
Page 1 of 1

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test – III

Sub: Operating Systems Code: 16MCA24

Date: 26.05.2017 Duration: 90 mins Max Marks: 50 Sem: II Branch: MCA

Answer Any FIVE FULL Questions

Marks
OBE

CO RBT

1 What do you mean by deadlock avoidance? Explain the banker’s algorithm for deadlock
avoidance.

10 CO3 L2

2(a) Explain fragmentation and its types with neat diagram. 5 CO3 L1
(b) Brief first fit, best fit, worst fit concepts with examples. 5 CO3 L2

3 Discuss different page table architectures and explain each with a neat diagram. 10 CO3 L2

4 (a) Under what circumstances do page faults occur? Describe the action taken by the
operating system when a page fault occurs.

7 CO3 L2

(b) What do you mean by thrashing? 3 CO3 L1

5 (a) Explain the various file allocation methods in detail. 6 CO4 L2
(b) Define i) Rotational Latency ii) Seek Time 4 CO4 L1

6(a) Define disk scheduling. 2 CO4 L2
(b) What are the disk scheduling methods available? Explain any four in detail with

examples.
8 CO4 L2

7 Explain the components of LINUX operating system. 10 CO5 L2

8
(a)

Write short notes on the following:
fork() and exec() process model.

5 CO5 L2

(b) Free space management. 5 CO5 L2

1 | P a g e

Internal Assesment Test – III

Sub : Operating Systems Code: 16MCA24

1. What do you mean by deadlock avoidance? Explain the banker’s algorithm for deadlock avoidance

• Simplest and most useful model requires that each process declare the maximum number of resources of each

type that it may need.

• The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can

never be a circular-wait condition.

• Resource-allocation state is defined by the number of available and allocated resources, and the maximum

demands of the processes.

Banker’s Algorithm

The resource-allocation graph algorithm is not applicable when there are multiple instances for each resource. The

banker's algorithm addresses this situation, but it is less efficient. The name was chosen because this algorithm could

be used in a banking system to ensure that the bank never allocates its available cash such that it can no longer satisfy

the needs of all its customers.

When a new process enters the system, it must declare the maximum number of instances of each resource type that it

may need. This number may not exceed the total number of resources in the system. When a user requests a set of

resources, the system must determine whether the allocation of these resources will leave the system in a safe state. If

it will, the resources are allocated; otherwise, the process must wait until some other process releases enough

resources.

Data structure for Banker’s algorithms is as below –

Let n be the number of processes in the system and m be the number of resource types.

 Available: Vector of length m indicating number of available resources. If

Available[j] = k, there are k instances of resource type Rj available.

 Max: An n x m matrix defines the maximum demand of each process. If Max [i,j] = k,

then process Pi may request at most k instances of resource type Rj.

 Allocation: An n x m matrix defines the number of resources currently allocated to

each process. If Allocation[i, j] = k then Pi is currently allocated k instances of Rj.

 Need: An n x m matrix indicates remaining resource need of each process. If

Need[i,j] = k, then Pi may need k more instances of Rj to complete its task. Note that,

Need [i,j] = Max[i,j] – Allocation [i,j].

The Banker’s algorithm has two parts:

1. Safety Algorithm: It is for finding out whether a system is in safe state or not. The

steps are as given below –

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

2 | P a g e

Finish [i] = false for i = 1, 2, 3, …, n.

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

2. Resource – Request Algorithm: Let Requesti be the request vector for process Pi. If

Requesti [j] = k then process Pi wants k instances of resource type Rj.

1. If Requesti Needi go to step 2. Otherwise, raise error condition, since process has exceeded its maximum claim.

2. If Requesti Available, go to step 3. Otherwise Pi must wait, since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available - Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If the resulting resource allocation is safe, then the transaction is complete and the process Pi is allocated its resources.

