimum spanning tree for a given weighted connected graph. 

Kruskal’s algorithm looks at a minimum spanning tree of a weighted 

connected graph G = (V, E) as an acyclic subgraph with |V| − 1 edges 

for which the sum of the edge weights is the smallest. Consequently, 
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the algorithm constructs a minimum spanning tree as an expanding 

sequence of subgraphs that are always acyclic but are not necessarily 

connected on the intermediate stages of the algorithm. The 

algorithm begins by sorting the graph’s edges in nondecreasing order 

of their weights. Then, starting with the empty subgraph, it scans 

this sorted list, adding the next edge on the list to the current 

subgraph if such an inclusion does 

not create a cycle and simply skipping the edge otherwise. 

Thepseudocode is outlined below: 

 
 

We can consider the algorithm’s operations as a progression through 

a series of forests containing all the vertices of a given graph and 

some of its edges. The initial forest consists of |V | trivial trees, 

each comprising a single vertex of the graph. The final forest 

consists of a single tree, which is a minimum spanning tree of the 

graph. On each iteration, the algorithm 

takes the next edge (u, v) from the sorted list of the graph’s edges, 

finds the trees containing the vertices u and v, and, if these trees 

are not the same, unites them in a larger tree by adding the edge (u, 

v). There are efficient algorithms for doing so, including the crucial 

check for whether two vertices belong to the same tree. They are 

called unionfind algorithms which uses two operations: union and find 

, find to find the representative element and union for combining two 

disconnected components whdn an edge is added between them. union 

operation takes O(1) time since a max of 3 operations are performed, 

whereas find can be performed in time O(lgn). Since the find has to 

be done every time an edge is considered fpr addition in the tree the 

time taken for performing the find across all iterations would be 

atmost Elg|V|.. Across all iterations the union would take O(|E|) time. 

The time taken for sorting the edges would take O(Elg|E|) time for a 

total time complesity of : 

O(|E|lg|E|+|E|lg|V|+|E|) = O(|E|lg|E|) since for a connected graph 

|V| < |E|. 
(b) Write and Analyze the pseudo code for Dijkstra's algorithm  for finding the single source 

shortest path. 

[5] CO6 L2 
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Sol: Algorithm - 3M 

Analysis - 2M 

 

Dijkstra’s algorithm is an algorithm for solving the single-source 

shortest-paths problem: for a given vertex called the source in a 

weighted connected graph with non negative edges, find shortest 

paths to all its other vertices. Some of the applications of the 

problem are transportation planning, packet routing in communication 

networks finding shortest paths in social networks, etc. First, it finds 

the shortest path from the source. to a vertex nearest to it, then to 

a second nearest, and so on. In general, before its ith iteration 

starts, the algorithm has already identified the shortest paths to i − 

1 other vertices nearest to the source. These vertices, the source, 

and the edges of the shortest paths leading to them from the source 

form a subtree Ti of the given graph. The set of vertices adjacent to 

the vertices in T called  “fringe vertices”; are the candidates from 

which Dijkstra’s algorithm selects the next vertex nearest to the 

source. To identify the ith nearest vertex, the algorithm  computes, 

for every fringe vertex u, the sum of the distance to the nearest 

tree vertex v  and the length dv of the shortest path from the 

source to v  and then selects the vertex with the smallest such d 

value.  d indicates the length of the shortest path from the source to 

that vertex till that point. We also associate a value p with each 

vertex which indicates the name of the next-to-last vertex on such a 

path, . After we have identified a vertex u* to be added to the tree, 

we need to perform two operations. 

 
The psuedocode for Dijkstra’s is as given below: 
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Analysis: 

The time efficiency of Dijkstra’s algorithm depends on the data 

structures used for implementing the priority queue and for 

representing an input graph itself.  

 

Graph represented by adjacency matrix and priority queue by array: 

In loop for initialization takes time |V| since the insertion into the 

queue would just involve appending the vertices at the end(since it is 

an array implementation). For the second loop, the loop runs |V| 

times. Each time the DeleteMin operation would take a maximum of 

θ(|V|) time since it would  involve finding the vertex in the array with 

min d value, for a total time of |V|2. The for loop (for iupdating the 

neighbor vetices) would run |V| times again. However the Decrease 

would take θ(1) time because the index of the vertex would be known.  

Thus the total time complexity is θ(|V|2). 

 

Graph represented by adjacency list  and priority queue by binary 

heap: 

 

All heap operations take θ(lg|V|) time. Thus the first loop runs |V| 

times and each time the Insert would take θ(lg|V|) time. The second 

loop runs |V| times and the DeleteMin would again take lg|V| time. 

Thus the total number of time DecreaseMin would run across all 

iterations is θ(Vlg|V|). In the second loop the basic operation is 

Decrease(Q,u,du) whoch is run the maximum number of times. Across 

all iterations using adjacency list, since for each vertex Decrease is 



Page 15 of 15 

called for a maximum of all its adjacent vertices, the number of 

times Decrease is invoked |E| times. For each time it is onvoked , it 

takes O(lg|V|) time to execute. Thus the total time complexity is 

θ((|E|+|V|)lg|V|). 
 

 

 

 

 

 

 


