
CM
RIT

 L
ib

ra
ry

CM
RIT

 L
ib

ra
ry

1. a. i. (41) base 10=(101001) base 2

2) 41 1

2)20 0

2)10 0

2)5 1

2)2 0

 1

ii. (0.6875) base 10=(0.1011) base 2

0.6875 * 2 = 1.3750 -> 1

0.3750 * 2 = 0.7500 -> 0

0.7500 * 2 = 1.5000 -> 1

0.5000 * 2 = 1.0000 -> 1

iii. (10110001101011) base 2=(2C6B) base 16

0010 1100 1001 1011

 2 C 6 B

iv. (B65F) base 16=(46687) base 10

 B * 163 + 6 * 162 + 5 * 161 + F * 160

= 45056 + 1536 + 80 + 5

= 46687

v. (306.D) base 16 = (001100000110.1101) base 2

3 -> 0011, 0 -> 0000, 6 -> 0110, D -> 1101

b. i. 72532 - 3250 using 10's complement

10's complement of 03250 is (100000-03250) = 96750

72532 + 96750 = 169282, discard the MSB and the answer is 69282

ii. 1010100 – 1000011 using 2's complement

2's complement of 1000011 is 0111101

1010100 + 0111101 = 10010001, discard the MSB and the answer is 0010001

2. a. i. Closure A set S is closed with respect to a binary operator if, for every pair of

elements of S, the binary operator specifies a rule for obtaining a unique element of

S.

 Example: The set of natural numbers N= {1, 2, 3, 4, ...} is closed with respect

to the binary operator plus (+) by the rules of arithmetic addition, since a,

b∈N we obtain a unique c∈N by the operation a+b= c

ii. Associate A binary operator * on a set S is said to be associative whenever

 (x* y) * z= x* (y* z) for all x, y, z∈S

iii. Commutative A binary operator * on a set S is said to be commutative whenever

 x* y= y* x for all x, y∈S

iv. Identity A set S is said to have an identity element with respect to a binary operation *

 on S if there exists an element e ∈S with the property e* x= x* e = x

for any x∈S

 example:The element 0 is an identity element with respect to operation + on

 the set of integers I= {..., -3, -2, -1, 0, 1, 2, 3, ...} since x+ 0 = 0 + x for any

x∈I

v. Inverse A set S having the identity element e with respect to a binary operator * is

said to have an inverse whenever, for every x∈S, there exists an element y∈S

such that x* y= e

vi. Distributive If * and ⋅ are two binary operators on a set S, * is said to be distributiveover ⋅

 whenever x* (y⋅z) = (x* y) ⋅(x* z)

b. F = A+B'C

A = A(B+B')

= AB + AB'

= AB(C+C') + AB'(C+C')

= ABC + ABC' + AB'C + AB'C'

B'C = B'C(A+A')

= AB'C + A'B'C

F = A+B'C

= ABC+ABC'+AB'C+AB'C'+AB'C+A'B'C

= ABC+ABC'+AB'C+AB'C'+A'B'C

F(A, B, C) = ∑(1,4,5,6,7)

c. f(w,x,y,z) = ∑(0,1,2,4,6,8,9,12,13,14)

1 1 1

1 1

1 1 1

1 1

g1 = wxy'z' + wxy'z + wx'y'z' + wx'y'z

= wy'z(x+x') + wy'z(x+x')

= wy'(z+z')

wy'

g2 = w'x'y'z' + w'xy'z' + w'x'yz' + w'xyz'

= w'x'z'(y+y') + w'xz'(y+y')

=w'z'(x+x')

=w'z'

g3 = w'xyz' + wxyz'

= xyz'(w+w')

xyz'

g4 = w'x'y'z' + w'x'y'z

= w'x'y'

f(w,x,y,z) = wy'+w'z'+xyz'+w'x'y'

3. a. i.

ii.