If the new state is unsafe, then Pi must wait for Requesti , and the old resource-allocation state is restored

Example for Banker’s algorithm:

Consider 5 processes P0 through P4 and 3 resources A (10 instances), B (5 instances), and

C (7 instances). Snapshot at time T0 the snapshot of the system is as given in Table 5.1.

We can apply Safety algorithm to check whether the system is safe. We can find that the sequence <P1, P3, P4, P2,

P0> is one of the safety sequences. Suppose, now the process P1 makes a request (1, 0, 2). To check whether this

3 | P a g e

request can be immediately granted, we can apply Resource-Request algorithm. If we assume that this request is

fulfilled, the new state would be as shown in Table 5.3. Now, by checking using safety algorithm, we see that the

sequence <P1, P3, P4, P0, P2> is in safe state. Hence, this request can be granted.

2.a) Explain fragmentation and its types with neat diagram

External Fragmentation Example Internal Fragmentation Example

2.b) Brief first fit, best fit, worst fit concepts with examples

First Fit

In the first fit approach is to allocate the first free partition or hole large enough which can accommodate the process.

It finishes after finding the first suitable free partition.

Advantage : Fastest algorithm because it searches as little as possible.

Disadvantage : The remaining unused memory areas left after allocation become waste if it is too smaller. Thus

request for larger memory requirement cannot be accomplished.

Best Fit

The best fit deals with allocating the smallest free partition which meets the requirement of the requesting process.

This algorithm first searches the entire list of free partitions and considers the smallest hole that is adequate. It then

tries to find a hole which is close to actual process size needed.

Advantage : Memory utilization is much better than first fit as it searches the smallest free partition first available.

Disadvantage : It is slower and may even tend to fill up memory with tiny useless holes.

Worst fit

4 | P a g e

In worst fit approach is to locate largest available free portion so that the portion left will be big enough to be useful.

It is the reverse of best fit.

Advantage : Reduces the rate of production of small gaps.

Disadvantage : If a process requiring larger memory arrives at a later stage then it cannot be accommodated as the

largest hole is already split and occupied.

Example

 Best fit: The allocator places a process in the smallest block of unallocated memory in which it will fit. For

example, suppose a process requests 12KB of memory and the memory manager currently has a list of

unallocated blocks of 6KB, 14KB, 19KB, 11KB, and 13KB blocks. The best-fit strategy will allocate 12KB
of the 13KB block to the process.

 Worst fit: The memory manager places a process in the largest block of unallocated memory available. The

idea is that this placement will create the largest hold after the allocations, thus increasing the possibility that,

compared to best fit, another process can use the remaining space. Using the same example as above, worst fit
will allocate 12KB of the 19KB block to the process, leaving a 7KB block for future use.

 First fit: There may be many holes in the memory, so the operating system, to reduce the amount of time it

spends analyzing the available spaces, begins at the start of primary memory and allocates memory from the

first hole it encounters large enough to satisfy the request. Using the same example as above, first fit will

allocate 12KB of the 14KB block to the process.

Primary

Memory
Best fit Worst fit First fit

3.a) Discuss different page table architectures and explain each with a neat diagram

There are three common techniques for structuring a page table. They are:

Hierarchical Paging - Break up the logical address space into multiple page tables. A simple technique is a two-level

page table.

5 | P a g e

Hashed Page Table –

Inverted Page Table –

6 | P a g e

4.a) Under what circumstances do page faults occur? Describe the action taken by the operating system when a page

fault occurs.

In Demand pagubg , we need to distinguish the pages which are in the memory and pages which are there on the disk.

For this purpose, the valid – invalid bit is used. When this bit is set to valid, it indicates the page is in the memory.

Whereas, the value of bit as invalid indicates page is on the disk.

If the process tries to access a page which is not in the memory (means, it is on the disk), page fault occurs. The

paging hardware notices the invalid bit in the page table and cause a trap to the OS. This trap is the result of the

failure of OS to bring the desired page into memory. This error has to be corrected. The procedure for handling this

page fault is as shown in Figure 6.16. The steps are explained below:

1. We check an internal table (usually kept with the process control block) for this process, to determine whether the

reference was a valid or invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid, but we have not yet brought in that page into

memory, it is brought now.

