
Page 1 of 7

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test - III

Sub: Software Testing and Practices Code: 16MCA43

Date: 23.05.2018 Duration: 90 mins Max Marks: 50 Sem: IV Branch: MCA

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1 Briefly explain about functional testing and structural testing. [10] CO1 L4

OR

Explain about quality attributes. Differentiate between testing and debugging. [5+5] CO2 L1

2 Generate the BOR – Constraint set and construct an abstract syntax tree of predicate
Pr=(a+b)<c^!Pv(r>s). Write an algorithm to generate a minimal BOR – constraint set from
an abstract syntax tree of a predicate Pr.

[10] CO3 L1

OR

Discuss the six basic principles of software testing [10] CO1 L2

3 State and explain the data flow diagram for the triangle problem [10] CO1 L4

OR

Describe about SATM screens with the problem statement. [10] CO4 L2

4 Explain Boundary Value Analysis with an example [10] CO1 L2

OR

Define decision table and explain with an example [10] CO2 L1

5 Explain about mutation analysis and fault based adequacy criteria [10] CO2 L2

OR

Explain ‘self-checks as oracles’ and ‘capture and replay’. [10] CO1 L4

1. A. Briefly explain about functional testing and structural testing.

Structural and functional testing differences:

Page 2 of 7

B. Explain about quality attributes. Differentiate between testing and debugging.

Static quality attributes: structured, maintainable, testable code as well as the availability of correct and complete documentation.
Dynamic quality attributes: software reliability, correctness, completeness, consistency, usability, and performance
Reliability is a statistical approximation to correctness, in the sense that 100% reliability is indistinguishable from correctness.
Roughly speaking, reliability is a measure of the likelihood of correct function for some “unit” of behavior, which could be a single
use or program execution or a period of time.
Correctness will be established via requirement specification and the program text to prove that software is behaving as expected.
Though correctness of a program is desirable, it is almost never the objective of testing. To establish correctness via testing would
imply testing a program on all elements in the input domain. In most cases that are encountered in practice, this is impossible to
accomplish. Thus correctness is established via mathematical proofs of programs. While correctness attempts to establish that the
program is error free, testing attempts to find if there are any errors in it. Thus completeness of testing does not necessarily
demonstrate that a program is error free.
Completeness refers to the availability of all features listed in the requirements, or in the user manual. Incomplete software is one
that does not fully implement all features required.
Consistency refers to adherence to a common set of conventions and assumptions. For example, all buttons in the user interface
might follow a common color coding convention. An example of inconsistency would be when a database application displays the
date of birth of a person in the database.
Usability refers to the ease with which an application can be used. This is an area in itself and there exist techniques for usability
testing. Psychology plays an important role in the design of techniques for usability testing.

Performance refers to the time the application takes to perform a requested task. It is considered as a non-

functional requirement. It is specified in terms such as ``This task must be performed at the rate of X units of

activity in one second on a machine running at speed Y, having Z gigabytes of memory."

2. A. Generate the BOR – Constraint set and construct an abstract syntax tree of predicate Pr=(a+b)<c^!Pv(r>s).

Write an algorithm to generate a minimal BOR – constraint set from an abstract syntax tree of a predicate Pr.

 B. Discuss the six basic principles of software testing

The six basic principles of software testing are:

• General engineering principles:
– Partition: divide and conquer
– Visibility: making information accessible
– Feedback: tuning the development process

Page 3 of 7

• Specific A&T principles:
– Sensitivity: better to fail every time than sometimes
– Redundancy: making intentions explicit
– Restriction: making the problem easier

Partition: Hardware testing and verification problems can be handled by suitably partitioning the input space
Visibility: The ability to measure progress or status against goals. X visibility = ability to judge how we are doing on X, e.g., schedule
visibility = “Are we ahead or behind schedule,” quality visibility = “Does quality meet our objectives?”
Feedback: The ability to measure progress or status against goals
X visibility = ability to judge how we are doing on X, e.g., schedule visibility = “Are we ahead or behind schedule,” quality visibility =
“Does quality meet our objectives?”
Sensitivity: A test selection criterion works better if every selected test provides the same result, i.e., if the program fails with one of the
selected tests, it fails with all of them (reliable criteria). Run time deadlock analysis works better if it is machine independent, i.e., if the
program deadlocks when analyzed on one machine, it deadlocks on every machine
Redundancy: Redundant checks can increase the capabilities of catching specific faults early or more efficiently.
e.g, Static type checking is redundant with respect to dynamic type checking, but it can reveal many type mismatches earlier and more
efficiently.
Restriction: Suitable restrictions can reduce hard (unsolvable) problems to simpler (solvable) problems

