
CM
RIT

 L
ib

ra
ry

Answer Key –VTU QP 2016

Subject Code- 13MCA33 Subject Name: Software Engineering

Q1(a) : What are the attributes of good software?

Ans: Attributes of good Software: Good software should deliver the required functionality

and performance to the user and should be maintainable, dependable and usable.

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to

meet the changing needs of customers. This is a critical attribute

because software change is an inevitable requirement of a changing

business environment.

Dependability and

security

Software dependability includes a range of characteristics including

reliability, security and safety. Dependable software should not cause

physical or economic damage in the event of system failure.

Malicious users should not be able to access or damage the system.

Efficiency Software should not make wasteful use of system resources such as

memory and processor cycles. Efficiency therefore includes

responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is

designed. This means that it must be understandable, usable and

compatible with other systems that they use.

Q1(b)What are the key challenges faced by software engineer? Explain.

Ans: Coping with increasing diversity, demands for reduced delivery times and developing

trustworthy software are the key challenges faced by software engineer.

 General issues that affect most software:

 Heterogeneity

 Increasingly, systems are required to operate as distributed systems across

networks that include different types of computer and mobile devices.

 Business and social change

 Business and society are changing incredibly quickly as emerging economies

develop and new technologies become available. They need to be able to change

their existing software and to rapidly develop new software.

 Security and trust

 As software is intertwined with all aspects of our lives, it is essential that we can

trust that software.

Q1(c) : Explain the Professional responsibilities of a software engineer.

Ans: Software engineering involves wider responsibilities than simply the application of

technical skills. Software engineers must behave in an honest and ethically responsible way if

they are to be respected as professionals. The professional societies in the US have cooperated to

produce a code of ethical practice. The Code contains eight Principles related to the behaviour of

and decisions made by professional software engineers, including practitioners, educators,

managers, supervisors and policy makers, as well as trainees and students of the profession.

 PUBLIC - Software engineers shall act consistently with the public interest.

 2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.

 3. PRODUCT - Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.

 4. JUDGMENT - Software engineers shall maintain integrity and independence in their

professional judgment.

 5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and

maintenance.

 6. PROFESSION - Software engineers shall advance the integrity and reputation of the

profession consistent with the public interest.

 7. COLLEAGUES - Software engineers shall be fair to and supportive of their

colleagues.

 8. SELF - Software engineers shall participate in lifelong learning regarding the practice

of their profession and shall promote an ethical approach to the practice of the profession

Q2(a) Discuss the principles of agile methods.

Ans: The principles of agile methods

Principle Description

Customer involvement Customers should be closely involved throughout the development

process. Their role is provide and prioritize new system requirements

and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer

specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and

exploited. Team members should be left to develop their own ways

of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the system

to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in the

development process. Wherever possible, actively work to

eliminate complexity from the system.

Q2(b): Discuss rational unified process with a neat diagram.

Ans: The Rational Unified Process

The rational unified process is a. modern generic process derived from the work on the UML

and associated process. It brings together aspects of the 3 generic process models discussed

previously.

It normally described from 3 perspectives:

 A dynamic perspective that shows phases over time;

 A static perspective that shows process activities;

 A practive perspective that suggests good practice.

Phases in the Rational Unified Process

RUP phases

 Inception

 In this phase Software engineer establish the business case for the system.

 Elaboration

 In this phase Software engineer develop an understanding of the problem domain

and the system architecture.

 Construction

 In this phase Software engineer will concentrate on system design, programming

and testing.

 Transition

 In this phase Software engineer will deploy the system in its operating

environment.

RUP iteration

 In-phase iteration

 Each phase is iterative with results developed incrementally.

 Cross-phase iteration

 As shown by the loop in the RUP model, the whole set of phases may be enacted

incrementally.

Q2(c): Explain waterfall model with its merits and demerits.

 Ans: The waterfall model is a plan-driven model. It has separate and distinct

phases of specification and development.

 There are separate identified phases in the waterfall model:

 Requirements analysis and definition

 System and software design

 Implementation and unit testing

 Integration and system testing

 Operation and maintenance

 The main drawback of the waterfall model is the difficulty of accommodating change

after the process is underway. In principle, a phase has to be complete before moving

onto the next phase.

