
Page 1 of 1

CMRINSTITUTE OFTECHNOLOGY USN
Answer Any FIVE FULL Questions Marks OBECO RBT1(a) List and explain the quality attributes of software. [5] CO1 L4(b) How is software testing different from hardware testing? [5] CO2 L12(a) What do you understand by adequacy criteria? What are its uses? [6] CO3 L1(b) Discuss the six basic principles of software testing [4] CO1 L23(a) Write the pseudo-code for the implementation of the NextDate function [5] CO1 L4(b) Discuss fault taxonomy and give two examples for each fault type. [5] CO4 L24(a) Apply Boundary Value Testing to the triangle problem and list down the test cases [5] CO1 L2(b) Represent the triangle problem in a decision table format. [5] CO2 L15(a) Define the following: i) path testing ii) DD path iii) test coverage metric. [6] CO2 L2(b) What are metric based testing and slice based testing? [4] CO1 L46(a) What is system testing? Differentiate between integration testing and system testing. [6] CO4 L2(b) Explain the types of integration testing. [4] CO1 L47(a) Differentiate between generic and specific scaffolding. [6] CO4 L4(b) Explain ‘self-checks as oracles’ and ‘capture and replay’. [4] CO6 L1

Improvement Test Sub: Software Testing and Practices Code: 13MCA444Date: 26.05.2017 Duration: 90 mins Max Marks: 50 Sem: IV Branch: MCA

Page 1 of 9

CMRINSTITUTE OFTECHNOLOGY USN Improvement TestSub: Software Testing and Practices Code: 13MCA444Date: 26.05.2017 Duration: 90 mins Max Marks: 50 Sem: IV Branch: MCAAnswer Any FIVE FULL Questions Marks OBECO RBT1(a) List and explain the quality attributes of software.

Static quality attributes: structured, maintainable, testable code as well as theavailability of correct and complete documentation.
Dynamic quality attributes: software reliability, correctness, completeness,consistency, usability, and performance
Reliability is a statistical approximation to correctness, in the sense that 100%reliability is indistinguishable from correctness. Roughly speaking, reliability is ameasure of the likelihood of correct function for some “unit” of behavior, which couldbe a single use or program execution or a period of time.
Correctness will be established via requirement specification and the program text toprove that software is behaving as expected. Though correctness of a program isdesirable, it is almost never the objective of testing. To establish correctness via testingwould imply testing a program on all elements in the input domain. In most cases thatare encountered in practice, this is impossible to accomplish. Thus correctness isestablished via mathematical proofs of programs. While correctness attempts toestablish that the program is error free, testing attempts to find if there are any errorsin it. Thus completeness of testing does not necessarily demonstrate that a program iserror free.
Completeness refers to the availability of all features listed in the requirements, or inthe user manual. Incomplete software is one that does not fully implement all featuresrequired.
Consistency refers to adherence to a common set of conventions and assumptions. Forexample, all buttons in the user interface might follow a common color codingconvention. An example of inconsistency would be when a database application displaysthe date of birth of a person in the database.
Usability refers to the ease with which an application can be used. This is an area initself and there exist techniques for usability testing. Psychology plays an important rolein the design of techniques for usability testing.

Performance refers to the time the application takes to perform a requested task. It isconsidered as a non-functional requirement. It is specified in terms such as ``This task mustbe performed at the rate of X units of activity in one second on a machine running at speedY, having Z gigabytes of memory."

[5] CO1 L4

Page 2 of 9

(b) How is software testing different from hardware testing?
Software Product Hardware Product

Does not degrade over time Degrades over time
Fault present in applicationwill remain and no new faultwill creep in unlessapplication is changed.

VLST chip might fail overtime due to a fault that didnot exist at the time chip wasmanufactured and tested.
Built-in self test meant forhardware product, rarely canbe applied to softwaredesign and code.

BIST intend to actually testfor the correct functioning ofa circuit
It only detects faults thatwere present when the lastchange was made Hardware testers generatetest based on fault modelse.g Stuck-at fault model –one can use a set of inputtest patterns to test whethera logic gate is functioning asexpected

[5] CO2 L1

2(a) What do you understand by adequacy criteria? What are its uses?A software test adequacy criterion is a predicate that defines what properties of a programmust be exercised to constitute a thorough test. If the system passes an adequate suite oftest cases, then it must be correct (or dependable). But determining an adequate suite of testcase is hypothetical.Use of adequacy criteria:
 Specify a software testing requirement-Determine test cases to satisfy requirement
 Determine observations that should be made during testing
 Control the cost of testing-Avoid redundant and unnecessary tests
 Help assess software dependabilityBuild confidence in the integrity estimate

