
CM
RIT

 L
ib

ra
ry

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

1. a. Explain the components and benefits of .Net framework with the help of architecture

diagram.

CLR: Provides run time environment to run the code and provide various services to develop the

application.

CTS: Specify certain guidelines for declaring using and managing types at runtime.

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

Base Class library: Reusable types. Classes, interfaces, value types helps in speeding-up

application development process.

CLS: Common Language Specification.

Windows forms: is the graphical representation of any windows displayed in an application.

Web application: Uses ASP.NET to build application.

ADO.NET: Provides functionality for database communication.

Programming Languages: C#, VB, J#,VC++ and more are supported in .NET environment.

Benefits of .NET framework:

Consistent Programming model

Cross-platform support

Language Interoperability

Automatic management of resources

Ease of Deployment

 b. What is an assembly? Explain each component of assembly.

 In the .NET framework, an assembly is a compiled code library for use in deployment,

 Versioning and security.

 There are two types: process assemblies (EXE) and library assemblies (DLL).

 A process assembly represents a process which will use classes defined in library

 assemblies.

 .NET assemblies contain code in CIL, which is usually generated from a CLI language,

 and then compiled into machine language at runtime by the CLR just-in-time compiler.

 An assembly can consist of one or more files.

 Code files are called modules. An assembly can contain more than one code module

 and since it is possible to use different languages to create code modules it is

 technically possible to use several different languages to create an assembly.

 Visual Studio however does not support using different languages in one assembly.

2. a. Explain the different types in C#

i) Value Type:A Value Type stores its contents in memory allocated on the stack. When

you created a Value Type, a single space in memory is allocated to store the value and

that variable directly holds a value. If you assign it to another variable, the value is copied

directly and both variables work independently. Predefined datatypes, structures, enums

are also value types, and work in the same way. Value types can be created at compile

http://en.wikipedia.org/wiki/.NET_framework
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/EXE
http://en.wikipedia.org/wiki/Dynamic-link_library
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Common_Intermediate_Language
http://en.wikipedia.org/wiki/List_of_CLI_languages
http://en.wikipedia.org/wiki/Machine_language
http://en.wikipedia.org/wiki/Run_time_%28computing%29
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Just-in-time_compiler
http://en.wikipedia.org/wiki/Computer_language
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

time and Stored in stack memory, because of this, Garbage collector can't access the

stack.

e.g. int x = 10;
Here the value 10 is stored in an area of memory called the stack.Reference Type:

Reference Types are used by a reference which holds a reference (address) to the object

but not the object itself. Because reference types represent the address of the variable

rather than the data itself, assigning a reference variable to another doesn't copy the data.

Instead it creates a second copy of the reference, which refers to the same location of the

heap as the original value. Reference Type variables are stored in a different area of

memory called the heap. This means that when a reference type variable is no longer

used, it can be marked for garbage collection. Examples of reference types are Classes,

Objects, Arrays, Indexers, Interfaces etc.

e.g. int[] iArray = new int[20];

b. What are different types of type conversions supported by C#.

 Type conversion is converting one type of data to another type. It is also known as Type Casting.
 In C#, type casting has two forms:
 Implicit type conversion - These conversions are performed by C# in a type-safe manner. For
 example, are conversions from smaller to larger integral types and conversions from derived
 classes to base classes.
 Explicit type conversion - These conversions are done explicitly by users using the pre-defined
 functions. Explicit conversions require a cast operator.

c. Describe the significance of ‘is’ and ‘as’ operator.

 is and as operator

 The is operator in C# is used to check the object type and it returns a bool value: true if the
 object is the same type and false if not.

 namespace IsAndAsOperators
 {
 // Sample Student Class
 class Student
 {
 public int stuNo { get; set; }
 public string Name { get; set; }
 public int Age { get; set; }

 }
 // Sample Employee Class

 class Employee
 {
 public int EmpNo { get; set; }
 public string Name { get; set; }

