
CM
RIT

 L
ib

ra
ry

Service Oriented Architecture – 13MCA545

Dec. 2016/Jan 2017 Exam – Answer Key

1.a. List and Explain common characteristics of contemporary SOA

1. Contemporary SOA is at the core of the service-oriented computing platform.

- SOA is used to qualify products, designs, and technologies an application computing

platform consisting of Web services technology and service-orientation principles

- Contemporary SOA represents an architecture that promotes service-orientation

through the use of Web services.

2. Contemporary SOA increases quality of service.

- The ability for tasks to be carried out in a secure manner, protecting the contents of a

message, as well as access to individual services.

- Allowing tasks to be carried out reliably so that message delivery or notification of

failed delivery can be guaranteed.

- Performance requirements to ensure that the overhead imposed by SOAP message

and XML content processing does not inhibit the execution of a task.

- Transactional capabilities to protect the integrity of specific business tasks with a

guarantee that should the task fail, exception logic is executed.

3.Contemporary SOA is fundamentally autonomous.

- The service-orientation principle of autonomy requires that

o individual services be as independent and

o self-contained as possible with respect to the control they maintain over their

underlying logic.

4.Contemporary SOA is based on open standards.

- Significant characteristic of Web services is the fact that

o data exchange is governed by open standards.

o After a message is sent from one Web service to another it travels via a set of

protocols that is globally standardized and accepted.

5.Contemporary SOA supports vendor diversity.

- Organizations continue itsbuilding solutions with existing development tools and

server products.

- It is continue to leveraging(maximizing) the skill sets of in-house resources.

- Choice to explore the offerings of new vendors is always possible.

- This option is made possible by the

o open technology provided by the Web services framework

o the standardization and principles introduced by SOA.

6.Contemporary SOA promotes discovery.

- SOA supports and encourages the advertisement and discovery of services throughout

the enterprise and beyond.

- A serious SOA will likely rely on some form of service registry or directory to

manage service descriptions

7.Contemporary SOA foster(advance) intrinsic(essential) interoperability.

- To leveraging(maximizing) and supporting the

o required usage of open standards,

o a vendor diverse environment, and

o the availability of a discovery mechanism

is called intrinsic interoperability

- Whether an application actually has immediate integration requirements or not

design principles can be applied to outfit services with characteristics that naturally

promote interoperability.

8.Contemporary SOA promotes federation.

- Establishing SOA within an enterprise does not necessarily require that you replace what you

already have.

- SOA has the ability to introduce unity across previously non-federated environments.

- Web services enable federation

- SOA promotes by establishing and standardizing the ability to encapsulate legacy and non-

legacy application logic and by exposing it via a common, open, and standardized

communications framework

9.Contemporary SOA promotes architectural composability.

- Composability is a deep-rooted characteristic of SOA that can be realized on different

levels.

- For example,

- By fostering the development and evolution of composable services, SOA supports

the automation of flexible and highly adaptive business processes.

10.Contemporary SOA fosters inherent reusability.

- SOA establishes an environment that promotes reuse on many levels.

- For example, services designed according to service-orientation principles are

encouraged to promote reuse, even if no immediate reuse requirements exist.

- Collections of services that form service compositions can themselves be reused by

larger compositions.

11.Contemporary SOA emphasizes extensibility.

- Extensibility is also a characteristic that is promoted throughout SOA as a whole.

- Extending entire solutions can be accomplished by adding services or by merging

with other service-oriented applications (which also, effectively, "adds services").

- Because the loosely coupled relationship fostered among all services minimizes inter-

service dependencies, extending logic can be achieved with significantly less impact.

12.Contemporary SOA supports a service-oriented business modeling paradigm.

- Services can be designed to express business logic.

- BPM models, entity models, and other forms of business intelligence can be

accurately represented through the coordinated composition of business-centric

services.

13.Contemporary SOA implements layers of abstraction.

- One of the characteristics that tends to evolve naturally through the application of

service-oriented design principles is that of abstraction.

