CMR

INSTITUTE OF
TECHNOLOGY USN
Improvement Test
Sub:| Software Testing and Practices Code: 13MCA444
Date: | 26.05.2017 Duration: {90 mins Max Marks: |50 | Sem: |IV Branch: MCA
Answer Any FIVE FULL Questions
OBE
Marks co RBT
1(a) [Listand explain the quality attributes of software. [5] Cco1 L4
(b) [How is software testing different from hardware testing? [5] Co2 L1
2(a) |What do you understand by adequacy criteria? What are its uses? [6] Cco3 L1
(b) [Discuss the six basic principles of software testing [4] co1 L2
3(a) |[Write the pseudo-code for the implementation of the NextDate function [5] co1 L4
(b) [Discuss fault taxonomy and give two examples for each fault type. [5] Co4 L2
4(a) | Apply Boundary Value Testing to the triangle problem and list down the test cases [5] co1 L2
(b) | Represent the triangle problem in a decision table format. [5] CO2 L1
5(a) [Define the following: i) path testing ii) DD path iii) test coverage metric. [6] C02 L2
(b) [What are metric based testing and slice based testing? [4] co1 L4
6(a) |Whatis system testing? Differentiate between integration testing and system testing. [6] Co4 L2
(b) [Explain the types of integration testing. [4] Cco1 L4
7(a) |Differentiate between generic and specific scaffolding. [6] Co4 L4
(b) [Explain ‘self-checks as oracles’ and ‘capture and replay’. [4] Co6 L1

Page 1 of 1

CMR

INSTITUTE OF

TECHNOLOGY USN
Improvement Test
Sub: Software Testing and Practices Code: 13MCA444
Date: | 26.05.2017 Duration: |90 mins Max Marks: [50 | Sem: IV | Branch: [MCA
Answer Any FIVE FULL Questions
OBE

Marks o RBT

1(a) |Listand explain the quality attributes of software. [5] co1 L4

Quality Attributes

1
' '
Static Dynamic
Structured s R 2 liability

s Correctness
Maintainable
m Completeness

Testable p CONsistency

= Usability

. Performance

Static quality attributes: structured, maintainable, testable code as well as the
availability of correct and complete documentation.

Dynamic quality attributes: software reliability, correctness, completeness,
consistency, usability, and performance

Reliability is a statistical approximation to correctness, in the sense that 100%

reliability is indistinguishable from correctness. Roughly speaking, reliability is a
measure of the likelihood of correct function for some “unit” of behavior, which could

be a single use or program execution or a period of time.

Correctness will be established via requirement specification and the program text to
prove that software is behaving as expected. Though correctness of a program is
desirable, it is almost never the objective of testing. To establish correctness via testing
would imply testing a program on all elements in the input domain. In most cases that
are encountered in practice, this is impossible to accomplish. Thus correctness is
established via mathematical proofs of programs. While correctness attempts to
establish that the program is error free, testing attempts to find if there are any errors
in it. Thus completeness of testing does not necessarily demonstrate that a program is

error free.

Completeness refers to the availability of all features listed in the requirements, or in
the user manual. Incomplete software is one that does not fully implement all features

required.

Consistency refers to adherence to a common set of conventions and assumptions. For

example, all buttons in the user interface might follow a common color coding

convention. An example of inconsistency would be when a database application displays

the date of birth of a person in the database.

Usability refers to the ease with which an application can be used. This is an area in
itself and there exist techniques for usability testing. Psychology plays an important role

in the design of techniques for usability testing.

Performance refers to the time the application takes to perform a requested task. It is
considered as a non-functional requirement. It is specified in terms such as “This task must
be performed at the rate of X units of activity in one second on a machine running at speed

Y, having Z gigabytes of memory."

