
CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test - III

Sub: Object Oriented Programming Using C++ Code: 16MCA22

Date: 30.05.2017 Duration: 90 mins Max Marks: 50 Sem: II Branch: MCA

Answer Any FIVE FULL Questions

Marks
OBE

CO RBT

1(a) Explain STL container classes. [10] CO3 L2

2(a) What is Object Oriented Programming? Bring out the underlying concepts of
Oops?

[10] CO1 L2

3(a) Explain manipulators. Write a Program to create your own manipulators. [5] CO3 L2
(b) What is pure virtual function? Discuss its significance. [5] CO3 L2

4(a) What is stream? Discuss the four streams which are automatically opened when a
C++ Program begins execution.

[6] CO3 L2

(b) Explain setw and setfill manipulators with example. [4] CO3 L2

5(a) What is copy Constructor? Explain with one suitable example. [5] CO2 L2
(b) What is friend function and friend class? Why it is used? [5] CO2 L2

6(a) What are inserter and extractor? Explain how to create your own inserter and
extractor with an example.

[10] CO3 L2

7(a) Explain inline function with an example. [5] CO2 L2
(b) What is iterator ? Write a Program to access vector through iterator. [5] CO3 L3

8(a) 1. Define
i) seekg() ii)seekp() iii)tellg()
iv)precision() v)fill()

[10] CO3 L2

Course Outcomes

PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

CO1:

Differentiate between object oriented programming and
procedure oriented programming &
Disseminate the importance of Object oriented
programming

1 1 - - - - 3 3

CO2:

Apply C++ features such as Classes, objects, constructors,
destructors, inheritance,
operator overloading, and Polymorphism, Template and
exception handling in program
design and implementation.

2 2 3 - - - 2 3

CO3:
Use C++ to demonstrate practical experience in
developing object-oriented solutions. 1 3 3 1 - - 3 3

CO4:
Analyze a problem description and build object-oriented
software using good coding practices and techniques. 1 2 3 2 - - 3 3

CO5:
Implement an achievable practical application and analyze
issues related to object-oriented
techniques in the C++ programming language.

1 1 2 - - - 3 3

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,
experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,
conclude, compare, summarize.

PO1 - Apply knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;
PO4 - team work; PO5 - Ethics; PO6 - Communication; PO7- Business Solution; PO8 – Life-long learning;

Subject: Object Oriented Programming Using C++ Internal III

Q1(a). Explain STL container classes.
Ans: Containers

Containers are objects that hold other objects, and there are several different types.
For example, the vector class defines a dynamic array, deque creates a double-ended
queue, and list provides a linear list. These containers are called sequence containers

It also defines associative containers, which allow efficient retrieval of values based
on keys. For example, a map provides access to values with unique keys.
Each container class defines a set of functions that may be applied to the container.
For example, a list container includes functions that insert, delete, and merge elements.

Ex:
#include <vector>
#include <iostream>
int main()
{
using namespace std;
vector<int> vect;

for (int nCount=0; nCount < 6; nCount++)
vect.push_back(10 - nCount); // insert at end of array
for (int nIndex=0; nIndex < vect.size(); nIndex++)

cout << vect[nIndex] << " ";
cout << endl;

}

Q2(a) What is Object Oriented Programming? Bring out the underlying concepts of Oops?

Ans: To overcome the flaws in procedural approach such as global variables,emphasis on functions rather
than data,top down approach in program design etc,object oriented approach is introduced.

Oops treat data as a critical element in the program development and does not allow it to flow freely
around the system.The data of an abject can be accessed only by the functions associated with that object.

Object oriented programming can be defined as “an approach that provides a way of modularizing
programs by creating partitioned mmory area for both data and functions that can be used as templates for
creating copies of such modules on demand”.

