
Page 1 of 2

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test - III

Subject : System Software Code : 16MCA25

Date : 2/5/2017 Duration : 90 mins Max Marks : 50 Sem : II Branch : MCA

Answer Any FIVE FULL Questions Marks
OBE

CO RBT
1(a) Differentiate between application software and system software. Give

examples for each.

System Software Application Software

Intended to support the
operation and use of the
computer

An application program is primarily
concerned with the solution of some
problem, using the computer as tool

Focus is on the Computer
system and not on the
application

The focus is on the application not on
the computing system.

It depends on the structure of
the machine on which it is
executed.

It does not depend on the structure of
the machine it works

Ex. Operating system, Loader,
Linkers, assembler, compiler,
text editors etc.

Ex. Banking system, Inventory
system.

[2] CO1 L2

(b) Describe SIC/XE Architecture with suitable Examples.

1) Memory

 Memory consists of 8-bit bytes.
 3 consecutive bytes form a word (24 bits).

 Maximum memory available on a SIC/XE system is 1 megabyte (220

bytes).

2) Registers

Five registers of SIC machine remains same in SIC/XE. The additional registers
provided by SIC/XE are as follows.

[8] CO1 L1

Page 2 of 2

Mnemonic Number Use

B 3 Base register; used for addressing.

S 4 General working register – no special use.

T 5 General working register – no special use.

F 6 Floating-point accumulator (48 bits).

3) Data Formats

 SIC/XE provides the same data formats as the standard version.
 In addition there is a 48 bit floating point data type with following

format.
1 11 36

s exponent fraction

4) Instruction Formats

1. Format 1 (1 byte)
8
op

2. Format 2 (2 bytes)
8 4 4

op r1 r2

3. Format 3 (3 bytes)
6 1 1 1 1 1 1 12

op n i x b p e disp

4. Format 4 (4 bytes)
6 1 1 1 1 1 1 20

op n i x b p e address

5) Addressing Modes

There are two addressing modes, indicated by the setting of the x bit in the
instruction.

Direct x = 0 TA = address

Indexed x = 1 TA = address + (x)

6) Instruction Set

SIC provides a basic set of instructions that are sufficient for most simple task.

i) Data transfer instruction: This include instructions that load and

Page 3 of 2

store registers . Eg. LDA, LDX, STA, STX.
ii) Arithmetic operation instruction: Basic arithmetic operations that

involves register A Eg. ADD, SUB, MUL, DIV, COMP.
iii) Conditional Branching: Conditional jump instructions test the

settings of conditional code and jump accordingly. Eg. JLT, JGT, JEQ.
iv) Subroutine call Instructions: Perform subroutine linkage. Eg. JSUB,

RSUB. Return address is stored in linkage(L) register.
7) Input and Output

 Input and Output are performed by transferring 1 byte at a time to or
from the rightmost 8 bits of register A (accumulator).

 Each device is assigned a unique 8bit code.
 There are 3 I/O instructions.

2 Write an algorithm for one pass Assembler. [10] CO2 L2

Page 4 of 2

3(a) Define Program Relocation? How relocation is achieved using

Modification Record?

It is often desirable to have more than one program at a time sharing the

memory and other resources of the machine.

In such a situation the actual starting address of the program is not known until

the load time.

Program in which the address is mentioned during assembling itself. This is

called Absolute Assembly or Absolute Program.

Since assembler will not know actual location where the program will get

loaded, it cannot make the necessary changes in the addresses used by the

program. However, the assembler identifies for the loader those parts of the

program which need modification.

An object program that has the information necessary to perform this kind of

modification is called the relocatable program.

This can be accomplished with a Modification record having following format:

Modification record

Col. 1 M

Col. 2-7 Starting location of the address field to be modified,

relative to the beginning of the program (Hex)

Col. 8-9 Length of the address field to be modified, in half-bytes

(Hex)

One modification record is created for each address to be modified The length is

stored in half-bytes. The starting location is the location of the byte containing

the leftmost bits of the address field to be modified. If the field contains an odd

number of half-bytes, the starting location begins in the middle of the first byte.