- Typical SOAs can introduce layers of abstraction by positioning services as the sole

access points to a variety of resources and processing logic.

14.Contemporary SOA promotes loose coupling throughout the enterprise.

- core benefit to building a technical architecture with loosely coupled services is the

resulting independence of service logic.

- Services only require an awareness of each other, allowing them to evolve

independently.

15.Contemporary SOA promotes organizational agility(quickness).

- Change in an organization's business logic can impact the application technology that

automates it.

- Change in an organization's application technology infrastructure can impact the business

logic automated by this technology.

- The more dependencies that exist between these two parts of an enterprise, the greater the

extent to which change imposes disruption and expense.

16. Contemporary SOA is a building block.

- A service-oriented application architecture will likely be one of several within an

organization committed to SOA as the standard architectural platform.

- Organizations standardizing on SOA work toward an ideal known as the service-oriented

enterprise (SOE), where all business processes are composed of and exist as services, both

logically and physically

17.Contemporary SOA is an evolution(growth).

- SOA defines an architecture that is related to but still distinct from its predecessors.

- It differs from traditional client-server and distributed environments in that it is heavily

influenced by the concepts and principles associated with service-orientation and Web

services.

- It is similar to previous platforms in that it preserves the successful characteristics of its

predecessors and builds upon them with distinct design patterns and a new technology set.

18.Contemporary SOA is still maturing(growing).

- The above characteristics far are fundamental to contemporary SOA, But this point is more

relevant to SOA is at this moment.

- SOA is being positioned as the next standard application computing platform, but transition

is not yet complete.

- Web services are being used to implement a great deal of application functionality

- But the support for a number of features necessary for enterprise-level computing is not yet

fully available.

19.Contemporary SOA is an achievable ideal.

- A standardized enterprise-wide adoption of SOA is a state to which many organizations

would like to fast-forward.

- In reality the process of transitioning to this state demands an enormous amount of effort,

discipline, and, depending on the size of the organization, a good amount of time.

- Every technical environment will undergo changes during such a migration,

- Various parts of SOA will be phased in at different stages and to varying extents.

- It result in countless hybrid architectures, consisting mostly of distributed environments that

are part legacy and part service-oriented.

- As companies adopt SOA during this evolution, many will need to retrofit(add) their

environments (and their standards) to accommodate changes and innovations as SOA-related

specifications, standards, and products continue to mature.

1.b Tangible benfits of SOA and Explain

Improved integration (and intrinsic interoperability)
 SOA creates solutions that consist of essentially interoperable services.

 A cross-application integration project into less of a custom development effort, and more of a

modeling exercise.

 The bottom line: The cost and effort of cross-application integration is significantly lowered

when applications being integrated are SOA-compliant.

Inherent reuse
 Service-orientation promotes the design of services that are inherently reusable.

 Designing services to support reuse from the get-go opens the door to increased opportunities

for leveraging (force) existing automation logic.

Streamlined architectures and solutions
 The concept of composition is another fundamental part of SOA. .

 These are extensions to the basic Web services framework established by first-generation

standards represented by WSDL(Web Service Description Language), SOAP(Small Object

Access Protocol), and UDDI (Universal Description, Discovery, and Integration)

Leveraging the legacy investment
 Web services technology set has generated a large adapter market, enabling many legacy

environments to participate in service-oriented integration architectures.

 This allows IT departments to work toward a state of federation, where previously isolated

environments now can interoperate without requiring the development of expensive and

sometimes fragile point-to-point integration channels.

 Still riddled with risks relating mostly

o to how legacy back-ends must cope with increased usage volumes,

o the ability to use what you already have with service-oriented solutions that you are building

now and in the future is extremely attractive.

Establishing standardized XML data representation
 SOA is built upon and driven by XML. An adoption of SOA leads to the opportunity to fully

leverage the XML data representation platform.

 A standardized data representation format (once fully established) can reduce the complexity

of application environments.