Page 1 of 9

(b) [How is software testing different from hardware testing? [5] C02 L1
Does not degrade over time Degrades over time
Fault present in application VLST chip might fail over
will remain and no new fault time due to a fault that did
will creep in unless not exist at the time chip was
application is changed. manufactured and tested.
Built-in self test meant for BIST intend to actually test
hardware product, rarely can for the correct functioning of
be applied to software a circuit
design and code.
It only detects faults that Hardware testers generate
were present when the last test based on fault models
change was made e.g Stuck-at fault model -
one can use a set of input
test patterns to test whether
a logic gate is functioning as
expected
2(a) [Whatdo you understand by adequacy criteria? What are its uses? [6] Cco3 L1

A software test adequacy criterion is a predicate that defines what properties of a program
must be exercised to constitute a thorough test. If the system passes an adequate suite of
test cases, then it must be correct (or dependable). But determining an adequate suite of test|
case is hypothetical.

Use of adequacy criteria:
- Specify a software testing requirement

-Determine test cases to satisfy requirement
Determine observations that should be made during testing

Control the cost of testing

-Avoid redundant and unnecessary tests
Help assess software dependability

Build confidence in the integrity estimate

Page 2 of 9

(b)

Discuss the six basic principles of software testing

The six basic principles of software testing are:
e General engineering principles:

— Partition: divide and conquer

— Visibility: making information accessible

— Feedback: tuning the development process

¢ Specific A&T principles:

— Sensitivity: better to fail every time than sometimes

— Redundancy: making intentions explicit

— Restriction: making the problem easier
Partition: Hardware testing and verification problems can be handled by suitably
partitioning the input space
Visibility: The ability to measure progress or status against goals. X visibility = ability to
judge how we are doing on X, e.g., schedule visibility = “Are we ahead or behind schedule,”
quality visibility = “Does quality meet our objectives?”
Feedback: The ability to measure progress or status against goals
X visibility = ability to judge how we are doing on X, e.g., schedule visibility = “Are we ahead
or behind schedule,” quality visibility = “Does quality meet our objectives?”
Sensitivity: A test selection criterion works better if every selected test provides the same
result, i.e., if the program fails with one of the selected tests, it fails with all of them (reliable
criteria). Run time deadlock analysis works better if it is machine independent, i.e,, if the
program deadlocks when analyzed on one machine, it deadlocks on every machine
Redundancy: Redundant checks can increase the capabilities of catching specific faults
early or more efficiently.
e.g, Static type checking is redundant with respect to dynamic type checking, but it can
reveal many type mismatches earlier and more efficiently.
Restriction: Suitable restrictions can reduce hard (unsolvable) problems to simpler
(solvable) problems

Cco1

L2

3(a)

\Write the pseudo-code for the implementation of the NextDate function

Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer

Output (“Enter today’s date in the form MM DD YYYY”)

Input (month, day, year)

Case month Of

Case 1: month Is 1,3,5,7,8, Or 10: ‘31 day months (except Dec.)
If day < 31

Then tomorrowDay = day + 1

Else

tomorrowDay =1

tomorrowMonth = month + 1

EndIf

Case 2: month Is 4,6,9, Or 11 ‘30 day months
If day < 30

Then tomorrowDay = day + 1

Else

tomorrowDay =1
tomorrowMonth = month + 1

EndlIf

Case 3: month Is 12: ‘December
If day < 31

Then tomorrowDay = day + 1
Else

tomorrowDay =1
tomorrowMonth = 1

If year = 2012

Then Output (“2012 is over”)
Else tomorrow.year = year + 1
EndIf

Case 4: month is 2: ‘February
If day < 28

Then tomorrowDay = day + 1
Else

If day = 28

Then If ((year is a leap year)
Then tomorrowDay = 29 ‘leap year
Else ‘not a leap year
tomorrowDay =1
tomorrowMonth = 3

EndIf

Cco1

L4

Page 3 of 9

Else If day = 29

Then If ((year is a leap year)
Then tomorrowDay = 1
tomorrowMonth = 3

Else ‘not a leap year
Output(“Cannot have Feb.”, day)
EndIf

EndIf

EndIf

EndIf

EndCase

Output (“Tomorrow’s date is”, tomorrowMonth, tomorrowDay, tomorrowYear)
End NextDate

(b)

Discuss fault taxonomy and give two examples for each fault type.