[6] CO2 L1

(b) Write a assembly language program in SIC/XE to add 2 arrays of 200
integers

LDS #3
LDT #600
LDX #0

ADDLP LDA ALPHA,X
ADS BETA,X
STA GAMMA,X
ADDR S,X
COMPR X,T
JLT ADDLP

ALPHA RESW 200

[4] CO1 L3

Page 5 of 2

BETA RESW 200
GAMMA RESW 200

4(a) Explain MS-DOS Linker.

Complier/Assembler:
– Source ProgramObject module (.obj)
– MS-DOS object module (Figure 3.15)

• LEDATA similar to Text record, LIDATA: repeated records.
• FIXUP similar to Modification record.

Linker (Linkage editor):
– Object codes executable (.exe).
– Pass 1 of Two passes

• computing starting address of each segment,
• segments of same name and same class from different modules are

combined
• segments of same name but different classes from different modules

are concatenated.
• Constructing a symbol table associating address with each segment and

external symbol
• Searching library for any unsolved undefined symbol, if possible.

– Pass 2 of the two pass linkage editor
• Extracting the translated instructions and data from object modules

and building an image of the executable program in memory
• The executable is organized by segment, not by the order of the object

modules
• Memory image allows easy rearrangement caused by combination and

concatenation
• Temporary disk file may be used if memory is not enough.
• LEDATA/LIDATA and corresponding FIXUP are processed (placed into

memory in binary format). Repeated data in LIDATA is expanded
• relocation within a segment (caused by combination and

concatenation) is performed and external reference is resolved.
• Relocation related to starting of a segment is added to a table of

segment fix up, which is used for relocation when loaded.
• Write it to .exe file, containing segment fixups, information about

memory requirement, entry points, and the initial contents for
registers CS and SP.

• When .exe file is typed, OS (a loader in OS) loads the file to memory to execute.

[5] CO3 L1

(b) Explain ELENA Macro processor.

Macro definition header:
a sequence of keywords and parameter markers (%)
at least one of the first two tokens in a macro header must be a keyword, not a parameter
marker
body: the character & identifies a local label

macro time instruction (.SET, .IF .JUMP, .E) macro time variables or labels (.)

[5] CO3

Page 6 of 2

Macro invocation
There is no single token that constitutes the macro “name”
Constructing an index of all macro headers according to the keywords in the first two
tokens of the header
Example
DEFINITION:
ADD %1 TO %2
ADD %1 TO THE FIRST ELEMENT OF %2
INVOCATION:

DISPLAY TABLE

5 Explain the Following Machine independent features of loader :
i) Relocation
ii) Program Linking

1)Relocation
Loaders that allow for program relocation are called relocating loaders or relative
loaders
There are two methods for specifying relocation as part of the object program.
i)Modification record
A Modification record is used to describe each part of the object code that must be when
program is relocated. There is one modification record for each value that must be
changed during relocation. Each modification record specifies the starting address and
length of the field whose value is to be altered. It then describes modification to be
performed.
ii) Relocation bit (Bit Mask)
If a machine primarily uses direct addressing and has a fixed instruction format, it is
often more efficient to specify relocation using relocation bit
Each instruction is associated with one relocation bit. It Indicates that the corresponding
word should be modified or not.
0: no modification is needed
1: modification is needed
This is specified in the columns 10-12 of text record (T), the format of text record, along
with relocation bits is as follows.

Text record:
col 1: T
col 2-7: starting address
col 8-9: length (byte)
col 10-12: relocation bits
col 13-72: object code

These relocation bits in a Text record are gathered into bit masks.
Twelve-bit mask is used in each Text record (col:10-12 – relocation bits), since each text
record contains less than 12 words, unused words are set to 0, and, any value that is to
be modified during relocation must coincide with one of these 3-byte segments.