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

 public int Age { get; set; }
 public double Salary { get; set; }

 }
 class Program
 {

 static void Main(string[] args)
 {
 Student stuObj = new Student();
 stuObj.stuNo = 1;
 stuObj.Name = "Siva";
 stuObj.Age = 15;

 Employee EMPobj=new Employee();
 EMPobj.EmpNo=20;
 EMPobj.Name="Rajesh";
 EMPobj.Salary=100000;
 EMPobj.Age=25;

 // Is operator

 // Check Employee EMPobj is Student Type

 bool isStudent = (EMPobj is Student);
 System.Console.WriteLine("Empobj is a Student ?: {0}", isStudent.ToString());

 // Check Student stiObj is Student Typoe
 isStudent = (stuObj is Student);
 System.Console.WriteLine("Stuobj is a Student ?: {0}", isStudent.ToString());

 stuObj = null;
 // Check null object Type
 isStudent = (stuObj is Student);
 System.Console.WriteLine("Stuobj(null) is a Student ?: {0}", isStudent.ToString());
 System.Console.ReadLine();
 }
 }

3. a. Explain different method parameter modifier with suitable examples.

By using the params keyword, we can specify a method parameter that takes a variable number

of arguments.

We can send a comma-separated list of arguments of the type specified in the parameter

declaration or an array of arguments of the specified type. You also can send no arguments. If you

send no arguments, the length of the params list is zero.

https://msdn.microsoft.com/en-us/library/8f1hz171.aspx

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

No additional parameters are permitted after the params keyword in a method declaration, and

only one params keyword is permitted in a method declaration.

 public class MyClass

 {

 public static void UseParams(params int[] list)

 {

 for (int i = 0; i < list.Length; i++)

 {

 Console.Write(list[i] + " ");

 }

 Console.WriteLine();

 }

 public static void UseParams2(params object[] list)

 {

 for (int i = 0; i < list.Length; i++)

 {

 Console.Write(list[i] + " ");

 }

 Console.WriteLine();

 }

 static void Main()

 {

 UseParams(1, 2, 3, 4);

 UseParams2(1, 'a', "test");

 UseParams2();

 int[] myIntArray = { 5, 6, 7, 8, 9 };

 UseParams(myIntArray);

 object[] myObjArray = { 2, 'b', "test", "again" };

 UseParams2(myObjArray);

 UseParams2(myIntArray);

 }

 }

b. Write short notes on the following:

 i) Partial classes and methods

 It is possible to split the definition of a class or a struct, an interface or a method over two or

 more source files. Each source file contains a section of the type or method definition, and all

 parts are combined when the application is compiled.

https://msdn.microsoft.com/en-in/library/0b0thckt.aspx
https://msdn.microsoft.com/en-in/library/ah19swz4.aspx
https://msdn.microsoft.com/en-in/library/87d83y5b.aspx

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

Partial Classes

There are several situations when splitting a class definition is desirable:

 When working on large projects, spreading a class over separate files enables multiple

programmers to work on it at the same time.

 When working with automatically generated source, code can be added to the class without

having to recreate the source file. Visual Studio uses this approach when it creates Windows

Forms, Web service wrapper code, and so on. You can create code that uses these classes without

having to modify the file created by Visual Studio.

 To split a class definition, use the partial keyword modifier, as shown here:

 public partial class CoOrds

 {

 private int x;

 private int y;

 public CoOrds(int x, int y)

 {

 this.x = x;

 this.y = y;

 }

 }

 public partial class CoOrds

 {

 public void PrintCoOrds()

 {

 Console.WriteLine("CoOrds: {0},{1}", x, y);

 }

 }

 class TestCoOrds

 {

 static void Main()

 {

 CoOrds myCoOrds = new CoOrds(10, 15);

 myCoOrds.PrintCoOrds();

 // Keep the console window open in debug mode.