3. A. State and explain the data flow diagram for the triangle problem

 B. Describe about SATM screens with the problem statement.

The SATM system communicates with bank customers via the 15 screens shown in Figure 2.4. Using a terminal with
features as shown in Figure 2.3, SATM customers can select any of three transaction types: deposits, withdrawals, and
balance inquiries. For simplicity, these transactions can only be done on a checking account. When a bank customer
arrives at an SATM station, screen 1 is displayed. The bank customer accesses the SATM system with a plastic card
encoded with a personal account number (PAN), which is a key to an internal customer account file, containing, among
other things, the customer’s name and account information. If the customer’s PAN matches the information in the
customer account file, the system presents screen 2 to the customer. If the customer’s PAN is not found, screen 4 is
displayed, and the card is kept. At screen 2, the customer is prompted to enter his or her personal identification number
(PIN). If the PIN is correct (i.e., matches the information in the customer account file), the system displays screen 5;
otherwise, screen 3 is displayed. The customer has three chances to get the PIN correct; after three failures, screen 4 is
displayed, and the card is kept. On entry to screen 5, the customer selects the desired transaction from the options shown

Page 4 of 7

on screen. If balance is requested, screen 14 is then displayed. If a deposit is requested, the status of the deposit envelope
slot is determined from a field in the terminal control file. If no problem is known, the system displays screen 7 to get the
transaction amount. If a problem occurs with the deposit envelope slot, the system displays screen 12. Once the deposit
amount has been entered, the system displays screen 13, accepts the deposit envelope, and processes the deposit. The
system then displays screen 14. If a withdrawal is requested, the system checks the status (jammed or free) of the
withdrawal chute in the terminal control file. If jammed, screen 10 is displayed; otherwise, screen 7 is displayed so the
customer can enter the withdrawal amount. Once the withdrawal amount is entered, the system checks the terminal
status file to see if it has enough currency to dispense. If it does not, screen 9 is displayed; otherwise, the withdrawal is
processed. The system checks the customer balance (as described in the balance request transaction); if the funds in the
account are insufficient, screen 8 is displayed. If the account balance is sufficient, screen 11 is displayed and the money is
dispensed. The balance is printed on the transaction receipt as it is for a balance request transaction. After the cash has
been removed, the system displays screen 14. When the “No” button is pressed in screens 10, 12, or 14, the system
presents screen 15 and returns the customer’s ATM card. Once the card is removed from the card slot, screen 1 is
displayed. When the “Yes” button is pressed in screens 10, 12, or 14, the system presents screen 5 so the customer can

select additional transactions.

4. A. Explain Boundary Value Analysis with an example

5. BVA test case for two variables functions

6. In the general application of Boundary Value Analysis can be done in a uniform manner.

7. The basic form of implementation is to maintain all but one of the variables at their

8. nominal (normal or average) values and allowing the remaining variable to take on its

9. extreme values. The values used to test the extremities are:

10. •Min ------------------------------------ - Minimal

11. •Min+ ------------------------------------ - Just above Minimal

12. •Nom ------------------------------------ - Average

Page 5 of 7

13. •Max- ------------------------------------ - Just below Maximum

14. •Max ------------------------------------ - Maximum

15.

16.
17. Limitations of BVA

18. Boundary Value Analysis works well when the Program Under Test (PUT) is a “function of several

independent variables that represent bounded physical quantities” [1]. When these conditions are

met BVA works well but when they are not we can find deficiencies in the results. For example the

NextDate problem, where Boundary Value Analysis would place an even testing regime equally

over the range, tester’s intuition

19. and common sense shows that we require more emphasis towards the end of February or on leap

years.

