
1 | P a g e

Operating System – 17MCA24

INTERNAL TEST –III Answer Key

1 (a) Explain process management and various process schedule algorithm in Linux operating system

Process Management

A process is the basic context within which all user-requested activity is serviced within the OS. To

be compatible with other UNIX systems, Linux must use a process model similar to those of other

versions of UNIX.

8.11.1 The Fork/Exec Process Model

UNIX process management separates the creation of processes and the running of a new program

into two distinct operations. The fork system call creates a new process. A new program is run after

a call to exec. Under UNIX, a process encompasses all the information that the operating system

must maintain t track the context of a single execution of a single program.

Under Linux, process properties fall into three groups:

 Process Identity: The process identity consists of mainly following items:

 rocess ID (PID): The unique identifier for the process; used to specify processes to the OS when

an application makes a system call to signal, modify, or wait for another process.

 Credentials: Each process must have an associated user ID and one or more group IDs that

determine the process’s rights to access system resources and files.

 Personality: Not traditionally found on UNIX systems, but under Linux each process has an

associated personality identifier that can slightly modify the semantics of certain system calls.

Used primarily by emulation libraries to request that system calls be compatible with certain

specific flavors of UNIX.

 Process environment: The process’s environment is inherited from its parent, and is composed

of two null-terminated vectors:

o The argument vector lists the command-line arguments used to invoke the running program;

conventionally starts with the name of the program itself

o The environment vector is a list of ―NAME=VALUE‖ pairs that associates named

environment variables with arbitrary textual values.

Passing environment variables among processes and inheriting variables by a process’s children

are flexible means of passing information to components of the user-mode system software. The

environment-variable mechanism provides a customization of the operating system that can be

set on a per-process basis, rather than being configured for the system as a whole.

Context: It is the (constantly changing) state of a running program at any point in

time. There are various parts:

Scheduling context is the most important part of the process context; it is the information that the

scheduler needs to suspend and restart the process.

Accounting: The kernel maintains accounting information about the resources currently being

consumed by each process, and the total resources consumed by the process in its lifetime so far.

o File table is an array of pointers to kernel file structures. When making file I/O system calls,

processes refer to files by their index into this table.

10

2 | P a g e

o File System Context: Whereas the file table lists the existing open files, the file-system context

applies to requests to open new files. The current root and default directories to be used for new file

searches are stored here.

o Signal-handler table defines the routine in the processs’s address space to be called when specific

signals arrive.

o Virtual-memory context of a process describes the full contents of its private address space.

Processes and Threads

Linux uses the same internal representation for processes and threads; a thread is simply a new

process that happens to share the same address space as its parent. A distinction is only made when a

new thread is created by the clone system call:

 fork creates a new process with its own entirely new process context

 clone creates a new process with its own identity, but that is allowed to share the data structures

of its parent

Using clone gives an application fine-grained control over exactly what is shared between

two threads.

SCHEDULING

The job of allocating CPU time to different tasks within an OS. While scheduling is normally

thought of as the running and interrupting of processes, in Linux, scheduling also includes the

running of the various kernel tasks. Running kernel tasks encompasses both tasks that are requested

by a running process and tasks that execute internally on behalf of a device driver.

Various aspects of scheduling in Linux are discussed here.

 Kernel Synchronization: A request for kernel-mode execution can occur in two ways:

o A running program may request an operating system service, either explicitly via a system call, or

implicitly, for example, when a page fault occurs.

o A device driver may deliver a hardware interrupt that causes the CPU to start executing a kernel-

defined handler for that interrupt.

Kernel synchronization requires a framework that will allow the kernel’s critical sections to run

without interruption by another critical section.

Linux uses two techniques to protect critical sections:

o Normal kernel code is non-preemptable : when a time interrupt is received while a process is

executing a kernel system service routine, the kernel’s need_resched flag is set so that the scheduler

will run once the system all has completed and control is about to be returned to user mode.

o The second technique applies to critical sections that occur in an interrupt service routines. By

using the processor’s interrupt control hardware to disable interrupts during a critical section, the

kernel guarantees that it can proceed without the risk of concurrent access of shared data structures.