b. Half adder is a combinational arithmetic circuit that adds two numbers and produces a sum bit (S)

and carry bit (C) as the output. If A and B are the input bits, then sum bit (S) is the X-OR of A and

B and the carry bit (C) will be the AND of A and B. From this it is clear that a half adder circuit can

be easily constructed using one X-OR gate and one AND gate. Half adder is the simplest of all

adder circuit, but it has a major disadvantage. The half adder can add only two input bits (A and B)

and has nothing to do with the carry if there is any in the input. So if the input to a half adder have a

carry, then it will be neglected it and adds only the A and B bits. That means the binary addition

process is not complete and that’s why it is called a half adder. The truth table, schematic

representation and XOR//AND realization of a half adder are shown in the figure below.

c. The

multipl
exer,
shorte

ned to

“MUX

” or

“MPX

”, is a

combi

nation

al logic circuit designed to switch one of several input lines through to a single common output line

by the application of a control signal. Multiplexers operate like very fast acting multiple position

rotary switches connecting or controlling multiple input lines called “channels” one at a time to the

output.

Multiplexers, or MUX’s, can be either digital circuits made from high speed logic gates used to

switch digital or binary data or they can be analogue types using transistors, MOSFET’s or relays to

switch one of the voltage or current inputs through to a single output.

Circuit Diagram and Truth Table of 4x1 MUX

Block Diagram of 4x1 MUX

4. a. The SR flip – flop is one of the fundamental parts of the sequential circuit logic. SR flip – flop is

a memory device and a binary data of 1 – bit can be stored in it. SR flip – flop has two stable states

in which it can store data in the form of either binary zero or binary one. Like all flip – flops, an SR

flip – flop is also an edge sensitive device.

SR flip – flop is one of the most vital components in digital logic and it is also the most basic

sequential circuit that is possible. The S and R in SR flip – flop means ‘SET’ and ‘RESET’

respectively. Hence it is also called Set – Reset flip – flop. The symbolic representation of the SR

Flip Flop is shown below.

Working

SR flip – flop works during the transition of clock pulse either from low – to – high or from high – to

– low (depending on the design) i.e. it can be either positive edge triggered or negative edge

triggered.

For a positive edge triggered SR flip – flop, suppose, if S input is at high level (logic 1) and R input is

at low level (logic 0) during a low – to – high transition on clock pulse, then the SR flip – flop is said

to be in SET state and the output of the SR flip – flop is SET to

1. For the same clock situation, if the R input is at high level (logic 1) and S input is at low level

(logic 0), then the SR flip – flop is said to be in RESET state and the output of the SR flip – flop is

RESET to 0.

The SR flip – flops can be designed by using logic gates like NOR gates as discussed below

b. A decoder is a circuit that changes a code into a set of signals. It is called a decoder because it

does the reverse of encoding, but we will begin our study of encoders and decoders with decoders

because they are simpler to design.

A common type of decoder is the line decoder which takes an n-digit binary number and decodes it

into 2n data lines. The simplest is the 1-to-2 line decoder.

3x8 line decoder

 A B C | R0 R1 R2 R3 R4 R5

R6 R7

---------------+---

0 0 0 | 1 0 0 0 0 0 0 0

0 0 1 | 0 1 0 0 0 0 0 0

0 1 0 | 0 0 1 0 0 0 0 0

0 1 1 | 0 0 0 1 0 0 0 0

1 0 0 | 0 0 0 0 1 0 0 0

1 0 1 | 0 0 0 0 0 1 0 0

1 1 0 | 0 0 0 0 0 0 1 0

1 1 1 | 0 0 0 0 0 0 0 1

5. a.

1. Input: This is the process of entering data and programs in to the computer system. You should

know that computer is an electronic machine like any other machine which takes as inputs raw data

and performs some processing giving out processed data. Therefore, the input unit takes data from

us to the computer in an organized manner for processing.