[6] CO3 L1

Page 3 of 9

(b) Discuss the six basic principles of software testingThe six basic principles of software testing are:
• General engineering principles:

– Partition: divide and conquer
– Visibility: making information accessible
– Feedback: tuning the development process

• Specific A&T principles:
– Sensitivity: better to fail every time than sometimes
– Redundancy: making intentions explicit
– Restriction: making the problem easier

Partition: Hardware testing and verification problems can be handled by suitablypartitioning the input space
Visibility: The ability to measure progress or status against goals. X visibility = ability tojudge how we are doing on X, e.g., schedule visibility = “Are we ahead or behind schedule,”quality visibility = “Does quality meet our objectives?”
Feedback: The ability to measure progress or status against goalsX visibility = ability to judge how we are doing on X, e.g., schedule visibility = “Are we aheador behind schedule,” quality visibility = “Does quality meet our objectives?”
Sensitivity: A test selection criterion works better if every selected test provides the sameresult, i.e., if the program fails with one of the selected tests, it fails with all of them (reliablecriteria). Run time deadlock analysis works better if it is machine independent, i.e., if theprogram deadlocks when analyzed on one machine, it deadlocks on every machine
Redundancy: Redundant checks can increase the capabilities of catching specific faultsearly or more efficiently.e.g, Static type checking is redundant with respect to dynamic type checking, but it canreveal many type mismatches earlier and more efficiently.
Restriction: Suitable restrictions can reduce hard (unsolvable) problems to simpler(solvable) problems

[4] CO1 L2

3(a) Write the pseudo-code for the implementation of the NextDate functionDim tomorrowDay,tomorrowMonth,tomorrowYear As IntegerDim day,month,year As IntegerOutput (“Enter today’s date in the form MM DD YYYY”)Input (month, day, year)Case month OfCase 1: month Is 1,3,5,7,8, Or 10: ‘31 day months (except Dec.)If day < 31Then tomorrowDay = day + 1ElsetomorrowDay = 1tomorrowMonth = month + 1EndIfCase 2: month Is 4,6,9, Or 11 ‘30 day monthsIf day < 30Then tomorrowDay = day + 1ElsetomorrowDay = 1tomorrowMonth = month + 1EndIfCase 3: month Is 12: ‘DecemberIf day < 31Then tomorrowDay = day + 1ElsetomorrowDay = 1tomorrowMonth = 1If year = 2012Then Output (“2012 is over”)Else tomorrow.year = year + 1EndIfCase 4: month is 2: ‘FebruaryIf day < 28Then tomorrowDay = day + 1ElseIf day = 28Then If ((year is a leap year)Then tomorrowDay = 29 ‘leap yearElse ‘not a leap yeartomorrowDay = 1tomorrowMonth = 3EndIf

[5] CO1 L4

Page 4 of 9

Else If day = 29Then If ((year is a leap year)Then tomorrowDay = 1tomorrowMonth = 3Else ‘not a leap yearOutput(“Cannot have Feb.”, day)EndIfEndIfEndIfEndIfEndCaseOutput (“Tomorrow’s date is”, tomorrowMonth, tomorrowDay, tomorrowYear)End NextDate(b) Discuss fault taxonomy and give two examples for each fault type.Faults can be classified in several ways: the development phase in which the correspondingerror occurred, the consequences of corresponding failures, difficulty to resolve, risk of noresolution, and so on. The IEEE standard defines a detailed anomaly resolution process builtaround four phases (another life cycle): recognition, investigation, action, and disposition.
Fault Types:

Input/Output FaultsICorrect input not acceptedIncorrect input acceptedOutput Wrong formatWrong resultCosmetic
Logic FaultsMissing case(s)Duplicate case(s)Extreme condition neglectedWrong operator (e.g., < instead of ≤)
1.3 Computation FaultsIncorrect algorithmMissing computationIncorrect operandIncorrect operation
Interface FaultsIncorrect interrupt handlingI/O timingCall to wrong procedureCall to nonexistent procedureParameter mismatch (type, number)Incompatible typesSuperfluous inclusion
Data FaultsIncorrect initializationIncorrect storage/accessWrong flag/index valueIncorrect packing/unpackingWrong variable used

[5] CO4 L2

4(a) Apply Boundary Value Testing to the triangle problem and list down the test casesIn the problem statement, no conditions are specified on the triangle sides, other than beingintegers. Obviously, the lower bounds of the ranges are all 1. We arbitrarily take 200 as anupperbound. For each side, the test values are {1, 2, 100, 199, 200}. Robust boundary value testcases will add {0, 201}. Table 5.1 contains boundary value test cases using these ranges.Notice that test cases 3, 8, and 13 are identical; two should be deleted. Further, there is notest case for scalene triangles. The cross-product of test values will have 125 test cases(some of which will be repeated)—too many to list here. The full set is available as aspreadsheet in the set of student exercises. Table below only lists the first 25 worst-caseboundary value test cases for the triangle problem. You can picture them as a plane slicethrough the cube (actually it is a rectangular parallelepiped) in which a = 1 and the othertwo variables take on their full set of cross-product values.