 Process Scheduling: Linux uses two process-scheduling algorithms:

o A time-sharing algorithm for fair preemptive scheduling between multiple processes

o A real-time algorithm for tasks where absolute priorities are more important than fairness

A process’s scheduling class defines which algorithm to apply. For time-sharing processes, Linux

uses a prioritized, credit based algorithm.

3 | P a g e

 Symmetric Multiprocessing: Linux 2.0 was the first Linux kernel to support SMP hardware;

separate processes or threads can execute in parallel on separate processors. To preserve the kernel’s

non-preemptible synchronization requirements, SMP imposes the restriction, via a single kernel

spinlock, that only one processor at a time may execute kernel-mode code.

2 (a) Explain hardware solution for critical section problem

There are many software algorithms for enforcing mutual exclusion. But they have high processing

overhead and the risk of logical errors. Hence, we will here consider few hardware approaches.

4.3.1 Interrupt Disabling

In a single-processor system, concurrent processes cannot be overlapped, but can be interleaved.

Moreover, a process will continue to execute until it is interrupted. Hence, to guarantee mutual

exclusion, a process has to be prevented from being interrupted. This capability can be provided in the

form of primitives defined by OS kernel for disabling and enabling interrupts. So, a process should not

be interrupted till it completes its critical section. But, by doing so, the efficiency of OS will slow-

down, as OS cannot switch between the processes. Moreover, this approach does not guarantee mutual

exclusion in case of multi-processor systems.

Normally, access to a memory location excludes any other access to that same location. Hence,

processor designers have proposed several machine instructions that carry out two actions atomically

(that is, an instruction is a single step and not interrupted), such as reading and writing or reading and

testing, of a single memory location with one instruction fetch cycle. During execution of the

instruction, access to the memory location is blocked for any other instruction referencing that

location. Two most commonly implemented instructions are explained below:

 Compare and Swap Instruction: It compares the contents of a memory location to a given value.

If they are same, it modifies the contents of that memory location to a given new value. This is done as

a single atomic operation. The atomicity guarantees that the new value is calculated based on up-to-

date information; if the value had been updated by another process in the meantime, the write would

fail. The result of the operation must indicate whether it performed the substitution; this can be done

either with a simple boolean response, or by returning the value read from the memory location.

 Exchange Instruction: The instruction exchanges the contents of a register with that of a memory

location. The use of a special machine instruction to enforce mutual exclusion has a number of

advantages:

 It is applicable to any number of processes on either a single processor or multiple processors

sharing main memory.

 It is simple and therefore easy to verify.

 It can be used to support multiple critical sections; each critical section can be defined by its own

variable. There are some serious disadvantages as well:

 Busy waiting is employed: Thus, while a process is waiting for access to a critical section, it

continues to consume processor time.

 Starvation is possible: When a process leaves a critical section and more than one process is

waiting, the selection of a waiting process is arbitrary. Thus, some process could indefinitely be denied

access.

 Deadlock is possible: Consider the following scenario on a single-processor system. Process P1

executes the special instruction and enters its critical section.

P1 is then interrupted to give the processor to P2, which has higher priority. If P2 now attempts to use

the same resource as P1, it will be denied access because of the mutual exclusion mechanism. Thus, it

will go into a busy waiting loop. However, P1 will never be dispatched because it is of lower priority

than another ready process, P2.

5

4 | P a g e

2.b) Explain fragmentation and its types with neat diagram

External Fragmentation Example Internal Fragmentation Example

 (b) What are the different types of scheduler?

Schedulers are special system software which handle process scheduling in various ways. Their main

task is to select the jobs to be submitted into the system and to decide which process to run. Schedulers

are of three types −

 Long-Term Scheduler

 Short-Term Scheduler

 Medium-Term Scheduler

Long Term Scheduler :

It is also called a job scheduler. A long-term scheduler determines which programs are admitted to

the system for processing. It selects processes from the queue and loads them into memory for

execution. Process loads into the memory for CPU scheduling.