 Console.WriteLine("Press any key to exit.");

 Console.ReadKey();

 }

 }

Partial Methods:

Partial methods enable the implementer of one part of a class to define a method, similar to an event. The

implementer of the other part of the class can decide whether to implement the method or not. If the

method is not implemented, then the compiler removes the method signature and all calls to the method.

The calls to the method, including any results that would occur from evaluation of arguments in the calls,

https://msdn.microsoft.com/en-in/library/wbx7zzdd.aspx

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

have no effect at run time. Therefore, any code in the partial class can freely use a partial method, even if

the implementation is not supplied. No compile-time or run-time errors will result if the method is called

but not implemented.

// Definition in file1.cs

partial void onNameChanged();

// Implementation in file2.cs

partial void onNameChanged()

{

 // method body

}

 ii) Indexers

Declaration of behavior of an indexer is to some extent similar to a property. similar to the properties,

you use get and set accessors for defining an indexer. However, properties return or set a specific data

member, whereas indexers returns or sets a particular value from the object instance. In other words, it

breaks the instance data into smaller parts and indexes each part, gets or sets each part.

Defining a property involves providing a property name. Indexers are not defined with names, but with

the this keyword, which refers to the object instance. The following example demonstrates the concept:

using System;
namespace IndexerApplication
{
 class IndexedNames
 {
 private string[] namelist = new string[size];
 static public int size = 10;
 public IndexedNames()
 {
 for (int i = 0; i < size; i++)
 namelist[i] = "N. A.";
 }

 public string this[int index]
 {
 get
 {
 string tmp;

 if(index >= 0 && index <= size-1)
 {
 tmp = namelist[index];
 }
 else

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

 {
 tmp = "";
 }

 return (tmp);
 }
 set
 {
 if(index >= 0 && index <= size-1)
 {
 namelist[index] = value;
 }
 }
 }

 static void Main(string[] args)
 {
 IndexedNames names = new IndexedNames();
 names[0] = "Zara";
 names[1] = "Riz";
 names[2] = "Nuha";
 names[3] = "Asif";
 names[4] = "Davinder";
 names[5] = "Sunil";
 names[6] = "Rubic";
 for (int i = 0; i < IndexedNames.size; i++)
 {
 Console.WriteLine(names[i]);
 }

 Console.ReadKey();
 }
 }
}

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

4a. How method overriding is different from method overloading? Illustrate with examples.

What is Method Overloading ?

Creating a multiple methods in a class with same name but different parameters and types is called as
method overloading.method overloading is the example of Compile time polymorphism which is done
at compile time.

 Method overloading can be achieved by using following things :

 By changing the number of parameters used.
 By changing the order of parameters.
 By using different data types for the parameters.

What is Method overriding ?

Creating the method in a derived class with same name, same parameters and same return type as in
base class is called as method overriding.

Method overriding is the example of run time polymorphism,
Some Key Points of Method overriding

 Method overriding is only possible in derived class not within the same class where the method
is declared.

 Only those methods are overrides in the derived class which is declared in the base class with
the help of virtual keyword or abstract keyword.

namespace ConsoleApplication1

{

 class Shape

 {

 //Method to be overridden in derive class

 public virtual void Draw()

 {

 }

 }

 class Ractangel : Shape

 {

 public override void Draw()

 {

 Console.WriteLine("Rectangle Drawn ");

 }

 }

 class Circle : Shape

 {

 public override void Draw()

 {

 Console.WriteLine("Circle Drawn ");

 }

 }

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

 class Program

 {

 static void Main(string[] args)

 {

 Shape[] s = new Shape[2];

 /* creating Array with Different types of Objects */

 s[0] = new Circle();

 s[1] = new Ractangel();

 Console.WriteLine("\n\nRuntime polymorphism test\n\n");

 for (int i = 0; i < 2; i++)

 {

 s[i].Draw();

 }

 Console.ReadKey();

 }

 }

}

b. Explain sealed classes and sealed methods.

Sealed Class

Sealed class is used to define the inheritance level of a class.