Waterfall model problems

 Inflexible partitioning of the project into distinct stages makes it difficult to respond to

changing customer requirements.

 Therefore, this model is only appropriate when the requirements are well-

understood and changes will be fairly limited during the design process.

 Few business systems have stable requirements.

 The waterfall model is mostly used for large systems engineering projects where a system

is developed at several sites.

 In those circumstances, the plan-driven nature of the waterfall model helps

coordinate the work.

 Q3(a): Discuss requirement engineering process with a neat diagram.

Requirements engineering processes:

 The processes used for RE vary widely depending on the application domain, the people

involved and the organisation developing the requirements.

 However, there are a number of generic activities common to all processes

 Requirements elicitation;

 Requirements analysis;

 Requirements validation;

 Requirements management.

 In practice, RE is an iterative activity in which these processes are interleaved.

A spiral view of the requirements engineering process:

Requirements elicitation and analysis is sometimes called requirements elicitation or

requirements discovery. It involves technical staff working with customers to find out about the

application domain, the services that the system should provide and the system’s operational

constraints. It may involve end-users, managers, engineers involved in maintenance, domain

experts, trade unions, etc. These are called stakeholders. Software engineers work with a range

of system stakeholders to find out about the application domain, the services that the system

should provide, the required system performance, hardware constraints, other systems, etc.

Requirement validation concerned with demonstrating that the requirements define the system

that the customer really wants. Requirements error costs are high so validation is very important

fixing a requirements error after delivery may cost up to 100 times the cost of fixing an

implementation error.

Requirements management is the process of managing changing requirements during the

requirements engineering process and system development. New requirements emerge as a

system is being developed and after it has gone into use.You need to keep track of individual

requirements and maintain links between dependent requirements so that you can assess the

impact of requirements changes. You need to establish a formal process for making change

proposals and linking these to system requirements.

 Q3(b): Explain requirements elicitation and analysis process.

 Ans : Requirements elicitation and analysis is sometimes called requirements elicitation or

requirements discovery. It involves technical staff working with customers to find out about the

application domain, the services that the system should provide and the system’s operational

constraints. It may involve end-users, managers, engineers involved in maintenance, domain

experts, trade unions, etc. These are called stakeholders. Software engineers work with a range

of system stakeholders to find out about the application domain, the services that the system

should provide, the required system performance, hardware constraints, other systems, etc.

 Stages include:

 Requirements discovery,

 Requirements classification and organization,

 Requirements prioritization and negotiation,

 Requirements specification.

 Requirements discovery

 Interacting with stakeholders to discover their requirements. Domain

requirements are also discovered at this stage.

 Requirements classification and organisation

 Groups related requirements and organises them into coherent clusters.

 Prioritisation and negotiation

 Prioritising requirements and resolving requirements conflicts.

 Requirements specification

 Requirements are documented and input into the next round of the spiral.

 Q3(c): What are the requirement validation techniques? Explain briefly.

Ans: Requirement validation concerned with demonstrating that the requirements define the

system that the customer really wants. Requirements error costs are high so validation is very

important fixing a requirements error after delivery may cost up to 100 times the cost of

fixing an implementation error.

Requirements checking: Following things should be checked for requirement:

 Validity. Does the system provide the functions which best support the customer’s

needs?

 Consistency. Are there any requirements conflicts?

 Completeness. Are all functions required by the customer included?

 Realism. Can the requirements be implemented given available budget and

technology

 Verifiability. Can the requirements be checked?

Requirements validation techniques:

 Requirements reviews: Systematic manual analysis of the requirements will be done.

 Prototyping: Using an executable model of the system will check the requirements.

 Test-case generation: Develop tests for requirements to check testability of the

requirements.

Requirements reviews:

 Regular reviews should be held while the requirements definition is being formulated.

 Both client and contractor staff should be involved in reviews.

 Reviews may be formal (with completed documents) or informal. Good communications

between developers, customers and users can resolve problems at an early stage.

Q4 (a) Explain system models with suitable examples.

Ans: System modeling is the process of developing abstract models of a system, with each model

presenting a different view or perspective of that system. System modeling has now come to

mean representing a system using some kind of graphical notation, which is now almost always

based on notations in the Unified Modeling Language (UML). System modelling helps the

analyst to understand the functionality of the system and models are used to communicate with

customers.