E.g. FFC=111111111100
E00=111000000000

2) Program Linking
The Goal of program linking is to resolve the problems with external references

[10] CO3 L1

Page 6 of 2

Macro invocation
There is no single token that constitutes the macro “name”
Constructing an index of all macro headers according to the keywords in the first two
tokens of the header
Example
DEFINITION:
ADD %1 TO %2
ADD %1 TO THE FIRST ELEMENT OF %2
INVOCATION:

DISPLAY TABLE

5 Explain the Following Machine independent features of loader :
i) Relocation
ii) Program Linking

1)Relocation
Loaders that allow for program relocation are called relocating loaders or relative
loaders
There are two methods for specifying relocation as part of the object program.
i)Modification record
A Modification record is used to describe each part of the object code that must be when
program is relocated. There is one modification record for each value that must be
changed during relocation. Each modification record specifies the starting address and
length of the field whose value is to be altered. It then describes modification to be
performed.
ii) Relocation bit (Bit Mask)
If a machine primarily uses direct addressing and has a fixed instruction format, it is
often more efficient to specify relocation using relocation bit
Each instruction is associated with one relocation bit. It Indicates that the corresponding
word should be modified or not.
0: no modification is needed
1: modification is needed
This is specified in the columns 10-12 of text record (T), the format of text record, along
with relocation bits is as follows.

Text record:
col 1: T
col 2-7: starting address
col 8-9: length (byte)
col 10-12: relocation bits
col 13-72: object code

These relocation bits in a Text record are gathered into bit masks.
Twelve-bit mask is used in each Text record (col:10-12 – relocation bits), since each text
record contains less than 12 words, unused words are set to 0, and, any value that is to
be modified during relocation must coincide with one of these 3-byte segments.

E.g. FFC=111111111100
E00=111000000000

2) Program Linking
The Goal of program linking is to resolve the problems with external references

[10] CO3 L1

Page 6 of 2

Macro invocation
There is no single token that constitutes the macro “name”
Constructing an index of all macro headers according to the keywords in the first two
tokens of the header
Example
DEFINITION:
ADD %1 TO %2
ADD %1 TO THE FIRST ELEMENT OF %2
INVOCATION:

DISPLAY TABLE

5 Explain the Following Machine independent features of loader :
i) Relocation
ii) Program Linking

1)Relocation
Loaders that allow for program relocation are called relocating loaders or relative
loaders
There are two methods for specifying relocation as part of the object program.
i)Modification record
A Modification record is used to describe each part of the object code that must be when
program is relocated. There is one modification record for each value that must be
changed during relocation. Each modification record specifies the starting address and
length of the field whose value is to be altered. It then describes modification to be
performed.
ii) Relocation bit (Bit Mask)
If a machine primarily uses direct addressing and has a fixed instruction format, it is
often more efficient to specify relocation using relocation bit
Each instruction is associated with one relocation bit. It Indicates that the corresponding
word should be modified or not.
0: no modification is needed
1: modification is needed
This is specified in the columns 10-12 of text record (T), the format of text record, along
with relocation bits is as follows.

Text record:
col 1: T
col 2-7: starting address
col 8-9: length (byte)
col 10-12: relocation bits
col 13-72: object code

These relocation bits in a Text record are gathered into bit masks.
Twelve-bit mask is used in each Text record (col:10-12 – relocation bits), since each text
record contains less than 12 words, unused words are set to 0, and, any value that is to
be modified during relocation must coincide with one of these 3-byte segments.