Faults can be classified in several ways: the development phase in which the corresponding
error occurred, the consequences of corresponding failures, difficulty to resolve, risk of no
resolution, and so on. The IEEE standard defines a detailed anomaly resolution process built
around four phases (another life cycle): recognition, investigation, action, and disposition.
Fault Types:

Input/Output Faults
[Correct input not accepted
Incorrect input accepted
Output Wrong format

'Wrong result

Cosmetic

Logic Faults

Missing case(s)

Duplicate case(s)

Extreme condition neglected
Wrong operator (e.g., < instead of <)
1.3 Computation Faults
Incorrect algorithm

Missing computation
Incorrect operand

Incorrect operation
Interface Faults

Incorrect interrupt handling
[/0 timing

Call to wrong procedure

Call to nonexistent procedure
Parameter mismatch (type, number)
Incompatible types
Superfluous inclusion

Data Faults

[ncorrect initialization
Incorrect storage/access
‘Wrong flag/index value
Incorrect packing/unpacking
‘Wrong variable used

Co4

L2

4(a)

Apply Boundary Value Testing to the triangle problem and list down the test cases

In the problem statement, no conditions are specified on the triangle sides, other than being
integers. Obviously, the lower bounds of the ranges are all 1. We arbitrarily take 200 as an
upper

bound. For each side, the test values are {1, 2, 100, 199, 200}. Robust boundary value test
cases will add {0, 201}. Table 5.1 contains boundary value test cases using these ranges.
Notice that test cases 3, 8, and 13 are identical; two should be deleted. Further, there is no
test case for scalene triangles. The cross-product of test values will have 125 test cases
(some of which will be repeated)—too many to list here. The full set is available as a
spreadsheet in the set of student exercises. Table below only lists the first 25 worst-case
boundary value test cases for the triangle problem. You can picture them as a plane slice
through the cube (actually it is a rectangular parallelepiped) in which a = 1 and the other

two variables take on their full set of cross-product values.

Cco1

L2

Page 4 of 9

Case a b C Expected Output
1 100 100 1 Isosceles
2 100 100 2 Isosceles
3 100 100 100 Equilateral
4 100 100 199 Isosceles
5 100 100 200 Not a triangle
b 100 1 100 Isosceles
7 100 2 100 Isosceles
8 100 100 100 Equilateral
9 100 199 100 Isosceles
10 100 200 100 Not a triangle
11 1 100 100 Isosceles
12 2 100 100 Isosceles
13 100 100 100 Equilateral
14 199 100 100 Isosceles
15 200 100 100 Not a triangle
(b) | Represent the triangle problem in a decision table format. [5] C02 L1
cl:a<b+c? F T T T E || T T i e [Sl
c2:b<a+c? — E T T T | T T T T | 4| T
cd:c<a+hb? — | - F 1 Y| T T 7 A A R 1
cd:a=Db? - | = — T T | T T F F F F
chra=c? — | - — T T F F T T E F
cb:b=c? - | = — T F T F T F T F
al: Not a triangle X X X
a2: Scalene X
a3: Isosceles X X | X
ad: Equilateral X
a5: Impossible X | X X
5(a) |Define the following: i) path testing ii) DD path iii) test coverage metric. [6] C02 L2
Path Testing: path testing, or structured testing, is a white box method for designing test
cases. The method analyzes the control flow graph of a program to find a set of linearly
independent paths of execution.
Given a program written in an imperative programming language, its program graph is a
directed graph in which nodes are statement fragments, and edges represent flow of control.
(A complete
statement is a “default” statement fragment.)If i and j are nodes in the program graph, an
edge exists from node i to node j if and only if the statement fragment corresponding to
node j can be executed immediately after the statement fragment corresponding to node i.
(b) [What are metric based testing and slice based testing? [4] Cco1 L4

Metric Based Testing: In software testing, Metric is a quantitative measure of the degree

to which a system, system component, or process possesses a given attribute. In other

Page 5 of 9

words, metrics helps estimating the progress, quality and health of a software testing
effort. Metric based testing is efficient because:

- Metrics help the Project Management/Team to effectively manage the various activities
across the SDLC and achieve a single view, understanding of the progress of the
deliverables and also to quickly analyze and identify the impact of any change across the
deliverables.