2. Storage: The process of saving data and instructions permanently is known as storage. Data has

to be fed into the system before the actual processing starts. It is because the processing speed of

Central Processing Unit (CPU) is so fast that the data has to be provided to CPU with the same

speed. Therefore the data is first stored in the storage unit for faster access and processing. This

storage unit or the primary storage of the computer system is designed to do the above

functionality. It provides space for storing data and instructions.

The storage unit performs the following major functions:

 All data and instructions are stored here before and after processing.

 Intermediate results of processing are also stored here.

3. Processing: The task of performing operations like arithmetic and logical operations is called

processing. The Central Processing Unit (CPU) takes data and instructions from the storage unit

and makes all sorts of calculations based on the instructions given and the type of data provided. It

is then sent back to the storage unit.

4. Output: This is the process of producing results from the data for getting useful information.

Similarly the output produced by the computer after processing must also be kept somewhere inside

the computer before being given to you in human readable form. Again the output is also stored

inside the computer for further processing.

5. Control: The manner how instructions are executed and the above operations are performed.

Controlling of all operations like input, processing and output are performed by control unit. It takes

care of step by step processing of all operations inside the computer.

FUNCTIONAL UNITS

In order to carry out the operations mentioned in the previous section the computer allocates the

task between its various functional units. The computer system is divided into three separate units

for its operation. They are

1) arithmetic logical unit

2) control unit.

3) central processing unit.

Arithmetic Logical Unit

Logical Unit :After you enter data through the input device it is stored in the primary storage unit.

The actual processing of the data and instruction are performed by Arithmetic Logical Unit. The

major operations performed by the ALU are addition, subtraction, multiplication, division, logic and

comparison. Data is transferred to ALU from storage unit when required. After processing the

output is returned back to storage unit for further processing or getting stored.

Control Unit (CU)

The next component of computer is the Control Unit, which acts like the supervisor seeing that

things are done in proper fashion. Control Unit is responsible for co ordinating various operations

using time signal. The control unit determines the sequence in which computer programs and

instructions are executed. Things like processing of programs stored in the main memory,

interpretation of the instructions and issuing of signals for other units of the computer to execute

them. It also acts as a switch board operator when several users access the computer

simultaneously. Thereby it coordinates the activities of computer’s peripheral equipment as they

perform the input and output.

Central processing unit

The ALU and the CU of a computer system are jointly known as the central processing unit. You

may call CPU as the brain of any computer system. It is just like brain that takes all major decisions,

makes all sorts of calculations and directs different parts of the computer functions by activating and

controlling the operations.

b. Big Endian

In big endian, you store the most significant byte in the smallest address. Here's how it would look:

Address Value

1000 90

1001 AB

1002 12

1003 CD

Little Endian

In little endian, you store the least significant byte in the smallest address. Here's how it would look:

Address Value

1000 CD

1001 12

1002 AB

1003 90

Notice that this is in the reverse order compared to big endian. To remember which is which, recall

whether the least significant byte is stored first (thus, little endian) or the most significant byte is

stored first (thus, big endian).

Notice I used "byte" instead of "bit" in least significant bit. I sometimes abbreciated this as LSB and

MSB, with the 'B' capitalized to refer to byte and use the lowercase 'b' to represent bit. I only refer

to most and least significant byte when it comes to endianness.

c.

6.

a.

The

Con

diti

on

Cod

e

regi

ster

con

tain

s:

•

Fiv

e

flag

or

stat

us

indi

cat

ors C, H, N, Z, V

• Two interrupt masking bits X, I

• STOP instruction control bit S

The five condition flags are:

• Carry/borrow Flag (C)

• Negativeor Sign Flag(N)

• Zero Flag (Z)

• Overflow Flag (V)

• Half carry Flag (H)

The Flags are either Clear (0) or Set (1)

The bit positions in the CCR are

C Status or Carry Flag

The C bit is set when a carry occurs during addition or a borrow occurs

during subtraction.