E.g. FFC=111111111100
E00=111000000000

2) Program Linking
The Goal of program linking is to resolve the problems with external references

[10] CO3 L1

Page 7 of 2

(EXTREF) and external definitions (EXTDEF) from different control sections.
EXTDEF (external definition) - The EXTDEF statement in a control section names
symbols, called external symbols, that are defined in this (present) control section and
may be used by other sections.
ex: EXTDEF BUFFER, BUFFEND, LENGTH EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used in this
(present) control section and are defined elsewhere.
ex: EXTREF RDREC, WRREC EXTREF LISTB, ENDB, LISTC, ENDC

How to implement EXTDEF and EXTREF
The assembler must include information in the object program that will cause the loader
to insert proper values where they are required – in the form of Define record (D) and,
Refer record(R).

Define record
The format of the Define record (D) along with examples is as shown here.

Col. 1 D
Col. 2-7 Name of external symbol defined in this control section
Col. 8-13 Relative address within this control section (hexadecimal)
Col.14-73 Repeat information in
Col. 2-13 for other external symbols

Example records
D LISTA 000040 ENDA 000054 D LISTB 000060 ENDB 000070

Refer record
The format of the Refer record (R) along with examples is as shown here.

Col. 1 R
Col. 2-7 Name of external symbol referred to in this control section
Col. 8-73 Name of other external reference symbols

Example records
R LISTB ENDB LISTC ENDC R LISTA ENDA LISTC ENDC R LISTA
ENDA LISTB ENDB

6 What are the different macro processor design options? Explain Briefly

1) Recursive Macro Expansion

We have seen an example of the definition of one macro instruction by another.

But we have not dealt with the invocation of one macro by another. The

following example shows the invocation of one macro by another macro.

Problem of Recursive Expansion

Previous macro processor design cannot handle such kind of recursive macro

invocation and expansion The procedure EXPAND would be called recursively,

[10] CO3 L1

Page 8 of 2

thus the invocation arguments in the ARGTAB will be overwritten. The Boolean

variable EXPANDING would be set to FALSE when the “inner” macro

expansion is finished, i.e., the macro process would forget that it had been in the

middle of expanding an “outer” macro.

Solutions

Write the macro processor in a programming language that allows recursive

calls, thus local variables will be retained.

If you are writing in a language without recursion support, use a stack to take

care of pushing and popping local variables and return addresses.

The procedure EXPAND would be called when the macro was recognized. The

arguments from the macro invocation would be entered into ARGTAB as

follows: The Boolean variable EXPANDING would be set to TRUE, and

expansion of the macro invocation statement would begin. The processing would

proceed normally until statement invoking RDCHAR is processed. This time,

ARGTAB would look like at the expansion, when the end of RDCHAR is

recognized, EXPANDING would be set to FALSE.

Thus the macro processor would ‘forget’ that it had been in the middle of

expanding a macro when it encountered the RDCHAR statement. In addition, the

arguments from the original macro invocation (RDBUFF) would be lost because

the value in ARGTAB was overwritten with the arguments from the invocation

of RDCHAR.

2) General-Purpose Macro Processors

Macro processors that do not dependent on any particular programming

language, but can be used with a variety of different languages

Pros

 Programmers do not need to learn many macro languages.

 Although its development costs are somewhat greater than those

for a language specific macro processor, this expense does not

need to be repeated for each language, thus save substantial

overall cost.

Cons

 Large number of details must be dealt with in a real programming

language Situations in which normal macro parameter substitution

should not occur, e.g., comments.

Page 9 of 2

 Facilities for grouping together terms, expressions, or statements

 Tokens, e.g., identifiers, constants, operators, keywords

 Syntax had better be consistent with the source programming

language

3) Macro Processing within Language Translators

The macro processors we discussed are called “Preprocessors”.

 Process macro definitions

 Expand macro invocations

 Produce an expanded version of the source program, which is

then used as input to an assembler or compiler

You may also combine the macro processing functions with the language

translator:

 Line-by-line macro processor

 Integrated macro processor

Line-by-Line Macro Processor

Used as a sort of input routine for the assembler or compiler

 Read source program

 Process macro definitions and expand macro invocations

 Pass output lines to the assembler or compiler

Benefits

 Avoid making an extra pass over the source program.