System perspectives: We can develop different models to represent the system from different

perspectives.

 An external perspective, where you model the context or environment of the system.

 An interaction perspective, where you model the interactions between a system and its

environment, or between the components of a system.

 A structural perspective, where you model the organization of a system or the structure of

the data that is processed by the system.

 A behavioral perspective, where you model the dynamic behavior of the system and how

it responds to events.

UML diagram types: Five diagrams that could represent the essentials of a system:

 Activity diagrams, which show the activities involved in a process or in data processing .

 Use case diagrams, which show the interactions between a system and its environment.

 Sequence diagrams, which show interactions between actors and the system and between

system components.

 Class diagrams, which show the object classes in the system and the associations between

these classes.

 State diagrams, which show how the system reacts to internal and external events.

There are different kinds of models that can be developed:

Context models:

 Context models are used to illustrate the operational context of a system - they show what

lies outside the system boundaries.

 Social and organisational concerns may affect the decision on where to position system

boundaries.

 Architectural models show the system and its relationship with other systems.

Interaction models:

 Modeling user interaction is important as it helps to identify user requirements.

 Modeling system-to-system interaction highlights the communication problems that may

arise.

 Modeling component interaction helps us understand if a proposed system structure is

likely to deliver the required system performance and dependability.

 Use case diagrams and sequence diagrams may be used for interaction modeling.

Structural models:

 Structural models of software display the organization of a system in terms of the

components that make up that system and their relationships.

 Structural models may be static models, which show the structure of the system design,

or dynamic models, which show the organization of the system when it is executing.

 You create structural models of a system when you are discussing and designing the

system architecture.

Behavioral models:

 Behavioral models are models of the dynamic behavior of a system as it is executing.

They show what happens or what is supposed to happen when a system responds to a

stimulus from its environment.

 You can think of these stimuli as being of two types:

 Data: Some data arrives that has to be processed by the system.

 Events: Some event happens that triggers system processing. Events may have

associated data, although this is not always the case.

Q4(b) : What is architectural design? Explain the repository model and client- server model with

an example for each.

Architectural design provides a very high level view of the parts of the system and how they

are related to form the whole system. It partitions the system in logical parts.There is no

unique structure of the system that can be described by its architecture; there are many

possible structures.

The software architecture of a system is the structure or structures of the system, which

comprise software elements, the externally visible properties of those elements, and the

relationships among them.

Some of the important uses that software architecture descriptions play are:

Understanding and communication: An architecture description is primarily to communicate

the architecture to its various stakeholders, which include the users who will use the system,

the clients who commissioned the system, the builders who will build the system, and, of

course, the architects.

Reuse: The architecture has to be chosen in a manner such that the components which have

to be reused can fit properly and together with other components that may be developed.

Construction and Evolution: As architecture partitions the system into parts, some

architecture-provided partitioning can naturally be used for constructing the system, which

also requires that the system be broken into parts such that different teams (or individuals)

can separately work on different parts.

Repository Model or Shared-Data Style

In this style, there are two types of components—data repositories and data assessors.

Components of data repository type are where the system stores shared data—these could be

file systems or databases. These components provide a reliable and permanent storage, take

care of any synchronization needs for concurrent access, and provide data access support.

Components of data assessors type access data from the repositories, perform computation on

the data obtained, and if they want to share the results with other components, put the results

back in the depository.

There are two variations of this style possible. In the blackboard style, if some data is posted

on the data repository, all the assessor components that need to know about it are informed

The other is the repository style, in which the data repository is just a passive repository

which provides permanent storage and related controls for data accessing. The components

access the repository as and when they want.

As an example of a system using this style of architecture, let us consider a student registration

system in a university. The system clearly has a central repository which contains information

about courses, students, prerequisites, etc. It has an Administrator component that sets up the

repository, rights to different people, etc. The Registration component allows students to register

and update the information for students and courses. The Approvals component is for granting

approvals for those courses that require instructor’s consent. The Reports component produces

the report regarding the students registered in different courses at the end of the registration. The

component Course Feedback is used for taking feedback from students at the end of the course.

.