- Metrics assist early detection and correction of errors or changes in the requirements
gathered.

- Multiple metrics are needed for comprehensive evaluation of requirements, testing and
their trace-ability to do a Gap analysis, Change Impact analysis, compliance verification of
code, regression test selection, and requirements verification and validation for the project
team to achieve the best of best deliverables.
- Metric collection, with a combination of tool based approach and other methods, is
cheaper, faster and more reliable.

Slice Based Testing:

A program slice is a set of program statements that contributes to or affects the value of a
variable at some point in a program
Backward slices S(v, n): refer to statement fragments that contribute to the value of v at
statement n

Statement n is a Use node of variable v, Use (v, n)
Forward slices S(v, n): refer to all the program statements that are affected by the value o
v and statement n

Refers to the predicate uses and computation uses of the variable v

6(a)

What is system testing? Differentiate between integration testing and system testing.

System Testing (ST) is a black box testing technique performed to evaluate the complete
system the system's compliance against specified requirements. In System testing, the
functionalities of the system are tested from an end-to-end perspective. ... It includes both
functional and Non-Functional testing.

System Testing Integration Testing

1. Testing the collection and interface
modules to check whether they give the
expected result

1. Testing the completed product to check
if it meets the specification requirements.

2. Both functional and non-functional 2.0nly Functional testing is performed to
testing are covered like sanity, usability, =~ check whether the two modules when
performance, stress an load . combined give correct outcome.

3. Itis a high level testing performed after 3.Itis alow level testing performed after
integration testing unit testing

4. Itis a black box testing technique so no 4. It is both black box and white box testing
knowledge of internal structure or code is approach so it requires the knowledge of the
required two modules and the interface

5. Integration testing is performed by

5. It is performed by test engineers only developers as well test engineers

6. Here the testing is performed on the 6. Here the testing is performed on interface
system as a whole including all the between individual module thus any defect
external interfaces, so any defect found in found is only for individual modules and not
it is regarded as defect of whole system the entire system

7. Here the test cases are developed to
simulate the interaction between the two
module

7. In System Testing the test cases are
developed to simulate real life scenarios

Co4

L2

Page 6 of 9

8. The System testing covers many
different testing types like sanity, usability,
maintenance, regression, retesting and
performance

8. Integration testing techniques includes big
bang approach, top bottom , bottom to top
and sandwich approach.

(b)

Explain the types of integration testing.

1. Big Bang integration testing:

In Big Bang integration testing all components or modules are integrated simultaneously,
after which everything is tested as a whole. As per the below image all the modules from
‘Module 1’ to ‘Module 6’ are integrated simultaneously then the testing is carried out.

Big Bang Integration Testing

Module 5
N

\Advantage: Big Bang testing has the advantage that everything is finished before
integration testing starts.

Disadvantage: The major disadvantage is that in general it is time consuming and difficult
to trace the cause of failures because of this late integration.

2. Top-down integration testing: Testing takes place from top to bottom, following the
control flow or architectural structure (e.g. starting from the GUI or main menu).
Components or systems are substituted by stubs. Below is the diagram of ‘“Top down
Approach’:

Module

1

Top Down

1
[
Module Module
2 3
I
| | |
Moaodule Module
4 5

\Advantages of Top-Down approach:

Module
6

The tested product is very consistent because the integration testing is basically

Cco1

L4

Page 7 of 9

performed in an environment that almost similar to that of reality

Stubs can be written with lesser time because when compared to the drivers then
Stubs are simpler to author.

Disadvantages of Top-Down approach:

Basic functionality is tested at the end of cycle

3. Bottom-up integration testing: Testing takes place from the bottom of the control flow
upwards. Components or systems are substituted by drivers. Below is the image of ‘Bottom
up approach’:

|Advantage of Bottom-Up approach:

In this approach development and testing can be done together so that the product
or application will be efficient and as per the customer specifications.