3. We find a free frame.

4. We schedule a disk operation to read the desired page into the newly allocated frame.

5. When the disk read is complete, we modify the internal table kept with the process and the page table to indicate

that the page is now in memory.

6. We restart the instruction that was interrupted by the illegal address trap. The process can now access the page as

though it had always been in memory.

It is important to realize that, because we save the state (registers, condition code, instruction counter etc.) of the

interrupted process when the page fault occurs, we can restart the process in exactly the same place and state In an

extreme situation, a process may starts executing with no page in the memory. So, each time an instruction has to be

executed, page fault occurs and the required page needs to be brought into the memory. This situation is called as

pure demand paging.

7 | P a g e

That is, no page is brought into the memory until it is required.

4.b) What do you mean by thrashing?

If the number of frames allocated to a low-priority process falls below the minimum number required by the computer

architecture, we must suspend the execution of that process. We should then page out its remaining pages, freeing all

its allocated frames. This provision introduces a swap-in, swap-out level of intermediate CPU scheduling. Whenever

any process does not have enough frames, it will page-fault. At this point, it must replace some page. However, since

all its pages are in active use, it must replace a page that will be needed again right away. Consequently, it quickly

faults again, and again, and again. The process continues to fault, replacing pages for which it then faults and brings

back in right away. This high paging activity is called thrashing.

A process is thrashing if it is spending more time paging than executing. Thrashing affects the performance of CPU as

explained below:

If the CPU utilization is low, we normally increase the degree of multiprogramming by adding a new process to the

system. A global page-replacement algorithm is used, and hence, the new process replaces the frames belonging to

other processes as well. As the degree of multiprogramming increases, obviously there will be more page faults

leading to thrashing. When every process starts waiting for paging rather than executing, the CPU utilization

decreases. This problem is shown in Figure 6.18. The effects of thrashing can be limited by using local replacement

algorithm.

8 | P a g e

5. a) Explain the various file allocation methods in detail.

The direct-access nature of disks allows us flexibility in the implementation of files. In almost every case, many files

will be stored on the same disk. The main problem is how to allocate space to these files so that disk space is utilized

effectively and files can be accessed quickly. Three major methods of allocating disk space are: contiguous, linked,

and indexed.

Contiguous Allocation

In contiguous allocation, files are assigned to contiguous areas of secondary storage. A

user specifies in advance the size of the area needed to hold a file to be created. If the desired amount of contiguous

space is not available, the file cannot be created. A contiguous allocation of disk space is shown in Figure 7.11.

9 | P a g e

One advantage of contiguous allocation is that all successive records of a file are normally physically adjacent to each

other. This increases the accessing speed of records. It means that if records are scattered through the disk it is

accessing will be slower. For sequential access the file system remembers the disk address of the last block and when

necessary reads the next block. For direct access to block B of a file that starts at location L, we can immediately

access block L+B. Thus contiguous allocation supports both sequential and direct accessing. The disadvantage of

contiguous allocation algorithm is, it suffers from external fragmentation. As files are allocated and deleted, the free

disk space is broken into little pieces. Depending on the total amount of disk storage and the average file size, external

fragmentation may be a minor or a major problem.

Linked Allocation

Linked allocation solves all problems of contiguous allocation. With linked allocation, each file is a linked list of disk

blocks; the disk blocks may be scattered anywhere on the disk. The directory contains a pointer to the first and last

blocks of the file as shown in Figure 7.12.

Linked allocation solves the problem of external fragmentation, which was present in contiguous allocation. But, still

it has a disadvantage: Though it can be effectively used for sequential-access files, to find ith file, we need to start

from the first location. That is, random-access is not possible.

Indexed Allocation

This method allows direct access of files and hence solves the problem faced in linked allocation. Each file has its

own index block, which is an array of disk-block addresses. The ith entry in the index block points to the ith block of

the file. The directory contains the address of the index block as shown in Figure 7.13.