N Status, Negative or Sign Flag

The N bit shows the state of the MSB of the result. N is most commonly used in two’s complement

arithmetic, where the MSB of a negative number is 1 and the MSB of a positive number is 0, but it

has

other uses. When the MSB of the result of an operation is a 1, then this flag will be set to a 1-

otherwise it will be set to a zero

Z Status or Zero Flag

The Z bit is set to a 1 when the result of an operation is zero (all bits are 0) otherwise it will be set

to a zero.

V Status or Overflow Flag

The V bit is set when two’s complement overflow occurs as a result of an

operation. The V flag is set when the carry out from the most significant bit and the carry in to the

most significant bit differ as a result of an arithmetic operation.

V = (Carry In toMSB) ExOR (Carry Out from MSB)

H Status or Half Carry Flag

The H bit indicates a carry from accumulator A (or B) bit 3 during an addition operation. And is

often used to correct BCD format. H is updated only by the add accumulator A to accumulator B

(ABA), add without carry (ADD), and add with carry (ADC) instructions.

b. The term addressing modes refers to the way in which the operand of an instruction is specified.
Information contained in the instruction code is the value of the operand or the address of the
result/operand. Following are the main addressing modes that are used on various platforms and
architectures.

1) Immediate Mode

The operand is an immediate value is stored explicitly in the instruction:

Example: SPIM (opcode dest, source)

li $11, 3 // loads the immediate value of 3 into register $11

li $9, 8 // loads the immediate value of 8 into register $9

Example : (textbook uses instructions type like, opcode source, dest)

move #200, R0; // move immediate value 200 in register R0

2) Index Mode

The address of the operand is obtained by adding to the contents of the general register (called index
register) a constant value. The number of the index register and the constant value are included in the
instruction code. Index Mode is used to access an array whose elements are in successive memory
locations. The content of the instruction code, represents the starting address of the array and the value
of the index register, and the index value of the current element. By incrementing or decrementing
index register different element of the array can be accessed.

Example: SPIM/SAL - Accessing Arrays

.data

array1: .byte 1,2,3,4,5,6

.text

__start:

move $3, $0 # $3 initialize index register with 0

add $3, $3,4 # compute the index value of the fifth element

sb $0, array1($3) # array1[4]=0

 # store byte 0 in the fifth element of the array

 # index addressing mode

done

3) Indirect Mode

The effective address of the operand is the contents of a register or main memory location, location
whose address appears in the instruction. Indirection is noted by placing the name of the register or the
memory address given in the instruction in parentheses. The register or memory location that contains
the address of the operand is a pointer. When an execution takes place in such mode, instruction may be
told to go to a specific address. Once it's there, instead of finding an operand, it finds an address where
the operand is located.

NOTE:

Two memory accesses are required in order to obtain the value of the operand (fetch operand address
and fetch operand value).

Example: (textbook) ADD (A), R0

(address A is embedded in the instruction code and (A) is the operand address = pointer variable)

Example: SPIM - simulating pointers and indirect register addressing

The following "C" code:

int *alpha=0x00002004, q=5;

*alpha = q;

could be translated into the following assembly code:

alpha: .word 0x00002004 # alpha is and address variable # address value is

0x00002004

q: .word 5

....

lw $10,q # load word value from address q in into $10

 # $10 is 5

lw $11,alpha # $11 gets the value 0x0002004

 # this is similar with a load immediate address value

sw $10,($11) # store value from register $10 at memory location

 # whose address is given by the contents of register $11

 # (store 5 at address 0x00002004)

Example: SPIM/SAL - - array pointers and indirect register addressing

.data

array1: .byte 1,2,3,4,5,6

.text

__start:

la $3, array1 # array1 is direct addressing mode

add $3, $3,4 # compute the address of the fifth element

sb $0, ($3) # array1[4]=0 , byte accessing

 # indirect addressing mode

done

4) Absolute (Direct) Mode

The address of the operand is embedded in the instruction code.