The sealed modifier is used to prevent derivation from a class. An error occurs if a sealed class is
specified as the base class of another class.

Some points to remember:

1. A class, which restricts inheritance for security reason is declared, sealed class.
2. Sealed class is the last class in the hierarchy.
3. Sealed class can be a derived class but can't be a base class.
4. A sealed class cannot also be an abstract class. Because abstract class has to provide
functionality and here we are
 restricting it to inherit.

Practical demonstration of sealed class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace sealed_class
{
 class Program
 {

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

 public sealed class BaseClass
 {
 public void Display()
 {
 Console.WriteLine("This is a sealed class which can;t be further inherited");
 }
 }

 public class Derived : BaseClass
 {
 }

 static void Main(string[] args)
 {
 BaseClass obj = new BaseClass();

 obj.Display();

 Console.ReadLine();
 }
 }
}

Sealed Methods

Sealed method is used to define the overriding level of a virtual method.

Sealed keyword is always used with override keyword.

Practical demonstration of sealed method

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace sealed_method
{
 class Program
 {
 public class BaseClass
 {

 public virtual void Display()
 {
 Console.WriteLine("Virtual method");
 }
 }

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

 public class DerivedClass : BaseClass
 {
 public override sealed void Display()
 {
 Console.WriteLine("Sealed method");
 }
 }

 static void Main(string[] args)
 {

 DerivedClass ob1 = new DerivedClass();
 ob1.Display();

 Console.ReadLine();
 }
 }
}

c. How would you enforce encapsulation using accessor and mutators?

Encapsulation provides a way to protect data from accidental corruption. Rather than defining the data
in the form of public, we can declare those fields as private. The Private data are manipulated indirectly
by two ways. Let us see some example programs in C# to demonstrate Encapsulation by those two
methods. The first method is using a pair of conventional accessor and mutator methods. Another one
method is using a named property. Whatever be the method our aim is to use the data with out any
damage or change.

ENCAPSULATION USING ACCESSORS AND MUTATORS:

Let us see an example of Department class. To manipulate the data in that class (String departname) we
define an accessor (get method) and mutator (set method).

using system;
public class Department
{
private string departname;
.......
// Accessor.
public string GetDepartname()
{
return departname;
}
// Mutator.

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

public void SetDepartname(string a)
{
departname=a;
}
}

Like the above way we can protect the private data from the outside world. Here we use two separate
methods to assign and get the required data.

public static int Main(string[] args)
{
Department d = new Department();
d.SetDepartname("ELECTRONICS");
Console.WriteLine("The Department is :"+d.GetDepartname());
return 0;
}

In the above example we can't access the private data departname from an object instance. We
manipulate the data only using those two methods.

5a.How delegates are used in C#? Discuss single cast and multicast delegates?

Delegate: A delegate is a special type of object that contains the details of a method rather than data.

In C# delegate is a class type object, which is used to invoke the method that has been encapsulated into

it at the time of its creation. A delegate can be used to hold the reference to a method of any class.

Delegate contains 3 important piece of information

1. The name of the method on which it makes calls

2. Argument of this method

3. Return value of this method

Creating and using delegate:

1. Declaring a delegate

2. Defining delegate methods

3. Creating delegate objects

4. Invoking delegate objects

Declaring a delegate

Access-modifier delegate return-type delegate-name (parameter-list);

Public delegate void compute(int x, int y);

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

Defining Delegate Methods

Public static void Add(int a, int b)
{
Console.WriteLine(“Sum={0}”,a +b);
}

Creating Delegate Objects:

Delegate-name object-name=new delegate-name(expression);

Invoking Delegate object

Delegate-object(argument-list)

Cmp1(30,20);

using System;
public delegate double Conversion(double from);
class DelegateDemo
{
 public static double FeetToInches(double feet)
 {
 return feet * 12;
 }

 static void Main()
 {
 Conversion doConversion = new Conversion(FeetToInches);
 Console.Write("Enter Feet: ");
 double feet = Double.Parse(Console.ReadLine());
 double inches = doConversion(feet);
 Console.WriteLine("\n{0} Feet = {1} Inches.\n", feet, inches);
 Console.ReadLine();
 }
 }