Focused investment on communications infrastructure
 Web services establish a common communications framework,

 SOA can centralize inter-application and intra-application communication as part of standard

IT infrastructure.

 This allows organizations to evolve enterprise-wide infrastructure by investing in a single

technology set responsible for communication.

"Best-of-breed" alternatives
 A key feature of service-oriented enterprise environments is the support of "best-of-breed"

technology.

 Because SOA establishes a vendor-neutral communications framework, it frees IT

departments from being chained to a single proprietary development and/or middleware

platform.

 For any given piece of automation that can expose an adequate service interface, you now

have a choice as to how you want to build the service that implements it.

Organizational agility
 Agility is a quality inherent in just about any aspect of the enterprise.

 All parts contain a measure of agility related to how they are constructed, positioned, and

leveraged.

 Regardless of what parts of service-oriented environments are leveraged, the increased agility

with which IT can respond to business process or technology-related changes is significant.

 The bottom line: The cost and effort to respond and adapt to business or technology-related

change is reduced.

2.a. Discuss about the standards organizations and major ventor that contribute to SOA

Standards organizations that contribute to SOA

 Standards are produced, though, is not always that clear.

 Internet standards organizations have existed for some time now, but their respective

agendas are not always distinct and sometimes even overlap.

 Microsoft, IBM, Sun Microsystems, and many others have played ly significant roles in

formalizing Web services specifications, and accelerating the implementation of these

specifications as industry standards.

 Let's first learn more about the three most prominent standards organizations.

 Collectively, they are responsible for seeing through the evolution of XML and Web

services architectures.

The World Wide Web Consortium – (W3C)

 Founded by Tim Berners-Lee in 1994

 W3C has been hugely responsible for furthering the World Wide Web as a global,

semantic medium for information sharing.

 First released HTML, one of the most popular technical languages

 Increased in eBusiness, the W3C responded by producing key foundation standards

based on XML, such as XML Schema and XSLT.

 Four separate working groups made significant contributions to W3C Web Services

Activity projects

 They developed of important base standards for Web services.

 First-most are the SOAP and WSDL standards,

 Recently, the W3C has produced the Web Services Choreography Description Language

(WS-CDL) - A specification that governs standardized inter-service exchange patterns.

 Web Services Architecture document - it remains a reference point.

 The W3C is known for its formal and accurate approach to standards development.

 Specifications be subjected to numerous review and revision stages, with each new

version being published to their public Web site.

 Standards can take two to three years to be completed.

Organization for the Advancement of Structured Information Standards (OASIS)

 Established in 1993 as the SGML, 5 years later changed to OASIS (SGML to XML-

related standards)

 1000 members from 600 organizations,

 International standards producing organization.

 OASIS a

 WS-BPEL specification

 ebXML (a specification that aims to establish a standardized means of B2B data

interchange)

 UDDI specification (Core std for First generation web service)

 XML and Web services security extensions.

 Security Assertion Markup Language (SAML)

 Extensible Access Control Markup Language (XACML) provide important features in

the areas of single sign-on and authorization.

 Web Services Security (WSS) technical committee - Security-related project. Further

developing and realizing the important WS-Security framework.

 W3C focuses on establishing core, industry-agnostic standards

 OASIS group's primary interests lie in leveraging these standards to produce additional

specifications that support various vertical industries.

The Web Services Interoperability Organization (WS-I)

 Object of WS-I is open interoperability

 Established in 2002, 200 organizations, including all major SOA vendors.

 Releasing the Basic Profile, a recommendation-based document that contains available

standards collectively used in interoperability architec.

 WSDL, SOAP, UDDI, XML, and XML Schema, the Basic Profile has become an

important document within the IT community.

 Developed the Basic Security Profile. (most important collection of Web services and

XML security technologies.

 It continue releasing Profiles for each major aspect of Web services-related

interoperability, reliable messaging, Web service management, and orchestration.

 Profiles also supplement

 sample implementations and

 best practices on how the standards are to be used together to achieve a quality level of

interoperability.