Concepts of Oops:

Class:

1. Class is user defined data type and behave like the built-in data type of a programming language.

2. Class is a blue print/model for creating objects.

3. Class specifies the properties and actions of an object.

4. Class does not physically exist.

5. Once a class has been defined, we create any number of objects belonging to that class. Thus, class is a
collection of objects of similar type.

Object:

1. Object is the basic run time entities in an object oriented system.

2. Object is the basic unit that are associated with the data and methods of a class.

3. Object is an instance of a particular class.

4. Object physically exists.

5. Objects take up space in memory and have an associated address.

6. Objects communicate by sending messages to one another.

Data Abstraction and Encapsulation:

Abstraction refers to the act of representing essential features without including the background details.
In programming languages, data abstraction will be specified by abstract data types and can be achieved
through classes.

The wrapping up of data and functions into a single unit is known as encapsulation. It keeps them safe
from external interface and misuse as the functions that are wrapped in class can access it. The insulation of
the data from direct access by the program is called data hiding.

Inheritance:

1. It provides the concept of reusability.

2. It is a mechanism of creating new classes from the existing classes.

3. It supports the concept of hierarchical classification.

4. A class which provides the properties is called Parent/Super/Base class.

5. A class which acquires the properties is called Child/Sub/Derived class.

6. A sub class defines only those features that are unique to it.

Polymorphism:

1. Polymorphism is derived from two greek words Poly and Morphis where poly means many and morphis
means forms.

2.Polymorphism means one thing existing in many forms.

3.Polymorphism plays an important role in allowing objects having different internal structures to share the
same external interfaces.

4.Polymorphism is extensively used in implementing inheritance.

5.Function overloading and operator overloading can be used to achieve polymorphism.

Dynamic Binding:

1.Binding refers to the linking of a procedure call to be executed in response to the call.

2.If the binding occurs at runtime then it is called as dynamic binding.

3.It is also called as late binding as binding of a call to the procedure is not known until runtime.

4.Dynamic Binding is associated with polymorphism and inheritance.

Message Binding:

1.Objects communicate with each other by sending and receiving information using functions.

2.The basic steps to perform message passing are

* Creating classes that define objects and their behaviour.

* Creating objects from class definitions.

* Establishing communication among objects.

3. Message passing involves specifying the name of the object, name of the function and the information to
be sent as

objectname.functionname(message);

4. A message for an object is a request for execution of a procedure and therefore

will invoke a function in receiving object that generates the desired result.

5. Communication with an object is feasible as long as it is alive.

Q3(a) Explain manipulators. Write a Program to create your own manipulators.
Ans: Manipulator functions are special stream functions that change certain characteristics of the input
and output. They change the format flags and values for a stream. The main advantage of using
manipulator functions is that they facilitate that formatting of input and output streams.
The following are the list of standard manipulator used in a C++ program. To carry out the operations of
these manipulator functions in a user program, the header file input and output

manipulator <iomanip.h> must be included.

Ex:

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
cout << hex << 100 << endl;
cout << setfill('?') << setw(10) << 2343.0;
return 0;
}

This displays
64

??????2343

Creating our own inserter:

All parameterless manipulator output functions have this skeleton:
ostream &manip-name(ostream &stream)
{
// your code here
return stream;
}

#include <iostream>
#include <iomanip>
using namespace std;
// A simple output manipulator.
ostream &sethex(ostream &stream)
{
stream.setf(ios::showbase);
stream.setf(ios::hex, ios::basefield);
return stream;
}
int main()
{
cout << 256 << " " << sethex << 256;
return 0;
}
O/P : 256 0x100

Q3(b) What is pure virtual function? Discuss its significance.
Ans: When a virtual function is not
redefined by a derived class, the version defined in the base class will be used. When there is no
meaningful definition of a virtual function within a base class ie., when a base class may not be able to
define an object sufficiently to allow a base-class virtual function to be created.
Thus we can ensure that all derived classes override a virtual function by using pure virtual function.

A pure virtual function is a virtual function that has no definition within the base class.