10 | P a g e

Figure 7.13 Indexed allocation of disk space

5.b) Define i) Rotational Latency ii) Seek Time

The rotational latency is the additional time waiting for the disk to rotate the desired sector to the disk
head. The rotational latency is the additional time waiting for the disk to rotate the desired sector to the
disk head.

The seek time is the time for the disk arm to move the heads to the cylinder containing the desired sector

6.a)Define disk scheduling

I/O request issues a system call to the OS. ‰ If desired disk drive or controller is available, request is served

immediately. ‰ If busy, new request for service will be placed in the queue of pending requests. When one

request is completed, the OS has to choose which pending request to service next

6.b)What are the disk scheduling methods available? Explain any four in detail with examples

FCFS Scheduling

„ Simplest, perform operations in order requested

„ no reordering of work queue

„ no starvation: every request is serviced

 Doesn’t provide fastest service

„ Ex: a disk queue with requests for I/O to

blocks on cylinders

23, 89, 132, 42, 187

With disk head initially at 100

.

11 | P a g e

SSTF Scheduling

„ Like SJF, select the disk I/O request that

requires the least movement of the disk arm

from its current position, regardless of

direction

„ reduces total seek time compared to FCFS.

„ Disadvantages

‰ starvation is possible; stay in one area of the disk

if very busy

‰ switching directions slows things down

‰ Not the most optimal

SCAN

go from the outside to the inside servicing

requests and then back from the outside to

the inside servicing requests.

„ Sometimes called the elevator algorithm.

„ Reduces variance compared to SSTF.

„ If a request arrives in the queue

‰ just in front of the head

‰ Just behind

C-SCAN

„ Circular SCAN

„ moves inwards servicing requests until it

reaches the innermost cylinder; then jumps to

the outside cylinder of the disk without

servicing any requests.

„ Why C-SCAN?

‰ Few requests are in front of the head, since these

cylinders have recently been serviced. Hence

provides a more uniform wait time.

LOOK

„ like SCAN but stops moving inwards (or

outwards) when no more requests in that

direction exist

12 | P a g e

7. Explain the components of LINUX operating system.

Ans: The Linux system is composed of three main bodies of code, in line with most traditional UNIX

implementations:

1. Kernel. The kernel is responsible for maintaining all the important abstractions of the operating system, including

such things as virtual memory and processes.

2. System libraries. The system libraries define a standard set of functions through which applications can interact

with the kernel. These functions implement much of the operating-system functionality that does not needthe full

privileges of kernel code.

3. System utilities. The system utilities are programs that perform individual, specialized management tasks. Some

system utilities may be invoked just once to initialize and configure some aspect of the system; others—

known as daemons in UNIX terminology—may run permanently, handling such tasks as responding to incoming

network connections, accepting logon requests from terminals, and updating log files.

Figure 21.1 illustrates the various components that make up a full Linux system. The most important distinction here

is between the kernel and everything else. All the kernel code executes in the processor's privileged mode with full

access to all the physical resources of the computer. Linux refers to this privileged mode as kernel mode.

KERNEL MODULES

Kernel modules are the sections of kernel code that can be compiled, loaded, and unloaded independent of the rest of

the kernel. A kernel module may typically implement a device driver, a file system, or a networking protocol. The

module interface allows third parties to write and distribute, on their own terms, device drivers or file systems that

could not be distributed under the GPL (General Public Library). Kernel modules allow a Linux system to be set up

with a standard, minimal kernel, without any extra device drivers built in. Three components to Linux module support

are discussed here.

 Module Management: It supports to load modules into memory and letting them communicate to the rest of the

kernel. Module loading is split into two separate sections: o Managing sections of module code in kernel memory

o Handling symbols that modules are allowed to reference The module requestor manages loading requested, but

currently unloaded, modules; it also regularly queries the kernel to see whether a dynamically loaded module is still in

use, and will unload it when it is no longer actively needed.