 Provides a series of testing tools that can be used to ensure compliance with Profiles.

 Validity checkers that use Basic Profile conformance as part of the validation criteria.

 Membership includes significant SOA vendors, no one company has more power than

another, regardless of its size or market share.

 W3C recently rejected an invitation to become an associate member of the WS-I

 Working group members from the WS-I continue to contribute to W3C and OASIS

initiatives by directly participating in their respective working groups.

 The role of these WS-I representatives is to provide continual feedback relating to

interoperability issues.

4.2.3. Major vendors that contribute to SOA

 Standards organizations have their own culture and philosophies around how standards

should be developed, they are all heavily influenced by the commercial market.

 Vendors supply a significant portion of the contributors that actually end up developing

the standards.

 Some of the companies that have participated in the standards development processes

include Microsoft, IBM, BEA Systems, Sun Microsystems, Oracle, Tibco, Hewlett-

Packard, Canon, Commerce One, Fujitsu, Software AG, Nortel, Verisign, and

WebMethods.

The vendor influence

 IBM has laid out a technology path for increasing support of SOA within its WebSphere

platform.

 Microsoft increasing SOA features within the .NET technology framework, and building

Web services technology for Windows

 Web services non-proprietary, a vendor who can help shape a standard might be

motivated to do so with proprietary technology considerations in mind.

 Challenge - getting all vendors to agree on how one standard should be designed.

Vendor alliances

 Battle between most established vendor leads distrust.

 Collaborate on specifications (interoperability) between vendor platforms turn into

obstacles.

 Forming an alliance allows vendors to join forces in order to attain common goals.

 Lifespan of an alliance is based on d the development cycle of a specification.

 Most noticeable team of repeat-collaborators (IBM, Microsoft,

 and BEA)

 Persisted their working relationship to push forward a series of WS-* extensions.

 One of the more talked about examples of alliances playing a significant role in standards

development is the creation of the

Choosing a standards organization

 Choice of standards organization can have implications.

 Standards development arena is directly related to market demand.

 Vendors have market-driven goals fueled by pressures to deliver product releases that

meet customer demands and match

 Given that the W3C relies on a longer standards development process, it is tempting for

vendors to submit their standards to OASIS instead.

 Organizations develop similar specifications may seem redundant; one always seems to

rise to the top.

 And despite the fact that opposing motives may seem counter-productive to fostering a

collection of platform-neutral technology standards, the quality of what's been delivered

so far has been adequate for furthering the cause of SOA.

2.b Which are the different architecture types? Explain distributed internet architecture and

compare with SOA

Application Architecture

• With the rise of multi-tier applications, the variations with which applications could be

delivered began to increase

• A definition of a baseline definition application becomes important

• The definition is

– abstract in nature,

– but specifically explained the technology,

– boundaries,

– rules,

– limitations, and

– design characteristics that apply to all solutions - application architecture.

• An application architecture is a blueprint

• Different levels can be specified, depending on the organization Some keep it

– high-level,

– providing abstract physical and logical representations of the technical blueprint.

• Some more detail, such as

– common data models,

– communication flow diagrams,

– application-wide security requirements, and

– aspects of infrastructure.

• An organization that houses both .NET and J2EE solutions

• Having separate application architecture specifications for each.

• Key part - it should reflect immediate solution requirements, as well as long-term,

strategic IT goals.

Enterprise Architecture

• In larger IT, Different application architectures co-exist and even integrate, the demands

on the underlying hosting platforms can be complex.

• Master specification to be created, providing a high-level overview of all forms of

heterogeneity that exist within an enterprise, as well as a definition of the supporting

infrastructure.

• Enterprise architecture specification - what an urban plan is to a city.

• Relationship between an urban plan and the blueprint of a building are comparable to that

of enterprise and application architecture specifications.

• Changes to enterprise architectures directly affect application architectures

• Architecture specifications often are maintained by the same group of individuals.

• EA contains a long-term vision of how the organization plans to evolve its technology

and environments.