Multicasting with delegates:

A delegate object can hold reference of and invoke multiple methods.

using System;
delegate void CustomDel(string s);
class TestClass
{
 static void Hello(string s)
 {
 System.Console.WriteLine(" Hello, {0}!", s);
 }
 static void Goodbye(string s)
 {
 System.Console.WriteLine(" Goodbye, {0}!", s);

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

 }
 static void Main()
 {
 CustomDel hiDel, byeDel, multiDel, multiMinusHiDel;
 hiDel = Hello;
 byeDel = Goodbye;
 multiDel = hiDel + byeDel;
 multiMinusHiDel = multiDel - hiDel;
 Console.WriteLine("Invoking delegate hiDel:");
 hiDel("A");
 Console.WriteLine("Invoking delegate byeDel:");
 byeDel("B");
 Console.WriteLine("Invoking delegate multiDel:");
 multiDel("C");
 Console.WriteLine("Invoking delegate multiMinusHiDel:");
 multiMinusHiDel("D");
 Console.ReadLine();
 }
}

b. “Catching on exceptions programmatically is good and necessary mechanism” justify with suitable

examples.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace GMT_TCF
{
 class Program
 {

 static void Main(string[] args)
 {
 Console.WriteLine(" Enter the dividend");
 int m= Convert.ToInt32(Console.ReadLine());

 Console.WriteLine(" Enter the divisor");
 int n = Convert.ToInt32(Console.ReadLine());

 try
 {
 int k = m / n;
 Console.WriteLine("Output is:" + k.ToString());
 }
 catch (DivideByZeroException e)
 {
 Console.WriteLine("Exception Caught:" + e.Message);
 }
 finally
 {
 Console.ReadLine();
 }
 }

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

 }
}

6a. Discuss panel control with respect to windows form.

The Panel control is similar to the GroupBox control; however, only the Panel control can have scroll

bars, and only the GroupBox control displays a caption.

 How to use Panel Control
Drag and drop Panel control from toolbox on the window Form.
Collection of control can be placed in side Panel.

Transparent Panel

First set BackColor of Panel suppose you set red then set Form's TransparencyKey property to the same

color as Panel's background color –red in this case.

Example:
 private void frmPanel_Load(object sender, EventArgs e)
{
 //change back color of Panel
 panel1.BackColor = Color.Red;
 //set Form's TransparencyKey to the same color as Panel's back color
 this.TransparencyKey = Color.Red;

}

Now panel will be transparent when application run.

Panel Properties

BackColor: Panel BackColor can be changed through BackColor property.

Example:
private void frmPanel_Load(object sender, EventArgs e)
{
 //change back color of Panel
 panel1.BackColor = Color.CadetBlue;
}

BorderStyle: Get or set BorderStyle of Panel.

Example:
private void frmPanel_Load(object sender, EventArgs e)
{
 //Set Border style of Panel
 panel1.BorderStyle = BorderStyle.Fixed3D;

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

}

b. Explain the implementation of combobox in C#

C# controls are located in the Toolbox of the development environment, and you use them to create

objects on a form with a simple series of mouse clicks and dragging motions. A ComboBox displays a text

box combined with a ListBox, which enables the user to select items from the list or enter a new value.