 Data structures required by the macro processor and the language

translator can be combined (e.g., OPTAB and NAMTAB)

 Utility subroutines can be used by both macro processor and the language

translator.

Scanning input lines

Searching tables

Data format conversion

 It is easier to give diagnostic messages related to the source statements

Integrated Macro Processor

An integrated macro processor can potentially make use of any information
about the source program that is extracted by the language translator.

Ex (blanks are not significant in FORTRAN)

Page 10 of 2

DO 100 I = 1,20

a DO statement
DO 100 I = 1

An assignment statement

DO100I: variable (blanks are not significant in FORTRAN)

An integrated macro processor can support macro instructions that depend upon
the context in which they occur.

7(a) Briefly discuss the machine dependent code optimization Techniques of Compiler
There are several different possibilities for performing machine dependent code
optimization.

1)Assignment and use of registers

General purpose register are used for various purpose like storing values or
intermediate result or for addressing (base register, index register).
Registers are also used as instruction operands. Machine instructions that use registers
as operands are usually faster than the corresponding instruction that refer to location in
memory. Therefore it is preferable to store value or intermediate results in registers.
There are rarely as many registers available as we would like to use. The problem then
becomes one of selecting which register value to replace when it is necessary to assign
a register for some other purpose.
One approach is to scan the program and the value that is not needed for longest time
will be replaced. If the register that is being reassigned contains the value of some
variable already stored in memory, the can value can be simply discarded. Otherwise
this value must be saved using temporary variable
Second approach is to divide the program into basic blocks. A basic block is a sequence
of quadruples with one entry point, which is at the beginning of the block, one exit
point, which is at the end of the block and no jumps within the block. When control
passes from one block to another all the values are stored in temporary variables.

2)Rearranging quadruples before machine code is generated.

Note that the value of the intermediate result i1 is calculated first and stored in
temporary variable T1. Then the value of i2 is calculated. The third quadruple in this
series calls for subtracting the value of i2 from i1. Since i2 had just been computed, its
value is available registers A; however, this does no good, since the first operand for a
– operation must be in register. It is necessary to store the value of i1 from T1 into
register A before performing the subtraction.

With a little analysis, an optimizing compiler could recognize this situation and
rearrange the quadruples so the second operand of the subtraction is computed first.
The resulting machine code requires two fewer instructions and uses only one
temporary variable instead of two.

[8] CO4 L1

Page 10 of 2

DO 100 I = 1,20

a DO statement
DO 100 I = 1

An assignment statement

DO100I: variable (blanks are not significant in FORTRAN)

An integrated macro processor can support macro instructions that depend upon
the context in which they occur.

7(a) Briefly discuss the machine dependent code optimization Techniques of Compiler
There are several different possibilities for performing machine dependent code
optimization.

1)Assignment and use of registers

General purpose register are used for various purpose like storing values or
intermediate result or for addressing (base register, index register).
Registers are also used as instruction operands. Machine instructions that use registers
as operands are usually faster than the corresponding instruction that refer to location in
memory. Therefore it is preferable to store value or intermediate results in registers.
There are rarely as many registers available as we would like to use. The problem then
becomes one of selecting which register value to replace when it is necessary to assign
a register for some other purpose.
One approach is to scan the program and the value that is not needed for longest time
will be replaced. If the register that is being reassigned contains the value of some
variable already stored in memory, the can value can be simply discarded. Otherwise
this value must be saved using temporary variable
Second approach is to divide the program into basic blocks. A basic block is a sequence
of quadruples with one entry point, which is at the beginning of the block, one exit
point, which is at the end of the block and no jumps within the block. When control
passes from one block to another all the values are stored in temporary variables.

2)Rearranging quadruples before machine code is generated.

Note that the value of the intermediate result i1 is calculated first and stored in
temporary variable T1. Then the value of i2 is calculated. The third quadruple in this
series calls for subtracting the value of i2 from i1. Since i2 had just been computed, its
value is available registers A; however, this does no good, since the first operand for a
– operation must be in register. It is necessary to store the value of i1 from T1 into
register A before performing the subtraction.