• For example, the goal of phasing out an outdated technology platform may be established

in this specification.

Service Oriented Architecture

• Service-oriented architecture extents both enterprise and application architecture

domains.

• The benefit offered by SOA can be realized when applied across multiple solution

environments.

• Building reusable and interoperable services based on a vendor-neutral communications

platform can fully be leveraged.

• This does not mean that the entire enterprise must become service-oriented. SOA belongs

in those areas that have the most to gain from the features and characteristics it

introduces.

• "SOA" does not imply a particular architectural scope.

• SOA refer to an application architecture or the approach used to standardize technical

architecture across the enterprise.

• Because of the composable nature of SOA, it is absolutely possible for an organization to

have more than one SOA.

• Web services platform offers one of a number of available forms of implementation for

SOA.

Distributed Internet architecture
Distributing application logic among multiple components (some residing on the client,

others on the server) reduced deployment headaches by centralizing a greater amount of the logic

on servers.

Server-side components, here located on dedicated application servers, would then share and

manage pools of database connections, alleviating the burden of concurrent usage on the

database server .A single connection could easily facilitate multiple users

These benefits came at the cost of increased complexity and ended up shifting expense and

effort from deployment issues to development and administration processes.

Building components capable of processing multiple, concurrent requests was more difficult

and problem-ridden than developing a straight-forward executable intended for a single user.

It replaces the client-server database connections with the client-server remote procedure call

(RPC) connection.

RPC technologies such as CORBA and DCOM allowed for remote communication between

components residing on client workstations and servers.

This increases maintenance effort resulting from the introduction of the middleware layer.

For example, application servers and transaction monitors required significant attention in larger

environments.

Application logic
Distributed Internet applications place all of their application logic on the server side. Even

client-side scripts intended to execute in response to events on a Web page are downloaded from

the Web server upon the initial HTTP request. With none of the logic existing on the client

workstation, the entire solution is centralized.

The emphasis is therefore on how application logic should be partitioned where the

partitioned units of processing logic should reside

Service-oriented architecture is very similar to distributed Internet architecture. Provider

logic resides on the server end where it is broken down into separate units. The differences lie in

the principles used to determine the three primary design considerations just listed.

Traditional distributed applications consist of a series of components that reside on one or

more application servers. Components are designed with varying degrees of functional

granularity, depending on the tasks they execute

 Components residing on the same server communicate via proprietary APIs, as per the

public interfaces they expose. RPC protocols are used to accomplish the same

communication across server boundaries.

This is made possible through the use of local proxy stubs that represent components in

remote locations

Contemporary SOAs still employ and rely on components. However, the entire modeling

approach now takes into consideration the creation of services that encapsulate some or all of

these components.

These services are designed according to service-orientation principles and are strategically

positioned to expose specific sets of functionality.

. The standardized interface supports the open communications framework that sits at the

core of SOA. When properly designed, loosely coupled services support a composition model,

allowing individual services to participate in aggregate assemblies. This introduces continual

opportunities for reuse and extensibility.

Another significant shift related to the design and behavior of distributed application logic is

in how services exchange information.

While traditional components provide methods that, once invoked, send and receive

parameter data, Web services communicate with SOAP messages.

Reuse is also commonly emphasized in traditional distributed design approaches, SOA

fosters reuse and cross-application interoperability on a deep level by promoting the creation of

solution-agnostic services.

Application processing
Distributed Internet architecture promotes the use of proprietary communication protocols,

such as DCOM and vendor implementations of CORBA for remote data exchange.

These technologies historically have had challenges, they are considered relatively efficient

and reliable, especially once an active connection is made. They can support the creation of

stateful and stateless components that primarily interact with synchronous data exchanges

(asynchronous communication is supported by some platforms but not commonly used).

SOA, on the other hand, relies on message-based communication. This involves the

serialization, transmission, and deserialization of SOAP messages containing XML document

payloads.