Client-Server Style

In this style, there are two component types—clients and servers. A constraint of this style is

that a client can only communicate with the server, and cannot communicate with other

clients. The communication between a client component and a server component is initiated

by the client when the client sends a request for some service that the server supports. The

server receives the request at its defined port, performs the service, and then returns the

results of the computation to the client who requested the service.

There is one connector type in this style—the request/reply type. A connector connects a

client to a server.

 For example suppose we have to design and build a simple system for taking an on-line

survey of students on a campus. There is a set of multiple-choice questions, and the proposed

system will provide the survey form to the student, who can fill and submit it on-line. We also

want that when the user submits the form, he/she is also shown the current result of the survey,

that is, what percentage of students so far have filled which options for the different questions.

The system is best built using the Web; this is the likely choice of any developer. For this simple

system, traditional 3-tier architecture is proposed. It consists of a client which will display the

form that the student can complete and submit, and will also display the results. The second

component is the server, which processes the data submitted by the student, and saves it on the

database, which is the third component. The server also queries the database to get the outcome

of the survey and sends the results in proper format (HTML) back to the client, which then

displays the result.

Q5(a) : Explain basic elements of a component model with a neat diagram.

Ans : Component models: A component model is a definition of standards for component

implementation, documentation and deployment.

 Examples of component models

 EJB model (Enterprise Java Beans)

 COM+ model (.NET model)

 Corba Component Model

 The component model specifies how interfaces should be defined and the elements that

should be included in an interface definition.

Basic elements of a component model

 Interfaces

 Components are defined by specifying their interfaces. The component model

specifies how the interfaces should be defined and the elements, such as operation

names, parameters and exceptions, which should be included in the interface

definition.

 Usage

 In order for components to be distributed and accessed remotely, they need to

have a unique name or handle associated with them. This has to be globally

unique.

 Deployment

 The component model includes a specification of how components should be

packaged for deployment as independent, executable entities.

Q5(b) : List out the advantages and disadvantages of using a distributed approach to systems

development.

Ans : a collection of independent computers that appears to the user as a single coherent system

is called distributed system.

The benefits of distributed systems are that they can be scaled to cope with increasing demand,

can continue to provide user services if parts of the system fail, and they enable resources to be

shared.

Issues to be considered in the design of distributed systems include transparency, openness,

scalability, security, quality of service and failure management.

Distributed system advantages:

Resource sharing: In distributed system sharing of hardware and software resources will be

done among systems.

Openness: Distributed system will use of equipment and software from different vendors.

Concurrency: Distributed system uses concurrent processing to enhance performance.

Scalability: In distributed system we can increase throughput by adding new resources.

Fault tolerance: The ability to continue in operation after a fault has occurred is called fault

tolerance.

Distributed systems issues:

 Distributed systems are more complex than systems that run on a single processor.

 Complexity arises because different parts of the system are independently managed as is

the network.

 There is no single authority in charge of the system so top-down control is impossible.

Design issues: There are several design issues needs to be considered while developing

distributed system:

 Transparency To what extent should the distributed system appear to the user as a single

system?

 Openness: Should a system be designed using standard protocols that support

interoperability?

 Scalability: How can the system be constructed so that it is sclable?

 Security How can usable security policies be defined and implemented?

 Quality of service How should the quality of service be specified.

 Failure management How can system failures be detected contained and repaired?

Q6(a) : Differentiate between black box testing and white box testing.

Ans:

S N Black Box Testing White Box Testing

1 In this testing knowledge of programming

is not necessarily essential.

 In this form of testing knowledge of

programming is must means it is essential.

2 Normally independent software testers are

responsible for doing Black Box Testing.

 Normally software developers are

responsible for doing White Box Testing.

3 In this form of testing Knowledge of

implementation is not required.

 In this form of testing Implementation

knowledge is required.

4 In Black Box Testing, testers may or may

not be technically sound.

 Normally software developers are

involved in this testing, but if it is

performed by software testers, then testers

should be technically sound.

5 In this sort of testing testers mainly focuses

on the functionality of the system.

 In this sort of testing developers mainly

focuses on the structure means

program/code of the system.

6 This testing is done by testers. This testing is mostly done by developers.

7 This type of testing always focuses on what

is performing/ carried out.

 This type of testing always focuses on

how it is performing/ carried out.

8 In Black Box Testing no knowledge

regarding internal logic of code is needed

means no need of programming is

necessary.