20. The reason for this poor performance is that BVA cannot compensate or take into consideration

the nature of a function or the dependencies between its variables. This lack of intuition or

understanding for the variable nature means that BVA can be seen as quite rudimentary.

 B. Define decision table and explain with an example

RULES R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

 C1: a < b + c F T T T T T T T T T T

 C2 : b < a + c - F T T T T T T T T T

Conditions
C3 : c < a + b - - F T T T T T T T T

C4 : a = b - - - T T T T F F F F

 C5 : a = c - - - T T F F T T F F

 C6 : b = c - - - T F T F T F T F

 a1 : Not a triangle X X X

 a2 : Scalene triangle X

Actions a3 : Isosceles triangle X X X

 a4 : Equilateral triangle X

 a5 : Impossible X X X

Page 6 of 7

5. a. Explain about mutation analysis and fault based adequacy criteria

Fault Based Testing: Terminology Original program: The program unit (e.g., C function or Java class) to be

tested. Program location: A region in the source code. The precise definition is defined relative to the syntax

of a particular programming language. Typical locations are statements, arithmetic and boolean expressions,

and procedure calls. Alternate expression: Source code text that can be legally substituted for the text at a

program location. A substitution is legal if the resulting program is syntactically correct (i.e., it compiles

without errors). Alternate program: A program obtained from the original program by substituting an

alternate expression for the text at some program location. Distinct behavior of an alternate program R for a

test t: The behavior of an alternate program R is distinct from the behavior of the original program P for a

test t, if R and P produce a different result for t, or if the output of R is not defined for t. Distinguished set of

alternate programs for a test suite T: A set of alternate programs are distinct if each alternate program in the

set can be distinguished from the original program by at least one test in T.

Mutation Analysis: Terminology Original program under test: The program or procedure (function) to be

tested. Mutant: A program that differs from the original program for one syntactic element, e.g., a statement,

a condition, a variable, a label, etc. Distinguished mutant: A mutant that can be distinguished for the original

program by executing at least one test case. Equivalent mutant: A mutant that cannot be distinguished from

the original program. Mutation operator: A rule for producing a mutant program by syntactically modifying

the original program.

Page 7 of 7

b. Explain ‘self-checks as oracles’ and ‘capture and replay’.
SELF-CHECKS AS ORACLES

 An oracle can also be written as self checks
-Often possible to judge correctness without predicting results.

 Typically these self checks are in the form of assertions, but designed to be checked during execution.
 It is generally considered good design practice to make assertions and self checks to be free of side effects on program state.

 Self checks in the form of assertions embedded in program code are useful primarily for checking module and subsystem-level
specification rather than all program behaviour.

 Devising the program assertions that correspond in a natural way to specifications poses two main challenges:

Bridging the gap between concrete execution values and abstractions used in specification
Dealing in a reasonable way with quantification over collection of values
Structural invariants are good candidates for self checks implemented as assertions

 They pertain directly to the concrete data structure implementation

 It is sometimes straight-forward to translate quantification in a specification statement into iteration in a program assertion

 A run time assertion system must manage ghost variables

 They must retain “before” values

 They must ensure that they have no side effects outside assertion checking

 Advantages:
-Usable with large, automatically generated test suites.

 Limits:

-often it is only a partial check. -recognizes many or most failures, but not all.

CAPTURE AND REPLAY

 Sometimes it is difficult to either devise a precise description of expected behaviour or adequately characterize correct behaviour for
effective self checks.
Example: even if we separate testing program functionally from GUI, some testing of the GUI is required.

 If one cannot completely avoid human involvement test case execution, one can at least avoid unnecessary repetition of this cost and
opportunity for error.

 The principle is simple:
The first time such a test case is executed, the oracle function is carried out by a human, and the interaction sequence is captured.
Provided the execution was judged (by human tester) to be correct, the captured log now forms an (input, predicted output) pair for
subsequent automated testing.

 The savings from automated retesting with a captured log depends on how many build-and-test cycles we can continue to use it,
before it is invalidated by some change to the program.

 Mapping from concrete state to an abstract model of interacting sequences is some time possible but is generally quite limited.