Short Term Scheduler :

It is also called as CPU scheduler. Its main objective is to increase system performance in accordance

with the chosen set of criteria. It is the change of ready state to running state of the process. CPU

scheduler selects a process among the processes that are ready to execute and allocates CPU to one of

them.

Short-term schedulers, also known as dispatchers, make the decision of which process to execute next.

5

5 | P a g e

Short-term schedulers are faster than long-term schedulers.

Medium Term Scheduler :

Medium-term scheduling is a part of swapping. It removes the processes from the memory. It reduces

the degree of multiprogramming. The medium-term scheduler is in-charge of handling the swapped

out-processes.

A running process may become suspended if it makes an I/O request. A suspended processes cannot

make any progress towards completion. In this condition, to remove the process from memory and

make space for other processes, the suspended process is moved to the secondary storage. This process

is called swapping, and the process is said to be swapped out or rolled out. Swapping may be

necessary to improve the process mix.

3 (a) What is Critical Section and Mutual Exclusion

Critical Section

Suppose two processes require an access to single non-sharable resource like printer. During the

course of execution, each process will be sending commands to the I/O device, receiving status

information, sending data, and/or receiving data. We will refer to such a resource as a critical

resource, and the portion of the program that uses it a critical section of the program.

It is important that only one program at a time be allowed in its critical section. We cannot simply

rely on the OS to understand and enforce this restriction. For example, in case of the printer, we

want only one process to have control of the printer till it finishes printing the entire document.

Otherwise, lines from competing processes will be interleaved.

Mutual Exclusion

while one process executes the shared variable, all other processes desiring to do so at the same

time moment should be kept waiting; when that process has finished executing the shared variable,

one of the processes waiting; while that process has finished executing the shared variable, one of

the processes waiting to do so should be allowed to proceed. In this fashion, each process executing

the shared data (variables) excludes all others from doing so simultaneously. This is called Mutual

Exclusion.

5

6 | P a g e

 (b) What is symmetric multiprocessor system? What are its benefits?

Traditionally, the computer has been viewed as a sequential machine. That is, a processor executes

instructions one at a time in a sequence and each instruction is a sequence of operations. But, as

computer technology has evolved, parallel processing got importance.

One of the popular approaches for providing parallelism is symmetric multiprocessors (SMPs), where

processors are replicated.

3.8.1 SMP Architecture

Single instruction single data (SISD) stream: A single processor executes a single instruction stream

to operate on data stored in a single memory.

 Single instruction multiple data (SIMD) stream: Each instruction is executed on a different set of

data by the different processors.

 Multiple instruction single data (MISD) stream: A sequence of data is transmitted to a set of

processors, each of execute a different instruction sequence.

 Multiple instruction multiple data (MIMD) stream: A set of processors simultaneously execute

different instruction sequences on different data sets. Based on the communication among processors,

MIMD can be further divided. If every processor has a dedicated memory, then each processing

element is a self-contained computer. Communication among the computers is either via fixed path or

via some network. Such a system is known as a cluster. If the processors share a common memory,

it is known as shared-memory multiprocessor. This again can be further divided into master/slave

architecture and SMP.

The master/slave architecture has disadvantages:

 A failure of the master brings down the whole system

 As master has to do all scheduling and process management, the performance may slow down.

But, in SMP, the kernel can execute on any processor and it allows portions of kernel to execute in

parallel. Here, each processor does self-scheduling from the pool of available process or threads.

5

4 (a) What is system call? What are the types of system call? Give examples of each.

The system call provides an interface to the operating system services.

Application developers often do not have direct access to the system calls, but can access them

through an application programming interface (API). The functions that are included in the API

6

http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-system-call

7 | P a g e

invoke the actual system calls. By using the API, certain benefits can be gained:

 Portability: as long a system supports an API, any program using that API can compile and

run.

 Ease of Use: using the API can be significantly easier then using the actual system call.

1.12.2. Types of System Calls

There are 5 different categories of system calls:

process control, file manipulation, device manipulation, information maintenance and

communication.

1.12.2.1. Process Control

A running program needs to be able to stop execution either normally or abnormally. When

execution is stopped abnormally, often a dump of memory is taken and can be examined with a

debugger.