Example: (SPIM)

beta: .word 2000

lw $11, beta # load word (32 -bit quantity) at address beta into register $11

 # address of the word is embedded in the instruction code

 # (register $11 will receive value 2000)

5) Register Mode

The name (the number) of the CPU register is embedded in the instruction. The register contains the
value of the operand. The number of bits used to specify the register depends on the total number of
registers from the processor set.

Example (SPIM)

add $14,$14,$13 # add contents of register $13 plus contents of

 # register $14 and save the result in register $14

No memory access is required for the operand specified in register mode.

6) Displacement Mode

Similar to index mode, except instead of a index register a base register will be used. Base register
contains a pointer to a memory location. An integer (constant) is also referred to as a displacement. The
address of the operand is obtained by adding the contents of the base register plus the constant. The
difference between index mode and displacement mode is in the number of bits used to represent the
constant. When the constant is represented a number of bits to access the memory, then we have index

mode. Index mode is more appropriate for array accessing; displacement mode is more appropriate for
structure (records) accessing.

Example: SPIM/SAL - Accessing fields in structures

.data

student: .word 10000 #field code

.ascii "Smith" #field name

.byte # field test

.byte 80,80,90,100 # fields hw1,hw2,hw3,hw4

.text

__start:

la $3, student # load address of the structure in $3

 # $3 base register

add $17,$0,90 # value 90 in register $17

 # displacement of field "test" is 9 bytes

 #

sb $17, 9($3) # store contents of register $17 in field "test"

 # displacement addressing mode

done

7) Autoincrement /Autodecrement Mode

A special case of indirect register mode. The register whose number is included in the instruction code,
contains the address of the operand. Autoincrement Mode = after operand addressing , the contents of
the register is incremented. Decrement Mode = before operand addressing, the contents of the register is
decrement.

Example: SPIM/SAL - - simulating autoincrement/autodecrement addressing mode

(MIPS has no autoincrement/autodecrement mode)

lw $3, array1($17) #load in reg. $3 word at address array1($17)

addi $17,$17,4 #increment address (32-bit words) after accessing

 #operand this can be re-written in a "autoincrement like

mode":

lw+ $3,array1($17) # lw+ is not a real MIPS instruction

subi $17,$17,4 # decrement address before accessing the operand

lw $3,array1($17)

7. a. Assembler directives are instructions that direct the assembler to do something

Directives do many things; some tell the assembler to set aside space for variables, others tell the

assembler to include additional source files, and others establish the start address for your program.

The directives available are shown below:

=

Assigns a value to a symbol (same as EQU)

EQU

Assigns a value to a symbol (same as =)

ORG

Sets the current origin to a new value. This is used to set the program or register address during

assembly. For example, ORG 0100h tells the assembler to assemble all subsequent code starting at

address 0100h.

DS

Defines an amount of free space. No code is generated. This is sometimes used for allocating variable

space.

ID

Sets the PIC’s identification bytes. PIC16C5x chips have two ID bytes, which can be set to a 2-byte

value. Newer PICs have four 7-bit ID locations, which can be filled with a 4-character text string.

INCLUDE

Loads another source file during assembly. This allows you to insert an additional source file into

your code during assembly. Included source files usually contain common routines or data. By using

an INCLUDE directive at the beginning of your program, you can avoid re-typing common

information. Included files may not contain other included files. NOTE: The Device Include directive

(i.e. INCLUDE 'C:\PicTools\16F877.inc') for the targeted device MUST be at the beginning of

your source code.

FUSES

NOTE that FUSE CONFIGURATIONs can be '&' together on a single line and/or spread between

multiple lines. ALL FUSES directives are ANDed together to create the composite FUSE

CONFIGURATION. (view the device "include" file for specific fuse syntax)

IF <expression>

Assembles code if expression evaluates to TRUE.

IFNOT <expression>

Assembles code if expression evaluates to FALSE.

ELSE

Assembles code if preceeding evaluation is rejected.

ENDIF

Ends conditional evaluation.