[5] CO1 L2

Page 5 of 9

(b) Represent the triangle problem in a decision table format. [5] CO2 L1

5(a) Define the following: i) path testing ii) DD path iii) test coverage metric.Path Testing: path testing, or structured testing, is a white box method for designing testcases. The method analyzes the control flow graph of a program to find a set of linearlyindependent paths of execution.Given a program written in an imperative programming language, its program graph is adirected graph in which nodes are statement fragments, and edges represent flow of control.(A completestatement is a “default” statement fragment.)If i and j are nodes in the program graph, anedge exists from node i to node j if and only if the statement fragment corresponding tonode j can be executed immediately after the statement fragment corresponding to node i.

[6] CO2 L2

(b) What are metric based testing and slice based testing?Metric Based Testing: In software testing, Metric is a quantitative measure of the degreeto which a system, system component, or process possesses a given attribute. In other
[4] CO1 L4

Page 6 of 9

words, metrics helps estimating the progress, quality and health of a software testingeffort. Metric based testing is efficient because:- Metrics help the Project Management/Team to effectively manage the various activitiesacross the SDLC and achieve a single view, understanding of the progress of thedeliverables and also to quickly analyze and identify the impact of any change across thedeliverables.- Metrics assist early detection and correction of errors or changes in the requirementsgathered.- Multiple metrics are needed for comprehensive evaluation of requirements, testing andtheir trace-ability to do a Gap analysis, Change Impact analysis, compliance verification ofcode, regression test selection, and requirements verification and validation for the projectteam to achieve the best of best deliverables.- Metric collection, with a combination of tool based approach and other methods, ischeaper, faster and more reliable.Slice Based Testing: A program slice is a set of program statements that contributes to or affects the value of avariable at some point in a program Backward slices S(v, n): refer to statement fragments that contribute to the value of v atstatement n
 Statement n is a Use node of variable v, Use (v, n) Forward slices S(v, n): refer to all the program statements that are affected by the value ofv and statement n
 Refers to the predicate uses and computation uses of the variable v6(a) What is system testing? Differentiate between integration testing and system testing.

System Testing (ST) is a black box testing technique performed to evaluate the complete
system the system's compliance against specified requirements. In System testing, thefunctionalities of the system are tested from an end-to-end perspective. ... It includes bothfunctional and Non-Functional testing.

System Testing Integration Testing1. Testing the completed product to checkif it meets the specification requirements. 1. Testing the collection and interfacemodules to check whether they give theexpected result
2. Both functional and non-functionaltesting are covered like sanity, usability,performance, stress an load . 2.Only Functional testing is performed tocheck whether the two modules whencombined give correct outcome.
3. It is a high level testing performed afterintegration testing 3. It is a low level testing performed afterunit testing
4. It is a black box testing technique so noknowledge of internal structure or code isrequired 4. It is both black box and white box testingapproach so it requires the knowledge of thetwo modules and the interface
5. It is performed by test engineers only 5. Integration testing is performed bydevelopers as well test engineers
6. Here the testing is performed on thesystem as a whole including all theexternal interfaces, so any defect found init is regarded as defect of whole system

6. Here the testing is performed on interfacebetween individual module thus any defectfound is only for individual modules and notthe entire system
7. In System Testing the test cases aredeveloped to simulate real life scenarios 7. Here the test cases are developed tosimulate the interaction between the twomodule

[6] CO4 L2

Page 7 of 9

8. The System testing covers manydifferent testing types like sanity, usability,maintenance, regression, retesting andperformance
8. Integration testing techniques includes bigbang approach, top bottom , bottom to topand sandwich approach.

(b) Explain the types of integration testing.
1. Big Bang integration testing:In Big Bang integration testing all components or modules are integrated simultaneously,after which everything is tested as a whole. As per the below image all the modules from‘Module 1’ to ‘Module 6’ are integrated simultaneously then the testing is carried out.