To declare a pure virtual function, use this general form:

virtual type func-name(parameter-list) = 0;

When a virtual function is made pure, any derived class must provide its owndefinition. If the derived class
fails to override the pure virtual function, a compile-time error will result.

Ex:
#include <iostream>

using namespace std;

class number
{
protected:

int val;

public:

void setval(int I)
{

val = i;
}

// show() is a pure virtual function

virtual void show() = 0;

};

class hextype : public number
{

public:

void show()
{

cout << hex << val << "\n";

}

};

class dectype : public number
{

public:

void show()
{

cout << val << "\n";

}

};

class octtype : public number

{

public:

void show()
{

cout << oct << val << "\n";

}

};

int main()

{

dectype d;

hextype h;

octtype o;

d.setval(20);

d.show(); // displays 20 - decimal

h.setval(20);

h.show(); // displays 14 – hexadecimal
o.setval(20);

o.show(); // displays 24 - octal

return 0;

}
In the above example,a base class may not be able to meaningfully define a virtual function. In

number class simply provides the common interface for the derived types to use. There is no reason to
define show() inside number since the base of the number is undefined. We can always create a placeholder
definition of a virtual function. By making show() as pure also ensures that all derived classes will redefine
it to meet their own needs.

Q4(a). What is stream? Discuss the four streams which are automatically opened when a C++
Program begins execution.
Ans: A stream is a logical device that either produces or consumes information.

A stream is linked to a physical device by the I/O system. All streams behave in the

same way even though the actual physical devices they are connected to may differ

substantially. Because all streams behave the same, the same I/O functions can operate

on virtually any type of physical device.

Template Class Character-based class Wide-Character-
based Class

basic_streambuf streambuf wstreambuf

basic_ios ios wios

basic_istream istream wistream

basic_ostream ostream wostream

basic_iostream iostream wiostream

basic_fstream fstream wfstream

basic_ifstream ifstream wifstream

basic_ofstream ofstream wofstream

When a C++ program begins execution, four built-in streams are automatically opened.

They are:

Stream Meaning Default Device

cin Standard input Keyboard

cout Standard output Screen

cerr Standard error output Screen

clog Buffered version of cerr Screen

By default, the standard streams are used to communicate with the console.

However, in environments that support I/O redirection (such as DOS, Unix, OS/2,

and Windows), the standard streams can be redirected to other devices or files.

The standard input stream (cin):
The predefined object cin is an instance of istream class. The cin object is said to be attached to the standard
input device, which usually is the keyboard. The cin is used in conjunction with the stream extraction
operator, which is written as >>

#include <iostream>

using namespace std;

int main()
{

char name[50];

cout << "Please enter your name: ";
cin >> name;
cout << "Your name is: " << name << endl;

}

The standard output stream (cout):
The predefined object cout is an instance of ostream class. The cout object is said to be "connected to" the
standard output device, which usually is the display screen. The cout is used in conjunction with the stream
insertion operator, which is written as <<

Ex:

#include <iostream>

using namespace std;

int main()

{

char str[] = "Hello C++";

cout << "Value of str is : " << str << endl;

}

The standard error stream (cerr):
The predefined object cerr is an instance of ostream class. The cerr object is said to be attached to

the standard error device, which is also a display screen but the object cerr is un-buffered and each stream
insertion to cerr causes its output to appear immediately.

#include <iostream>

using namespace std;

int main()
{

char str[] = "Unable to read....";

cerr << "Error message : " << str << endl;
}

The standard log stream (clog):
The predefined object clog is an instance of ostream class. The clog object is said to be attached to the
standard error device, which is also a display screen but the object clog is buffered. This means that each
insertion to clog could cause its output to be held in a buffer until the buffer is filled or until the buffer is
flushed

#include <iostream>

using namespace std;

int main()
{

char str[] = "Unable to read....";

clog << "Error message : " << str << endl;
}

Q4(b) Explain setw and setfill manipulators with example.
Ans:
setfill(int ch) Set the fill character to ch .It is used to format an Output.
setw(int w) Set the field width to w. It is used to format an Output.