Processing steps can involve the conversion of relational data into an XML-compliant

structure, the validation of the XML document prior and subsequent to transmission, and the

parsing of the document and extraction of the data by the recipient.

Network of SOAP servers can effectively replace RPC-style communication channels within

service-oriented application environments, the incurred processing overhead becomes a

significant design issue.

Document and message modeling conventions and the strategic placement of validation logic

are important factors that shape the transport layer of service-oriented architecture.

. Technology

The technology behind distributed Internet architecture consisted of components, server-side

scripts, and raw Web technologies, such as HTML and HTTP.

The subsequent availability of Web services allowed distributed Internet applications to cross

proprietary platform boundaries.

Distributed applications use XML and Web services, there may be little difference between

the technology behind these solutions and those based on SOA. One clear distinction, though, is

that a contemporary SOA will most likely be built upon XML data representation and the Web

services technology platform.

Thus XML and Web services are optional for distributed Internet architecture but not for

contemporary SOA.

Security
When application logic is strewn across multiple physical boundaries, implementing

fundamental security measures such as authentication and authorization becomes more difficult.

In a two-tiered client-server environment, an exclusive server-side connection easily facilitates

the identification of users and the safe transportation of corporate data.

Connection is removed, and when data is required to travel across different physical layers,

new approaches to security are needed.

To ensure the safe transportation of information and the recognition of user credentials, while

preserving the original security context, traditional security architectures incorporate approaches

such as delegation and impersonation.

Encryption also is added to the otherwise wide open HTTP protocol to allow data to be

protected during transmission beyond the Web server.

In SOA security is incorporated and applied by the WS-Security framework, the security

models used within SOA emphasize the placement of security logic onto the messaging level.

SOAP messages provide header blocks in which security logic can be stored. That way,

wherever the message goes, so does its security information. This approach is required to

preserve individual autonomy and loose coupling between services, as well as the extent to

which a service can remain fully stateless

In a two-tiered client-server environment, an exclusive server-side connection easily

facilitates the identification of users and the safe transportation of corporate data.

Connection is removed, and when data is required to travel across different physical layers,

new approaches to security are needed.

To ensure the safe transportation of information and the recognition of user credentials, while

preserving the original security context, traditional security architectures incorporate approaches

such as delegation and impersonation.

Encryption also is added to the otherwise wide open HTTP protocol to allow data to be

protected during transmission beyond the Web server.

In SOA security is incorporated and applied by the WS-Security framework, the security

models used within SOA emphasize the placement of security logic onto the messaging level.

SOAP messages provide header blocks in which security logic can be stored. That way,

wherever the message goes, so does its security information. This approach is required to

preserve individual autonomy and loose coupling between services, as well as the extent to

which a service can remain fully stateless.

Administration

Maintaining component-based applications involves keeping track of individual component

instances, tracing local and remote communication problems, monitoring server resource

demands, and, of course, the standard database administration tasks

Distributed Internet architecture further introduces the Web server and with it an additional

physical environment that requires attention while solutions are in operation. Because clients,

whether local or external to an organization, connect to these solutions using HTTP, the Web

server becomes the official first point of contact.

It must therefore be designed for scalability requirement that has led to the creation of Web

server farms that pool resources.

SOAs typically require additional runtime administration. Problems with messaging

frameworks can more easily go undetected than with RPC-based data exchanges.

This is because so many variations exist as to how messages can be interchanged. RPC

communication generally requires a response from the initiating component, indicating success

or failure.

Upon encountering a failure condition, an exception handling routine kicks in. Exception

handling with messaging frameworks can be more complex and less robust.

Other maintenance tasks, such as resource management are also required. However, to best

foster reuse and composability, a useful part of an administration infrastructure for enterprises

building large amounts of Web services is a private registry.

3.a. Explain different types of web services roles

5.2.1. Service roles

 A Web service is capable of assuming different roles, depending on the context within

which it is used.

 For example, a service can act as the initiator, relayer, or the recipient of a message.