1.12.2.2. File Management

Some common system calls are create, delete, read, write, reposition, or close. Also, there is a

need to determine the file attributes – get and set file attribute. Many times the OS provides an

API to make these system calls.

1.12.2.3. Device Management

Process usually require several resources to execute, if these resources are available, they will be

granted and control returned to the user process. These resources are also thought of as devices.

Some are physical, such as a video card, and others are abstract, such as a file.

User programs request the device, and when finished they release the device. Similar to files, we

can read, write, and reposition the device.

1.12.2.4. Information Management

Some system calls exist purely for transferring information between the user program and the

operating system. An example of this is time, or date.

The OS also keeps information about all its processes and provides system calls to report this

information.

1.12.2.5. Communication

There are t wo

models of interprocess communication, the message-passing model and the shared memory

model.

 Message-passing uses a common mailbox to pass messages between processes.

 Shared memory use certain system calls to create and gain access to create and gain

8 | P a g e

access to regions of memory owned by other processes. The two processes exchange

information by reading and writing in the shared data.

 (b) What is a PCB? What are its contents

A Process Control Block is a data structure maintained by the Operating System for every process.

The PCB is identified by an integer process ID (PID).

A PCB keeps all the information needed to keep track of a process as listed below −

 Identifier: A unique identifier associated with this process, to distinguish it from all other

processes.

 State: If the process is currently executing, it is in the running state.

 Priority: Priority level relative to other processes.

 Program counter: The address of the next instruction in the program to be

executed.

Memory pointers: Includes pointers to the program code and data associated with this process, plus

any memory blocks shared with other processes.

 Context data: These are data that are present in registers in the processor while the process is

executing.

 I/O status information: Includes outstanding I/O requests, I/O devices (e.g., disk drives) assigned

to this process, a list of files in use by the process, and so on.

 Accounting information: May include the amount of processor time and clock time used, time

limits, account numbers, and so on.

The above information is stored in a data structure known as process control block

4

5 (a) Write and explain Banker’s algorithm for deadlock avoidance

The resource-allocation graph algorithm is not applicable when there are multiple instances for each

resource. The banker's algorithm addresses this situation, but it is less efficient. The name was chosen

because this algorithm could be used in a banking system to ensure that the bank never allocates its

available cash such that it can no longer satisfy the needs of all its customers.

When a new process enters the system, it must declare the maximum number of instances of each

resource type that it may need. This number may not exceed the total number of resources in the

system. When a user requests a set of resources, the system must determine whether the allocation of

these resources will leave the system in a safe state. If it will, the resources are allocated; otherwise,

the process must wait until some other process releases enough resources.

Data structure for Banker’s algorithms is as below –

Let n be the number of processes in the system and m be the number of resource types.

 Available: Vector of length m indicating number of available resources. If

Available[j] = k, there are k instances of resource type Rj available.

 Max: An n x m matrix defines the maximum demand of each process. If Max [i,j] = k,

then process Pi may request at most k instances of resource type Rj.

 Allocation: An n x m matrix defines the number of resources currently allocated to

each process. If Allocation[i, j] = k then Pi is currently allocated k instances of Rj.

 Need: An n x m matrix indicates remaining resource need of each process. If

Need[i,j] = k, then Pi may need k more instances of Rj to complete its task. Note

that, Need [i,j] = Max[i,j] – Allocation [i,j].

The Banker’s algorithm has two parts:

1. Safety Algorithm: It is for finding out whether a system is in safe state or not. The

steps are as given below –

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

5

9 | P a g e

Work = Available

Finish [i] = false for i = 1, 2, 3, …, n.

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

Resource – Request Algorithm:

Let Requesti be the request vector for process Pi. If

Requesti [j] = k then process Pi wants k instances of resource type Rj.

1. If Requesti Needi go to step 2. Otherwise, raise error condition, since process has exceeded its

maximum claim.