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
cout << hex << 100 << endl;
cout << setfill('?') << setw(10) << 2343.0;
return 0;
}

This displays
64
??????2343

Q5(a) What is copy Constructor? Explain with one suitable example.
Ans: The parameters of a constructor can be of any of the data types except an object of its own
class as a value parameter.

Hence declaration of the following class specification leads to an error:

class x

{

private:

………
public:

x(x obj);

……..
};

A class’s own object can be passed as a reference parameter.
Ex:

class X

{ ……..
public:

X()

X(X &obj);

X(int a);

};

is valid

Such a constructor having a reference to an instance of its own class as an argument is known
as copy constructor.

Ex.

bag b3=b2; // copy constructor invoked

bag b3(b2); // copy constructor invoked

b3=b2; // copy constructor is not invoked.

A copy constructor copies the data members from one object to another.

Q5(b) What is friend function and friend class? Why it is used?

Ans: A friend function of a class is defined outside that class' scope but it has the right to access all private

and protected members of the class. Even though the prototypes for friend functions appear in the class

definition, friends are not member functions.

A friend can be a function, function template, or member function, or a class or class template, in which

case the entire class and all of its members are friends.

To declare a function as a friend of a class, precede the function prototype in the class definition with

keyword friend as follows:

class Box {

double width;

public:

double length;

friend void printWidth(Box box);

void setWidth(double wid);

};

To declare all member functions of class ClassTwo as friends of class ClassOne, place a following

declaration in the definition of class ClassOne:

friend class ClassTwo;

Consider the following program:

#include <iostream>

using namespace std;

class Box {

double width;

public:

friend void printWidth(Box box);

void setWidth(double wid);

};

// Member function definition

void Box::setWidth(double wid) {

width = wid;

}

// Note: printWidth() is not a member function of any class.

void printWidth(Box box) {

/* Because printWidth() is a friend of Box, it can

directly access any member of this class */

cout << "Width of box : " << box.width <<endl;

}

// Main function for the program

int main() {

Box box;

// set box width with member function

box.setWidth(10.0);

// Use friend function to print the wdith.

printWidth(box);

return 0;

}

When the above code is compiled and executed, it produces the following result:

Width of box : 10

Q6(a). What are inserter and extractor? Explain how to create your own inserter and extractor with
an example.
Ans: In the language of C++, the << output operator is referred to as the insertion operator
because it inserts characters into a stream. Likewise, the >> input operator is called
the extraction operator because it extracts characters from a stream.

Creating Your Own Inserters
It is quite simple to create an inserter for a class that you create. All inserter functions
have this general form:
ostream &operator<<(ostream &stream, class_type obj)
{
// body of inserter
return stream;

}
the function returns a reference to a stream of type ostream. Further, the first parameter
to the function is a reference to the output stream. The second parameter is the object
being inserted.

Creating Your Own Extractors
Extractors are the complement of inserters. The general form of an extractor function is
istream &operator>>(istream &stream, class_type &obj)
{
// body of extractor
return stream;
}
Extractors return a reference to a stream of type istream, which is an input stream.The first parameter must also be a
reference to a stream of type istream. Notice that the second parameter must be a reference to an object of the class
for which the extractor is overloaded. This is so the object can be modified by the input (extraction)
operation.