Advantage: Big Bang testing has the advantage that everything is finished beforeintegration testing starts.
Disadvantage: The major disadvantage is that in general it is time consuming and difficultto trace the cause of failures because of this late integration.2. Top-down integration testing: Testing takes place from top to bottom, following thecontrol flow or architectural structure (e.g. starting from the GUI or main menu).Components or systems are substituted by stubs. Below is the diagram of ‘Top downApproach’:

Advantages of Top-Down approach:

 The tested product is very consistent because the integration testing is basically

[4] CO1 L4

Page 8 of 9

performed in an environment that almost similar to that of reality
 Stubs can be written with lesser time because when compared to the drivers thenStubs are simpler to author.

Disadvantages of Top-Down approach:

 Basic functionality is tested at the end of cycle3. Bottom-up integration testing: Testing takes place from the bottom of the control flowupwards. Components or systems are substituted by drivers. Below is the image of ‘Bottomup approach’:

Advantage of Bottom-Up approach:

 In this approach development and testing can be done together so that the productor application will be efficient and as per the customer specifications.
Disadvantages of Bottom-Up approach:

 We can catch the Key interface defects at the end of cycle
 It is required to create the test drivers for modules at all levels except the topcontrol

Incremental testing:

 Another extreme is that all programmers are integrated one by one, and a test iscarried out after each step.
 The incremental approach has the advantage that the defects are found early in asmaller assembly when it is relatively easy to detect the cause.
 A disadvantage is that it can be time-consuming since stubs and drivers have to bedeveloped and used in the test.
 Within incremental integration testing a range of possibilities exist, partlydepending on the system architecture.

Functional incremental: Integration and testing takes place on the basis of the functionsand functionalities, as documented in the functional specification.
7(a) Differentiate between generic and specific scaffolding.How general should scaffolding be? To answer We could build a driver and stubs for each test case or at least factor out some commoncode of the driver and test management (e.g., JUnit) ... or further factor out some common support code, to drive a large number of test casesfrom data... or further, generate the data automatically from a more abstract model (e.g.,network traffic model) Fully generic scaffolding may suffice for small numbers of hand-written test cases The simplest form of scaffolding is a driver program that runs a single,specific test case. It is worthwhile to write more generic test drivers that essentially interpret test case

[6] CO4 L4

Page 9 of 9

specifications. A large suite of automatically generated test cases and a smaller set of handwritten testcases can share the same underlying generic test scaffolding Scaffolding to replace portions of the system is somewhat more demanding and againboth generic and application-specific approaches are possible A simplest stub–mock – can be generated automatically by analysis of the source code The balance of quality, scope and cost for a substantial piece of scaffolding software can beused in several projects The balance is altered in favour of simplicity and quick construction for the many smallpieces of scaffolding that are typically produced during development to support unit andsmall-scale integration testing A question of costs and re-use – Just as for other kinds of software(b) Explain ‘self-checks as oracles’ and ‘capture and replay’.
SELF-CHECKS AS ORACLES An oracle can also be written as self checks-Often possible to judge correctness without predicting results. Typically these self checks are in the form of assertions, but designed to be checked duringexecution. It is generally considered good design practice to make assertions and self checks to befree of side effects on program state. Self checks in the form of assertions embedded in program code are useful primarily forchecking module and subsystem-level specification rather than all program behaviour. Devising the program assertions that correspond in a natural way to specifications posestwo main challenges:Bridging the gap between concrete execution values and abstractions used in specificationDealing in a reasonable way with quantification over collection of valuesStructural invariants are good candidates for self checks implemented as assertions They pertain directly to the concrete data structure implementation It is sometimes straight-forward to translate quantification in a specification statementinto iteration in a program assertion A run time assertion system must manage ghost variables They must retain “before” values They must ensure that they have no side effects outside assertion checkingAdvantages:-Usable with large, automatically generated test suites.Limits:-often it is only a partial check. -recognizes many or most failures, but not all.

CAPTURE AND REPLAY Sometimes it is difficult to either devise a precise description of expected behaviour oradequately characterize correct behaviour for effective self checks.Example: even if we separate testing program functionally from GUI, some testing of the GUIis required. If one cannot completely avoid human involvement test case execution, one can at leastavoid unnecessary repetition of this cost and opportunity for error. The principle is simple:The first time such a test case is executed, the oracle function is carried out by a human, andthe interaction sequence is captured. Provided the execution was judged (by human tester)to be correct, the captured log now forms an (input, predicted output) pair for subsequentautomated testing. The savings from automated retesting with a captured log depends on how many build-and-test cycles we can continue to use it, before it is invalidated by some change to theprogram. Mapping from concrete state to an abstract model of interacting sequences is some timepossible but is generally quite limited.

[4] CO6 L1

	QP of 13MCA444 Ms. Moumita Roy.pdf
	Solution Software Testing and Practices Ms. Moumita Roy.pdf