RESET

Sets the reset start address. This address is where program execution will start following a reset. A

jump to the given address is inserted at the last location in memory. After the PIC is reset, it starts

executing code at the last location, which holds the jump to the given address. RESET is only

available for PIC16C5x chips.

EEORG

Sets the current data EEPROM origin to a new value. This is used to set the data EEPROM address

during assembly. This directive usually precedes EEDATA. EEORG is only available for PICs that

have EEPROM memory .

EEDATA

Loads data EEPROM with given values. This provides a means of automatically storing values in the

data EEPROM when the PIC is programmed. This is handy for storing configuration or start-up

information. EEDATA is only available for PICs that have EEPROM memory.

b. Shift Instructions

The result of performing an n position right logical shift on a binary number containing m digits is

obtained by:

1. Removing the RIGHTMOST n digits from the original number

2. Shifting the remaining digits n positions to the right

3. Placing n zeros to the left of the resulting number

For example, performing a three position, right logical shift on

the number 10110001 results in:

BEFORE: 1 0 1 1 0 0 0 1

AFTER: 0 0 0 1 0 1 1 0

A left shift is performed in a similar manner.

Performing a three position, left logical shift on the number

10110001 results in:

BEFORE: 1 0 1 1 0 0 0 1

AFTER: 1 0 0 0 1 0 0 0

Shift Left Logical

Format: label SLL R,D(B)

The content of the register specified by R are shifted to the left depending on the rightmost six bits

of the calculated D(B) address.

The condition code is not altered.

The digits that are shifted off are lost.

Suppose that register 7 has the value 0F 0F 0F 0F. Execution of:

 SLL R7,2

 0 F 0 F 0 F 0 F

BEFORE: 0000 1111 0000 1111 0000 1111 0000 1111

AFTER: 0011 1100 0011 1100 0011 1100 0011 1100

 3 C 3 C 3 C 3 C

will change the contents of register 7 to 3C 3C 3C 3C.

Suppose that register 7 has the value 0F 0F 0F 0F and that

register 2 has the value 00 00 00 05. Execution of:

 SLL R7,0(R2)

0(R2) = 0 + 000005 = 000005

The rightmost 6 bits of 0(R2) are 000101. When converted to

decimal this is 5.

 0 F 0 F 0 F 0 F

BEFORE: 0000 1111 0000 1111 0000 1111 0000 1111

AFTER: 1110 0001 1110 0001 1110 0001 1110 0000

 E 1 E 1 E 1 E 0

will change the contents of register 7 to E1 E1 E1 E0.

Shift Right Logical

Format: label SRL R,D(B)

The content of the register specified by R are shifted to the right depending on the rightmost six bits

of the calculated D(B) address.

The condition code is not altered.

The digits that are shifted off are lost.

Suppose that register 7 has the value 0F 0F 0F 0F. Execution of:

 SRL R7,6

 0 F 0 F 0 F 0 F

BEFORE: 0000 1111 0000 1111 0000 1111 0000 1111

AFTER: 0000 0000 0011 1100 0011 1100 0011 1100

 0 0 3 C 3 C 3 C

will change the contents of register 7 to 00 3C 3C 3C.

Suppose that register 7 has the value 0F 0F 0F 0F and that

register 2 has the value 00 00 00 05. Execution of:

 SRL R7,0(R2)

0(R2) = 0 + 000005 = 000005

The rightmost 6 bits of 0(R2) are 000101. When converted to

decimal this is 5.

 0 F 0 F 0 F 0 F

BEFORE: 0000 1111 0000 1111 0000 1111 0000 1111

AFTER: 0000 0000 0111 1000 0111 1000 0111 1000

 0 0 7 8 7 8 7 8

will change the contents of register 7 to 00 78 78 78.

8. a.