#include <iostream>
#include <cstring>
using namespace std;
class phonebook {
char name[80];
int areacode;
int prefix;
int num;
public:
phonebook() { };
phonebook(char *n, int a, int p, int nm)
{
strcpy(name, n);
areacode = a;
prefix = p;
num = nm;
}
friend ostream &operator<<(ostream &stream, phonebook o);
friend istream &operator>>(istream &stream, phonebook &o);
};
// Display name and phone number.
ostream &operator<<(ostream &stream, phonebook o)
{
stream << o.name << " ";
stream << "(" << o.areacode << ") ";
stream << o.prefix << "-" << o.num << "\n";
return stream; // must return stream
}
// Input name and telephone number.
istream &operator>>(istream &stream, phonebook &o)
{
cout << "Enter name: ";
stream >> o.name;
cout << "Enter area code: ";
stream >> o.areacode;
cout << "Enter prefix: ";
stream >> o.prefix;
cout << "Enter number: ";
stream >> o.num;
cout << "\n";
return stream;
}
int main()
{
phonebook a;
cin >> a;
cout << a;
return 0;
}

Q7(a). Explain inline function with an example.

Ans: Inline Functions:

If a function is inline, the compiler places a copy of the code of that function at each point where the
function is called at compile time.

To inline a function, place the keyword inline before the function name and define the function before any
calls are made to the function. The compiler can ignore the inline qualifier in case defined function is more
than a line.

Ex:

#include <iostream>

using namespace std;

inline int Max(int x, int y)

{

return (x > y)? x : y;

}

// Main function for the program

int main()

{

cout << "Max (20,10): " << Max(20,10) << endl;

cout << "Max (0,200): " << Max(0,200) << endl;

cout << "Max (100,1010): " << Max(100,1010) << endl;

return 0;

}

Q7(b). What is iterator ? Write a Program to access vector through iterator.
Ans: Iterators are objects that act, more or less, like pointers. They give you the ability to
cycle through the contents of a container in much the same way that you would use
a pointer to cycle through an array. There are five types of iterators:
Iterator Access Allowed
Random Access Store and retrieve values. Elements may be accessed randomly.
Bidirectional Store and retrieve values. Forward and backward moving.
Forward Store and retrieve values. Forward moving only.
Input Retrieve, but not store values. Forward moving only.
Output Store, but not retrieve values. Forward moving only.

#include <iostream>
#include <vector>
#include <cctype>
contents of vector
p = v.begin();
while(p != v.end()) {
*p = toupper(*p);
p++;
}
// display contents of vector
cout << "Modified Contents:\n";
p = v.begin();
while(p != v.end()) {
cout << *p << " ";
p++;
}
cout << endl;
return 0;
}

The output from this program is
Original contents:
a b c d e f g h i j
Modified Contents:
A B C D E F G H I J

Q8(a). Define
i) seekg() ii)seekp() iii)tellg()
iv)precision() v)fill()

Ans: i)seekg()
Sets the position of the get pointer. The get pointer determines the next location to be read in the source
associated to the stream.
Syntax:
seekg (position);

Using this function the stream pointer is changed to the absolute position (counting from the beginning of
the file).

ii)seekp()
The seekp method changes the location of a stream object's file pointer for output (put or write.) In most
cases, seekp also changes the location of a stream object's file pointer for input (get or read.)
Syntax:
seekp (position);
Using this function the stream pointer is changed to the absolute position (counting from the beginning of
the file).
iii)tellg()

The tellg() function is used with input streams, and returns the current "get" position of the pointer in the
stream.
Syntax:
pos_type tellg();
It has no parameters and return a value of the member type pos_type, which is an integer data type
representing the current position of the get stream pointer.
iv)precision()
When outputting floating-point values, We can determine the number of digits
of precision by using the precision() function.

Its prototype is shown here:
streamsize precision(streamsize p);

Here, the precision is set to p, and the old value is returned. The default precision is 6.
In some implementations, the precision must be set before each floating-point output.
If it is not, then the default precision will be used.
v)fill()
By default, when a field needs to be filled, it is filled with spaces. we can specify
the fill character by using the fill() function.
Its prototype is

char fill(char ch);
After a call to fill(), ch becomes the new fill character, and the old one is returned.

	III Internal C++ - Ms. Neha Agrawal.pdf
	III Internal C++Answer Key - Ms. Neha Agrawal.pdf