How add a item to combobox

comboBox1.Items.Add("Sunday");
comboBox1.Items.Add("Monday");
comboBox1.Items.Add("Tuesday");
ComboBox SelectedItem

 retrieve the displayed item to a string variable ,

string var;
var = comboBox1.Text;
 Or
var item = this.comboBox1.GetItemText(this.comboBox1.SelectedItem);
MessageBox.Show(item);

How to remove an item from ComboBox

 comboBox1.Items.RemoveAt(1);

The above code will remove the second item from the combobox.
 comboBox1.Items.Remove("Friday");

c.Write a program for addition of two numbers, by accepting numbers from text boxes and display the

result in the form using button lick event.

using System;

namespace WindowsFormsApplication10
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

textBox3.Text = (Convert.ToInt32(textBox1.Text) +
Convert.ToInt32(textBox2.Text)).ToString();

 }
 }
}

6a.Explain the components of ADO.NET entity framework

Entity Data Model: Defines the conceptual entities that can be read in serialized form using a

DataReader

Entity SQL: Defines a common SQL based query language that is extended to express queries in terms of

EDM concepts.

Entity Client: Provides a gateway for the queries of the entity level queries, which is queried through a

common Entity SQL language.

Object Services: Allows us to

b.How data adapter is used to build database applications?

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

Data adapters are an integral part of ADO.NET managed providers, which are the set of objects used to

communicate between a datasource and a dataset. (In addition to adapters, managed providers include

connection objects, data reader objects, and command objects.)

To create a data adapter manually

1. Make sure a connection object is available to the form or component that you are working with.
For details about adding a standalone connection, see Establishing a Connection.

2. From the Data tab of the Toolbox, drag
an OleDbDataAdapter, SqlDataAdapter, OdbcDataAdapter, OracleDataAdapter object onto the
design surface.
The designer adds an instance of the adapter to the form or component and launches the Data
Adapter Configuration Wizard.

3. Close the wizard.

c.Discuss the components of dataset.

Datatable: Consists of DataRow and Data Column and stores data in the table row format.

DataView: Represents a customized view of DataTable for sorting, filtering, searching, editing and

navigating.

DataColumn: Consists of a number of columns that comprise a Datatable. A DataColumn is the essential

building block of the DataTable.

DataRow: Represents a row in the DataTable.

DataRelation: Allows us to specify relations between various table.

5a.Explain different validation control with suitable examples supported by ASP.NET.

Validation Controls in ASP.NET

An important aspect of creating ASP.NET Web pages for user input is to be able to check that the
information users enter is valid. ASP.NET provides a set of validation controls that provide an easy-to-
use but powerful way to check for errors and, if necessary, display messages to the user.

There are six types of validation controls in ASP.NET

1. RequiredFieldValidation Control
2. CompareValidator Control
3. RangeValidator Control
4. RegularExpressionValidator Control
5. CustomValidator Control
6. ValidationSummary

https://msdn.microsoft.com/en-us/library/ms254507(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/system.data.oledb.oledbdataadapter(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqldataadapter(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/system.data.odbc.odbcdataadapter(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/system.data.oracleclient.oracledataadapter(v=vs.80).aspx

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

The below table describes the controls and their work:

Validation Control Description

RequiredFieldValidation Makes an input control a required field

CompareValidator Compares the value of one input control to the value of
another input control or to a fixed value

RangeValidator Checks that the user enters a value that falls between
two values

RegularExpressionValidator Ensures that the value of an input control matches a
specified pattern

CustomValidator Allows you to write a method to handle the validation of
the value entered

ValidationSummary Displays a report of all validation errors occurred in a
Web page

All validation controls are rendered in form as (label are referred as on client by server)

Important points for validation controls

 ControlToValidate property is mandatory to all validate controls.
 One validation control will validate only one input control but multiple validate control can be

assigned to a input control.

A mutator, in the context of C#, is a method, with a public level of accessibility, used to modify and
control the value of a private member variable of a class. The mutator is used to assign a new value to
the private field of a type. It forms a tool to implement encapsulation by only controlling access to the
internal field values that must be modified.

The benefits of using a mutator include:

 Prevents the user from directly accessing the private data of an object instance and allows
access only through public methods to prevent data corruption.

 Provides flexibility in modifying the internal representation of the fields of an object that
represents the internal state without breaking the interface used by the object's clients.

 Ability to include additional processing logic like validation of a values set, triggering of events,
etc., during the modification of the field in the mutator.