2. If Requesti Available, go to step 3. Otherwise Pi must wait, since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available - Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If the resulting resource allocation is safe, then the transaction is complete and the process Pi is

allocated its resources. If the new state is unsafe, then Pi must wait for Requesti , and the old resource-

allocation state is restored

 (b) Write short note about Inter process communication in Linux

Like UNIX, Linux informs processes that an event has occurred via signals. There is a limited number

of signals, and they cannot carry information: Only the fact that a signal occurred is available to a

process. The Linux kernel does not use signals to communicate with processes with are running in

kernel mode, rather, communication within the kernel is accomplished via scheduling states and wait-

queue structures.

Passing of Data among Processes: The pipe mechanism allows a child process to inherit a

communication channel to its parent; data written to one end of the pipe can be read by the other.

Shared memory offers an extremely fast way of communicating; any data written by one process to a

shared memory region can be read immediately by any other process that has mapped that region into

its address space. To obtain synchronization, however, shared memory must be used in conjunction

with another inter process communication mechanism.

Explain the components of Linux OS

Ans: The Linux system is composed of three main bodies of code, in line with most traditional UNIX

implementations:

1. Kernel. The kernel is responsible for maintaining all the important abstractions of the operating

system, including such things as virtual memory and processes.

2. System libraries. The system libraries define a standard set of functions through which applications

can interact with the kernel. These functions implement much of the operating-system functionality

5

10 | P a g e

that does not needthe full privileges of kernel code.

3. System utilities. The system utilities are programs that perform individual, specialized management

tasks. Some system utilities may be invoked just once to initialize and configure some aspect of the

system; others—

known as daemons in UNIX terminology—may run permanently, handling such tasks as responding to

incoming network connections, accepting logon requests from terminals, and updating log files.

Figure 21.1 illustrates the various components that make up a full Linux system. The most important

distinction here is between the kernel and everything else. All the kernel code executes in the

processor's privileged mode with full access to all the physical resources of the computer. Linux refers

to this privileged mode as kernel mode.

6 (a) With a neat diagram explain the steps in handling page fault

In Demand paging , we need to distinguish the pages which are in the memory and pages which are

there on the disk. For this purpose, the valid – invalid bit is used. When this bit is set to valid, it

indicates the page is in the memory. Whereas, the value of bit as invalid indicates page is on the disk.

If the process tries to access a page which is not in the memory (means, it is on the disk), page fault

occurs. The paging hardware notices the invalid bit in the page table and cause a trap to the OS. This

trap is the result of the failure of OS to bring the desired page into memory. This error has to be

corrected. The procedure for handling this page fault is as shown in Figure 6.16. The steps are

explained below:

1. We check an internal table (usually kept with the process control block) for this process, to

determine whether the reference was a valid or invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid, but we have not yet brought in

that page into memory, it is brought now.

3. We find a free frame.

6

11 | P a g e

4. We schedule a disk operation to read the desired page into the newly allocated frame.

5. When the disk read is complete, we modify the internal table kept with the process and the page

table to indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the illegal address trap. The process can now

access the page as though it had always been in memory.

It is important to realize that, because we save the state (registers, condition code, instruction counter

etc.) of the interrupted process when the page fault occurs, we can restart the process in exactly the

same place and state In an extreme situation, a process may starts executing with no page in the

memory. So, each time an instruction has to be executed, page fault occurs and the required page

needs to be brought into the memory. This situation is called as pure demand paging.

That is, no page is brought into the memory until it is required.

 (b) Explain the components of Linux OS

Ans: The Linux system is composed of three main bodies of code, in line with most traditional UNIX

implementations:

1. Kernel. The kernel is responsible for maintaining all the important abstractions of the operating

system, including such things as virtual memory and processes.

2. System libraries. The system libraries define a standard set of functions through which applications

can interact with the kernel. These functions implement much of the operating-system functionality

4

12 | P a g e

that does not needthe full privileges of kernel code.

3. System utilities. The system utilities are programs that perform individual, specialized management

tasks. Some system utilities may be invoked just once to initialize and configure some aspect of the

system; others—

known as daemons in UNIX terminology—may run permanently, handling such tasks as responding to

incoming network connections, accepting logon requests from terminals, and updating log files.