With a little analysis, an optimizing compiler could recognize this situation and
rearrange the quadruples so the second operand of the subtraction is computed first.
The resulting machine code requires two fewer instructions and uses only one
temporary variable instead of two.

[8] CO4 L1

Page 10 of 2

DO 100 I = 1,20

a DO statement
DO 100 I = 1

An assignment statement

DO100I: variable (blanks are not significant in FORTRAN)

An integrated macro processor can support macro instructions that depend upon
the context in which they occur.

7(a) Briefly discuss the machine dependent code optimization Techniques of Compiler
There are several different possibilities for performing machine dependent code
optimization.

1)Assignment and use of registers

General purpose register are used for various purpose like storing values or
intermediate result or for addressing (base register, index register).
Registers are also used as instruction operands. Machine instructions that use registers
as operands are usually faster than the corresponding instruction that refer to location in
memory. Therefore it is preferable to store value or intermediate results in registers.
There are rarely as many registers available as we would like to use. The problem then
becomes one of selecting which register value to replace when it is necessary to assign
a register for some other purpose.
One approach is to scan the program and the value that is not needed for longest time
will be replaced. If the register that is being reassigned contains the value of some
variable already stored in memory, the can value can be simply discarded. Otherwise
this value must be saved using temporary variable
Second approach is to divide the program into basic blocks. A basic block is a sequence
of quadruples with one entry point, which is at the beginning of the block, one exit
point, which is at the end of the block and no jumps within the block. When control
passes from one block to another all the values are stored in temporary variables.

2)Rearranging quadruples before machine code is generated.

Note that the value of the intermediate result i1 is calculated first and stored in
temporary variable T1. Then the value of i2 is calculated. The third quadruple in this
series calls for subtracting the value of i2 from i1. Since i2 had just been computed, its
value is available registers A; however, this does no good, since the first operand for a
– operation must be in register. It is necessary to store the value of i1 from T1 into
register A before performing the subtraction.

With a little analysis, an optimizing compiler could recognize this situation and
rearrange the quadruples so the second operand of the subtraction is computed first.
The resulting machine code requires two fewer instructions and uses only one
temporary variable instead of two.

[8] CO4 L1

Page 11 of 2

3)Taking advantage of specific characteristics and instructions of the target
machine

For example there may be special loop-control instructions or addressing modes that
can be used to create more efficient object code.
On some computers there are high level machines instructions that can perform
complicated functions such as calling procedures and manipulating data structures in
single operations.
Use of such feature can greatly improve the efficiency of the object program.
CPU is made of several functional units. On such system machine instruction order can
affect speed of execution. Consecutive instructions that require different functional unit
can be executed at the same time.

(b) Write Algorithm for Absolute Loader
Begin
read Header record
verify program name and length
read first Text record
while record type is <> ‘E’ do
begin
{if object code is in character form, convert into internal representation}

move object code to specified location in memory
read next object program record
end
jump to address specified in End record
end

[2] CO3 L2

8(a) Construct Parsing Tree for following PASCAL statement

1) WRITE(MEAN,VARIANCE)

2) VARIANCE := SUM DIV 100 – MEAN * MEAN

[8] CO4 L3

<write>

Write ((id-list))

(id-list) , id{variance}

id{mean}

Page 12 of 2

(b) What are the Basic Functions of complier?

Basic functions of Compiler are Scanning, parsing, and (object) code generation.

1) Lexical analysis

Scan the program to be compiled and recognize the tokens (from string of characters).

2) Syntactic analysis

The source statements written by programmers are recognized as language constructs

described by the grammar. This process is achieved by building the parse tree for the

statements being translated.

3) Code Generation

Most compilers create machine-language programs directly instead of producing a

symbolic program for later translation by an assembler.

[2] CO4 L1