Disadvantages of Bottom-Up approach:

We can catch the Key interface defects at the end of cycle

Itis required to create the test drivers for modules at all levels except the top
control

Incremental testing:

Another extreme is that all programmers are integrated one by one, and a test is
carried out after each step.

The incremental approach has the advantage that the defects are found early in a
smaller assembly when it is relatively easy to detect the cause.

A disadvantage is that it can be time-consuming since stubs and drivers have to be
developed and used in the test.

Within incremental integration testing a range of possibilities exist, partly
depending on the system architecture.

Functional incremental: Integration and testing takes place on the basis of the functions
and functionalities, as documented in the functional specification.

7(a)

Differentiate between generic and specific scaffolding.

How general should scaffolding be? To answer

We could build a driver and stubs for each test case or at least factor out some common
code of the driver and test management (e.g., JUnit)

... or further factor out some common support code, to drive a large number of test cases
from data... or further, generate the data automatically from a more abstract model (e.g.,
network traffic model)

Fully generic scaffolding may suffice for small numbers of handwritten test cases

The simplest form of scaffolding is a driver program that runs a single specific test case.
It is worthwhile to write more generic test drivers that essentially interpret test case

(6]

CO4

L4

Page 8 of 9

specifications.

A large suite of automatically generated test cases and a smaller set of handwritten test
cases can share the same underlying generic test scaffolding

Scaffolding to replace portions of the system is somewhat more demanding and again
both generic and application-specific approaches are possible

A simplest stub- mock - can be generated automatically by analysis of the source code
The balance of quality, scope and cost for a substantial piece of scaffolding software can b
used in several projects

The balance is altered in favour of simplicity and quick construction for the many small
pieces of scaffolding that are typically produced during development to support unit and
small-scale integration testing

A question of costs and reuse - Just as for other kinds of software

(b)

Explain ‘self-checks as oracles’ and ‘capture and replay’.
SELF-CHECKS AS ORACLES

An oracle can also be written as self checks

-Often possible to judge correctness without predicting results.

Typically these self checks are in the form of assertions, but designed to be checked durin
execution.

It is generally considered good design practice to make assertions and self checks to be
free of side effects on program state.

Self checks in the form of assertions embedded in program code are useful primarily for
checking module and subsystem-level specification rather than all program behaviour.
Devising the program assertions that correspond in a natural way to specifications poses
two main challenges:

Bridging the gap between concrete execution values and abstractions used in specification
Dealing in a reasonable way with quantification over collection of values

Structural invariants are good candidates for self checks implemented as assertions

They pertain directly to the concrete data structure implementation

It is sometimes straightforward to translate quantification in a specification statement
into iteration in a program assertion

A run time assertion system must manage ghost variables

They must retain “before” values

They must ensure that they have no side effects outsic assertion checking

Advantages:

-Usable with large, automatically generated test suites.

Limits:

-often it is only a partial check. -recognizes many or most failures, but not all.

Test Harness
Test Case { Program
Tas‘t Input : - Under TeSt F . I
z Self-checks i
----------------------------------- . Notification
CAPTURE AND REPLAY

Sometimes it is difficult to either devise a precise description of expected behaviour or
adequately characterize correct behaviour for effective self checks.

Example: even if we separate testing program functionally from GUI, some testing of the GUI
is required.

If one cannot completely avoid human involvement test case execution, one can at least
avoid unnecessary repetition of this cost and opportunity for error.

The principle is simple:

The first time such a test case is executed, the oracle function is carried out by a human, and
the interaction sequence is captured. Provided the execution was judged (by human tester)
to be correct, the captured log now forms an (input, predicted output) pair for subsequent
automated testing.

The savings from automated retesting with a captured log depends on how many build
and-test cycles we can continue to use it, before it is invalidated by some change to the
program.

Mapping from concrete state to an abstract model of interacting sequences is some time

possible but is generally quite limited.

Co6

L1

Page 9 of 9

	QP of 13MCA444 Ms. Moumita Roy.pdf
	Solution Software Testing and Practices Ms. Moumita Roy.pdf