 Driver Registration: Allows modules to tell the rest of the kernel that a new driver has become available. The

kernel maintains dynamic tables of all known drivers, and provides a set of routines to allow drivers to be added to or

removed from these tables at any time. Registration tables include the following items:

13 | P a g e

o Device drivers

o File systems

o Network protocols

o Binary format

 Conflict Resolution: A mechanism that allows different device drivers to reserve hardware resources and to

protect those resources from accidental use by another driver. The conflict resolution module aims to:

o Prevent modules from clashing over access to hardware resources

o Prevent autoprobes from interfering with existing device drivers

o Resolve conflicts with multiple drivers trying to access the same hardware

8. Write short notes on the following:

a) fork() and exec() process model.

The basic principle of UNIX process management is to separate two operations: the creation of a process and the

running of a new program. A new process is created by the fork() system call, and a new program is run after a call to

exec(). These are two distinctly separate functions. A new process may be created with forkO without a new program

being run—the new subprocess simply continues to execute exactly the same program that the first, parent process

was running. Equally, running a new program does not require that a new process be created first: Any process may

call exec 0 at any time. The currently running program is immediately terminated, and the new program starts

executing in the context of the existing process. This model has the advantage of great simplicity. Rather than having

to specify every detail of the environment of a new program in the system call that runs that program, new programs

simply run in their existing environment. If a parent process wishes to modify the environment in which a new

program is to be run, it can fork and then, still running the original program in a child process, make any system calls

it requires to modify that child process before finally executing the new program. Under UNIX, then, a process

encompasses all the information that the operating system must maintain to track the context of a single execution of a

single program. Under Linux, we can break down this context into a number of specific sections. Broadly, process

properties fall into three groups: the process identity, environment, and context.

Free space management.

Since disk space is limited, we need to reuse the space from deleted files for new files, if possible. To keep track of

free disk space, the system maintains a free-space list. The freespace list records all free disk blocks-those not

allocated to some file or directory. To create a file, we search the free-space list for the required amount of space, and

allocate that space to the new file. This space is then removed from the free-space list. When a file is deleted, its disk

space is added to the free-space list. Free-space management is done using different techniques as explained

hereunder.

Bit Vector

Frequently, the free-space list is implemented as a bit map or bit vector. Each block is represented by 1 bit. If the

block is free, the bit is 1; if the block is allocated, the bit is 0. For example, consider a disk where blocks 2, 3,4,5, 8, 9,

14 | P a g e

10, 11, 12, 13, 17, 18, 25, 26, and 27 are free, and the rest of the blocks are allocated. The free-space bit map would

be – 001111001111110001100000011100000

This technique is simple and efficient in finding the first free block, or n consecutive free

blocks on the disk. But, bit vectors are inefficient unless the entire vector is kept in main

memory. Keeping it in main memory is possible for smaller disks, such as on microcomputers, but not for larger ones.

Linked List

Another approach to free-space management is to link together all the free disk blocks, keeping a pointer to the first

free block in a special location on the disk and caching it in memory. This first block contains a pointer to the next

free disk block, and so on. However, this scheme is not efficient. To traverse the list, we must read each block, which

requires substantial I/O time. Fortunately, traversing the free list is not a frequent action. Usually, the OS simply

needs a free block so that it can allocate that block to a file, so the first block in the free list is used.

Grouping

A modification of the free-list approach is to store the addresses of n free blocks in the first free block. The first n-1 of

these blocks are actually free. The last block contains the addresses of another n free blocks, and so on. The

importance of this implementation is that the addresses of a large number of free blocks can be found quickly, unlike

in the standard linked-list approach.

Counting

Another approach is to keep the address of the first free block and the number n of free contiguous blocks that follow

the first block. Each entry in the free-space list then consists of a disk address and a count.

	16MCA24 IAT OS -3 - Mrs. Helen Josephine.pdf
	16MCA24 IAT OS - 3 KEY - Mrs. Helen Josephine.pdf