Figure 21.1 illustrates the various components that make up a full Linux system. The most important

distinction here is between the kernel and everything else. All the kernel code executes in the

processor's privileged mode with full access to all the physical resources of the computer. Linux refers

to this privileged mode as kernel mode.

`

7 Mention the different page table structure explain in brief

There are three common techniques for structuring a page table. They are:

Hierarchical Paging - Break up the logical address space into multiple page tables. A simple technique

is a two-level page table.

Hashed Page

10

13 | P a g e

Hashed Page Table –

14 | P a g e

Inverted Page Table –

8 (a) Define Security problem and system threat

We have discussed earlier that each file/directory can be secured by controlling access to them. But,

total security cannot be achieved by this. Security violations of the system canbe categorized as

intentional (malicious) or accidental. It is easier to protect against accidental misuse. Malicious access

has following forms:

 Unauthorized reading of data

 Unauthorized modification of data

 Unauthorized destruction of data

 Preventing legitimate use of the system

To protect the system, we must take security measures at four levels:

1. Physical: The site or sites containing the computer systems must be physically

10

15 | P a g e

secured against armed or surreptitious entry by intruders.

2. Human: Users must be screened carefully to reduce the chance of authorizing a

user who then gives access to an intruder.

3. Network: Data being transferred via network is prone to attack.

4. Operating System: The system must protect itself security breaches.

SYSTEM THREATS

Most OS allows processes to spawn (creating child process) other processes. In such a situation, it is

possible that OS resources and user files are misused. The methods for misusing are discussed here:

 Worms: A worm is a process that uses the spawn mechanism to attack system

performance. It creates multiple copies of itself using system resources and locking

all other processes from using the system.

 Viruses: It is a code embedded within a legitimate program. They spread into other programs and

mess-up the system – modifying/destroying files, causing system

crash etc.

 Denial of Service: Here, the hacker does not gain any information, but disables

legitimate user from accessing system.

 (b) Explain the role of Operating system to prevent

The major security problem for OS is authentication. The protection system depends on an ability

identify the programs and processes currently executing. Generally authentication is

based on one or more of three items:

 User possession (a key or a card)

 User knowledge (identifier or password)

 User attribute (fingerprint, retina, signature etc)

Passwords

Passwords are used to protect the data in the computer, when there are no complete

protection schemes. User is asked to provide the username and password during the

access. If the password matches with the one stored in the system, access is allowed.

8.5.2 Password Vulnerabilities

Though passwords are popularly used because of its easy usage and understanding, it is vulnerable to

threats. They can be guessed, accidentally exposed, illegally transferred from one to other etc. To

avoid these various possibilities can be tried:

 keeping non-guessable passwords

 keep changing the passwords frequently

 keeping encrypted passwords

 using One – Time Passwords (OTP)

 using biometrics authentication

9 Explain the following with respect to the file system: i) Contiguous allocation

ii) Linked allocation iii) Indexed allocation

The direct-access nature of disks allows us flexibility in the implementation of files. In almost every

case, many files will be stored on the same disk. The main problem is how to allocate space to these

files so that disk space is utilized effectively and files can be accessed quickly. Three major methods

of allocating disk space are: contiguous, linked, and indexed.

Contiguous Allocation

In contiguous allocation, files are assigned to contiguous areas of secondary storage. A

10

16 | P a g e

user specifies in advance the size of the area needed to hold a file to be created. If the desired amount

of contiguous space is not available, the file cannot be created. A contiguous allocation of disk space is

shown in Figure 7.11.

One advantage of contiguous allocation is that all successive records of a file are normally physically

adjacent to each other. This increases the accessing speed of records. It means that if records are

scattered through the disk it is accessing will be slower. For sequential access the file system

remembers the disk address of the last block and when necessary reads the next block. For direct

access to block B of a file that starts at location L, we can immediately access block L+B. Thus

contiguous allocation supports both sequential and direct accessing. The disadvantage of contiguous

allocation algorithm is, it suffers from external fragmentation. As files are allocated and deleted, the

free disk space is broken into little pieces. Depending on the total amount of disk storage and the

average file size, external

fragmentation may be a minor or a major problem.