 Provides the synchronization that is necessary for multithreading scenarios.
 Includes a provision to override the mutator declared in a base class with the code in the

derived class.

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

b.Write a web based application to check the entered username and password are valid or not.Check

 the entered username and password of a web form with a database table.

private void btnLogin_Click(object sender, EventArgs e)
 {
 if (string.IsNullOrEmpty(this.txtUsername.Text) | string.IsNullOrEmpty(this.txtPassword.Text))
 {
 MessageBox.Show("provide User Name and Password");
 }

 if (string.IsNullOrEmpty(cboUsertype.Text))
 {
 MessageBox.Show("Select User Type");
 }

 SqlConnection conn = new SqlConnection();
 conn.ConnectionString = "Data Source=pc101;Initial Catalog=SMS;User ID=sa;Password=mike";
 conn.Open();
 string UserName = txtUsername.Text;
 string Password = txtPassword.Text;
 string UserType = cboUsertype.Text;

 SqlCommand cmd = new SqlCommand("SELECT * FROM tbluser WHERE username = '" +
txtUsername.Text + "' and usertype = '" + cboUsertype.Text + "' and mypassword = '" + txtPassword.Text
+ "'", conn);

 SqlDataAdapter da = new SqlDataAdapter(cmd);
 DataTable dt = new DataTable();
 da.Fill(dt);

 System.Data.SqlClient.SqlDataReader dr = null;
 dr = cmd.ExecuteReader();

 if (dr.Read())
 {
 SqlConnection con = new
SqlConnection(ConfigurationSettings.AppSettings["ConnectionString"]);
 con.ConnectionString = "Data Source=pc101;Initial Catalog=SMS;User ID=sa;Password=mike";
 con.Open();

 if (this.cboUsertype.Text == dr["UserType"].ToString() & this.txtUsername.Text ==
dr["UserName"].ToString() & this.txtPassword.Text == dr["mypassword"].ToString() &
this.cboUsertype.Text == "Data Entry Clerk")
 {
 MessageBox.Show("*** Login Successful ***");
 frmMain f = new frmMain();
 f.Show();

 Programming using C#.NET – 13MCA53 – Department of MCA – Odd Sem 2016

 // f.CreateUserAccountToolStripMenuItem.Enabled = false;
 this.Hide();
 }

 else if (this.cboUsertype.Text == dr["UserType"].ToString() & this.txtUsername.Text ==
dr["UserName"].ToString() & this.txtPassword.Text == dr["mypassword"].ToString())
 {
 MessageBox.Show("*** Login Successful ***");
 frmMain g = new frmMain();
 g.Show();
 this.Hide();
 }

 else
 {
 MessageBox.Show("Invalid UserName or Password", "Login", MessageBoxButtons.OK,
MessageBoxIcon.Information);
 MessageBox.Show("Access Denied!!");

 }
 }
 }

c. Write a short note on sessions in ASP.NET.

 Session state include the following:

 Application state, which stores variables that can be accessed by all users of an ASP.NET

application.

 Profile properties, which persists user values in a data store without expiring them.

 ASP.NET caching, which stores values in memory that is available to all ASP.NET applications.

 View state, which persists values in a page.

 Cookies.

 The query string and fields on an HTML form that are available from an HTTP request.

Session variables are stored in a SessionStateItemCollection object that is exposed through

the HttpContext.Session property. In an ASP.NET page, the current session variables are exposed

through the Session property of the Page object.

The collection of session variables is indexed by the name of the variable or by an integer index. Session

variables are created by referring to the session variable by name. You do not have to declare a session

variable or explicitly add it to the collection. The following example shows how to create session variables

in an ASP.NET page for the first and last name of a user, and set them to values retrieved

from TextBox controls.

https://msdn.microsoft.com/en-us/library/system.web.sessionstate.sessionstateitemcollection.aspx
https://msdn.microsoft.com/en-us/library/system.web.httpcontext.session.aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox.aspx