 In White Box Testing knowledge

regarding internal logic of code is needed

means need of programming is mandatory.

9 Other names of this testing include means

synonyms of black box testing are testing

regarding functionality means Functional

testing, Behavioral testing, and Opaque-

box/ Closed-box testing that is the reason

why in this testing no knowledge of

programming is needed.

 Other names of this testing include means

synonyms of white box testing are testing

regarding code means Structural testing,

Glass-box/ Clear-box testing, Open-box

testing/ Transparent-box testing, Logic-

driven testing and Path-oriented testing

that is the reason why in this testing

knowledge of programming is needed.

10 Black box testing means functional test or

external test.

White box testing means structural test or

interior test.

http://testingbasicinterviewquestions.blogspot.in/2012/01/what-is-functional-testing-explain-it.html
http://testingbasicinterviewquestions.blogspot.in/2012/01/what-is-functional-testing-explain-it.html

Q6(b) : Name the various estimation techniques in software systems.

Ans: Types of effort estimation approaches

 Top- Down Estimation Approach

 Bottom-Up Estimation Approach

Top- Down Estimation Approach

a. Consider effort as a function of project size.

b. First determine the nature of the function.

c. Then estimate the size of the function.

Past productivity on similar projects can be used as the estimation function.If productivity is

P KLOC/PM, then

effort estimate = SIZE/P person-months

More general function

EFFORT= a*SIZEb

Where a and b are constant and determined through regression analysis.

Bottom-Up Estimation Approach

a. Project is first divided into tasks

b. And then estimates for the different tasks of the project are obtained.

c. From the estimates of the different tasks, the overall estimate is determined.

d. This type of approach is also called activity-based estimation.

Q6(c) : Discuss project scheduling and staffing.

Ans: Project scheduling and staffing

For a project with some estimated effort, multiple schedules (or project duration) are indeed

possible. Once the effort is fixed, there is some flexibility in setting the schedule by

appropriately staffing the project, but this flexibility is not unlimited. The overall schedule

can be determined as a function of effort. Such function can be determined from data from

completed projects using statistical techniques like fitting a regression curve

M, in calendar months can also be estimated by M = 4.1E.36.

In COCOMO, the equation for schedule for an organic type of software is M = 2.5E.38

Another method for medium-sized projects is the rule of thumb called the square root check .

The proposed schedule can be around the square root of the total effort in person months.

For example, if the effort estimate is 50 person-months, a schedule of about 7 to 8 months

will be suitable.

Q7(a) Explain risk management process with a neat diagram.

 Following are the steps involved in Risk Management and Planning Approach:

1. For each risk, rate the probability of its happening as low, medium, or high.

2. For each risk, assess its impact on the project as low, medium, or high.

3. Rank the risks based on the probability and effects on the project; for example, a high-

probability, high-impact item will have higher rank than a risk item with a medium

probability and high impact. In case of conflict,use judgment.

4. Select the top few risk items for mitigation and tracking.

Q7(b) Explain functional and non- functional requirements.

Ans:

 Functional requirements are

 Statements of services the system should provide, how the system should react to

particular inputs and how the system should behave in particular situations.

 May state what the system should not do.

 Describe functionality or system services.

 Depend on the type of software, expected users and the type of system where the

software is used.

 Functional user requirements may be high-level statements of what the system

should do.

 Functional system requirements should describe the system services in detail.

Non-functional requirements are

 Constraints on the services or functions offered by the system such as timing

constraints, constraints on the development process, standards, etc.

 Often apply to the system as a whole rather than individual features or services.

 These define system properties and constraints e.g. reliability, response time and

storage requirements. Constraints are I/O device capability, system

representations, etc.

 Process requirements may also be specified mandating a particular IDE,

programming language or development method.

 Non-functional requirements may be more critical than functional requirements. If

these are not met, the system may be useless.

Q7(c) : What are the practices followed in extreme programming?

Ans : Extreme programming practices:

Q 8 : Briefly explain the following:

a. CBSE process:

Ans CBSE processes are software processes that support component-based software engineering.

They take into account the possibilities of reuse and the different process activities involved in

developing and using reusable components.

 Development for reuse

 This process is concerned with developing components or services that will be

reused in other applications. It usually involves generalizing existing components.