Linked Allocation

Linked allocation solves all problems of contiguous allocation. With linked allocation, each file is a

linked list of disk blocks; the disk blocks may be scattered anywhere on the disk. The directory

contains a pointer to the first and last blocks of the file as shown in Figure 7.12.

Linked allocation solves the problem of external fragmentation, which was present in contiguous

allocation. But, still it has a disadvantage: Though it can be effectively used for sequential-access files,

17 | P a g e

to find ith file, we need to start from the first location. That is, random-access is not possible.

Indexed Allocation

This method allows direct access of files and hence solves the problem faced in linked allocation. Each

file has its own index block, which is an array of disk-block addresses. The ith entry in the index block

points to the ith block of the file. The directory contains the address of the index block as shown in

Figure 7.13.

10. Describe the methods used for implementing directory structures

The file systems of computers can be very large. To manage all these data, we need to organize them.

The disks are split into one or more partitions. Typically, each disk on a system contains at least one

partition, which is a low-level structure in which files and directories reside. Sometimes, partitions are

used to provide several separate areas within one disk, each treated as a separate storage device,

whereas other systems allow partitions to be larger than a disk to group disks into one logical structure.

Each partition contains information about files within it. This information is kept in a device directory

or volume table of contents. The device directory records information-such as name, location, size, and

type-for all files on that partition. Figure 7.3 shows file-system organization.

Figure 7.3 A typical file-system organization

Various operations that are to be performed on a directory:

 Search for a file: We need to be able to search a directory structure to find the entry for

10

18 | P a g e

a particular file.

 Create a file: New files need to be created and added to the directory.

 Delete a file: When a file is no longer needed, we want to remove it from the directory.

 List a directory: We need to be able to list the files in a directory, and the contents of

the directory entry for each file in the list.

 Rename a file: As the name of a file represents its contents to its users, the name must be

changeable when the contents or use of the file changes. Renaming a file may also allow its position

within the directory structure to be changed.

 Traverse the file system: Files may need to be copied into another storage device like tape, pen-

drive etc. and the disk space of that file released for reuse by another file.

7.3.1 Single – Level Directory

The simplest directory structure is the single-level directory. All files are contained in the same

directory, which is easy to support and understand. It is shown in Figure 7.4. There are certain

limitations for single-level directory:

 As all files will be in one directory, each file should have a unique name.

 If there are more users on the same system, each one of them should remember

their file names – which is difficult.

 It is not possible to group the related files together.

Figure 7.4 Single – level directory structure

7.3.2 Two – Level Directory

A solution to the problems faced with single-level directory is to create a separate directory for each

user. In the two-level directory structure, each user has his/her own user file directory (UFD). Each

UFD has a similar structure, but lists only the files of a single user.

When a user job starts or a user logs in, the system's master file directory (MFD) is searched. The

MFD is indexed by user name or account number, and each entry points to the UFD for that user. Two

– level directory is shown in Figure 7.5.

When a user refers to a particular file, only his own UFD is searched. Thus, different users may have

files with the same name, as long as all the file names within each UFD are unique.

Figure 7.5 Two – level directory structure

19 | P a g e

7.3.3 Tree – Structured Directories

The generalization of two-level directory is a tree structure. Here, users can have any number of

directories and sub-directories and files inside each directory as shown in Figure 7.6. Tree – structure

is a most common directory structure applied in almost all OS.

Here, every file has a path name. Path names can be of two types: absolute and relative. An absolute

path name is a sequence of directory names starting from root to file name. A relative path name

defines a path from current directory. For example, in the tree-structured file system of Figure 7.6, if

the current directory is root/spell/mail, then the relative path name prt/first refers to the same file as

does the absolute path name root/spell/mail/prt/first.

7.3.4 Acyclic – Graph Directories

A tree structure prohibits the sharing of files or directories. An acyclic graph allows directories to have

shared subdirectories and files (Figure 7.7). The same file or subdirectory may be in two different

directories. This is useful when more than one programmers are working on a same project and need to

share the files.