Accessing I/O Devices

• Most modern computers use single bus arrangement for connecting I/O devices to CPU & Memory

• The bus enables all the devices connected to it to exchange information exchange information

• Bus consists of 3 set of lines : Address, Data, Control

• Processor places a particular address (unique for an I/O Dev.) on address lines

• Device which recognizes this address responds to the commands issued on the Control lines

commands issued on the Control lines

• Processor requests for either Read / Write

• The data will be placed on Data lines

Hardware to connect I/O devices to bus

•Interface Circuit

–Address Decoder

–Control Circuits

–Control Circuits

–Data registers

–Status registers

•The Registers in I/O Interface – buffer and control

•Flags in Status Registers like SIN SOUT

•Flags in Status Registers, like SIN, SOUT

•Data Registers, like Data-IN, Data-OUT

b.

9.

a.

b.

Ran

do

m-

acc

ess

me

mor

y is

a

for

m

of

co

mp

ute

r

dat

a

sto

rag

e which

stores

frequen

tly

used

progra

m

instruc

tions

to

increas

e the

general

speed of a system. A random-access memory device allows data items to be read or written in almost

the same amount of time irrespective of the physical location of data inside the memory. In contrast,

with other direct-access data storage media such as hard disks, CD-RWs, DVD-RWs and the older

drum memory, the time required to read and write data items varies significantly depending on their

physical locations on the recording medium, due to mechanical limitations such as media rotation

speeds

and

arm

movem

ent.

10. a.

ROM

stands

for

Read

Only

Memory

. The

memory

from

which

we can

only

read

but

cannot

write

on

it.

This

type

of

memor

y is

non-

volat

ile.

The

infor

matio

n is

store

d

perma

nentl

y in

such

memor

ies

durin

g

manuf

actur

e. A

ROM, stores such instructions that are required to start a computer. This operation

is referred to as bootstrap. ROM chips are not only used in the computer but also

in other electronic items like washing machine and microwave oven.

Following are the various types of ROM

MROM (Masked ROM)

The very first ROMs were hard-wired devices that contained a pre-programmed set of data or

instructions. These kind of ROMs are known as masked ROMs which are inexpensive.

PROM (Programmable Read only Memory)

PROM is read-only memory that can be modified only once by a user. The user buys a blank PROM

and enters the desired contents using a PROM program. Inside the PROM chip there are small fuses

which are burnt open during programming. It can be programmed only once and is not erasable.

EPROM(Erasable and Programmable Read Only Memory)

The EPROM can be erased by exposing it to ultra-violet light for a duration of up to 40 minutes.

Usually, an EPROM eraser achieves this function. During programming, an electrical charge is

trapped in an insulated gate region. The charge is retained for more than ten years because the

charge has no leakage path. For erasing this charge, ultra-violet light is passed through a quartz

crystal window(lid). This exposure to ultra-violet light dissipates the charge. During normal use the

quartz lid is sealed with a sticker.

EEPROM(Electrically Erasable and Programmable Read Only

Memory)

The EEPROM is programmed and erased electrically. It can be erased and reprogrammed about ten

thousand times. Both erasing and programming take about 4 to 10 ms (milli second). In EEPROM,

any location can be selectively erased and programmed. EEPROMs can be erased one byte at a time,

rather than erasing the entire chip. Hence, the process of re-programming is flexible but slow.

Advantages of ROM

The advantages of ROM are as follows:

 Non-volatile in nature

 These cannot be accidentally changed

 Cheaper than RAMs

 Easy to test

 More reliable than RAMs

 These are static and do not require refreshing

 Its contents are always known and can be verified

	Working
	FUNCTIONAL UNITS
	Arithmetic Logical Unit
	Control Unit (CU)
	Central processing unit
	1) Immediate Mode
	2) Index Mode
	3) Indirect Mode
	4) Absolute (Direct) Mode
	5) Register Mode
	6) Displacement Mode
	7) Autoincrement /Autodecrement Mode

	MROM (Masked ROM)
	PROM (Programmable Read only Memory)
	EPROM(Erasable and Programmable Read Only Memory)
	EEPROM(Electrically Erasable and Programmable Read Only Memory)
	Advantages of ROM