 Development with reuse

Principle or practice Description

Incremental planning Requirements are recorded on story cards and the stories to be included in a

release are determined by the time available and their relative priority. The

developers break these stories into development ‘Tasks’. See Figures 3.5 and

3.6.

Small releases The minimal useful set of functionality that provides business value is

developed first. Releases of the system are frequent and incrementally add

functionality to the first release.

Simple design Enough design is carried out to meet the current requirements and no more.

Test-first development An automated unit test framework is used to write tests for a new piece of

functionality before that functionality itself is implemented.

Refactoring All developers are expected to refactor the code continuously as soon as

possible code improvements are found. This keeps the code simple and

maintainable.

 This process is the process of developing new applications using existing

components and services.


 Component acquisition is the process of acquiring components for reuse or

development into a reusable component. It may involve accessing locally-

developed components or services or finding these components from an external

source.

 Component management is concerned with managing a company’s reusable components,

ensuring that they are properly catalogued, stored and made available for reuse.

 Component certification is the process of checking a component and certifying that it

meets its specification.

 CBSE for reuse focuses on component development. Components developed for a

specific application usually have to be generalised to make them reusable. A component

is most likely to be reusable if it associated with a stable domain abstraction (business

object). For example, in a hospital stable domain abstractions are associated with the

fundamental purpose - nurses, patients, treatments, etc.

 CBSE with reuse process has to find and integrate reusable components. When reusing

components, it is essential to make trade-offs between ideal requirements and the services

actually provided by available components.

 This involves:

 Developing outline requirements;

 Searching for components then modifying requirements according to available

functionality.

 Searching again to find if there are better components that meet the revised

requirements.

 Composing components to create the system.

b. Data flow diagram of an ATM:

During design activity, we are no longer modeling the problem domain, but are dealing with the

solution domain and developing a model for the eventual system. That is, the DFD during design

represents how the data will flow in the system when it is built. In this modeling, the major

transforms or functions in the software are decided, and the DFD shows the major transforms

that the software will have and how the data will flow through different transforms. A DFD of an

ATM is shown in Figure above. There are two major streams of input data in this diagram. The

first is the account number and the code, and the second is the amount to be debited. Notice the

use of * at different places in the DFD. For example, the transform “validate,” which verifies if

the account number and code are valid, needs not only the account number and code, but also

information from the system database to do the validation. And the transform debit account has

two outputs, one used for recording the transaction and the other to update the account.

c. Software as a service:

Software as a service (SaaS) involves hosting the software remotely and providing access to

it over the Internet.

a. Software is deployed on a server (or more commonly a number of servers) and is

accessed through a web browser. It is not deployed on a local PC.

b. The software is owned and managed by a software provider, rather than the

organizations using the software.

c. Users may pay for the software according to the amount of use they make of it or

through an annual or monthly subscription.

Software is deployed on a server (or more commonly a number of servers) and is accessed

through a web browser. It is not deployed on a local PC.

The software is owned and managed by a software provider, rather than the organizations

using the software.

Users may pay for the software according to the amount of use they make of it or through an

annual or monthly subscription. Sometimes, the software is free for anyone to use but users

must then agree to accept advertisements, which fund the software service.

Software as a service is a way of providing functionality on a remote server with client access

through a web browser. The server maintains the user’s data and state during an interaction

session. Transactions are usually long transactions e.g. editing a document.

d. Function oriented design:

Creating the software system design is the major concern of the design phase. We discuss the

structured design methodology for developing function-oriented system designs. The

methodology employs the structure chart notation for creating the design. For a function-oriented

design, the design can be represented graphically by structure charts. The structure of a program

is made up of the modules of that program together with the interconnections between modules.

Every computer program has a structure, and given a program its structure can be determined.

The structure chart of a program is a graphic representation of its structure. In a structure chart a

module is represented by a box with the module name written in the box. An arrow from module

A to module B represents that module A invokes module B. B is called the subordinate of A, and

A is called the superordinate of B. The arrow is labeled by the parameters received by B as input

and the parameters returned by B as output, with the direction

of flow of the input and output parameters represented by small arrows. The parameters can be

shown to be data (unfilled circle at the tail of the label) or control (filled circle at the tail). As an

example, consider the structure of the following program, whose structure is shown in Figure