 A service is therefore not labeled exclusively as a client or server, but instead as a unit of

software capable of altering its role, depending on its processing responsibility in a given

scenario.

 Provided here are descriptions of the fundamental service roles.

Service provider

The service provider role is assumed by a Web service under the following conditions:

 The Web service is invoked via an external source, such as a service requestor

 The Web service provides a published service description offering information about its

features and behavior.

 The service provider takes the role of server.

 Depending on the type of message exchange used when invoking a service provider,

 The service provider may reply to a request message with a response message.

Classified into

 service provider entity (the organization or individual providing the Web service)

 service provider agent (the Web service itself, acting as an agent on behalf of its owner)

Service requestor

 Any unit of processing logic capable of issuing a request message that can be understood

by the service provider is classified as a service requestor.

 A Web service is always a service provider but also can act as a service requestor.

 A Web service takes on the service requestor role under the following circumstances:

 The Web service invokes a service provider by sending it a message

 The Web service searches for and assesses the most suitable service provider by studying

available service descriptions.

 The service requestor takes the role of client.

 It is important to note that a service provider is not acting as a service requestor when it

sends a message in response to a request message.

A service requestor can represent both the Web service itself as well as the Web service owner

 service requestor entity (the organization or individual requesting the Web service)

 service requestor agent (the Web service itself, acting as an agent on behalf of its owner)

Intermediaries

 The communications framework established by Web services different from traditional

point-to-point communications channels.

 Point-to-point communication was a great deal easier to design since less flexible and

less scalable

 Web services communication is based on the use of messaging paths, which can best be

described as point-to-* paths.

 Once a service provider submits a message, it can be processed by multiple intermediate

routing and processing agents before it arrives at its ultimate destination.

Web services and service agents that route and process a message after it is initially sent and

before it arrives at its ultimate destination are referred to as intermediaries or intermediary

services

There are two types of intermediaries.

1. Passive intermediary

2. Active Intermediary

Passive intermediary (Does not modify the message)

 Responsible for routing messages to a subsequent location.

 It may use information in the SOAP message header to determine the routing path, or it

may employ native routing logic to achieve some level of load balancing.

Active intermediaries

 It is used route messages to a forwarding destination.

 Alter the message contents

 It will look for particular SOAP header blocks and perform some action in response to

the information they find there.

 Alter data in header blocks and may insert or even delete header blocks entirely.

Initial sender and ultimate receiver

 Initial senders are service requestors that initiate the transmission of a message.

 Always the first Web service in a message path.

 The counterpart to this role is the ultimate receiver.

 Service providers that exist as the last Web service along a message's path

Service compositions

 Composite relationship between a collection of services.

 Any service can enlist one or more additional services to complete a given task.

 Any of the enlisted services can call other services to complete a given sub-task.

 Service that participates in a composition assumes an individual role of service

composition member

 Some Web services to be designed in such a manner that they can be pulled into future

service compositions without a foreknowledge of how they will be utilized.

3.b.Explain SOAP message frameworks and SOAP nodes

5.4. Messaging (with SOAP)

 All communication between services is message-based,

 The messaging framework chosen must be standardized so that all services, regardless of

origin, use the same format and transport protocol.

 Message-centric application design that an increasing amount of business and application

logic is embedded into messages.

 The SOAP specification was chosen to meet all of these requirements

 Universally accepted as the standard transport protocol for messages processed by Web

services

5.4.1. Messages

Simple Object Access Protocol, the SOAP specification's main purpose is to define a standard

message format.

The structure of this format is quite simple, but its ability to be extended and customized

Envelope, header, and body

Every SOAP message is packaged into a container known as an envelope.

Much like the metaphor this conjures up, the envelope is responsible for housing all parts of the

message

 Each message can contain a header, an area dedicated to hosting meta information.

 Service-oriented solutions, this header section important

 The actual message contents consists of XML formatted data.

 The contents of a message body are often referred to as the message payload.

Header blocks

 SOAP communications framework used by SOAs, the creating messages that are

intelligence-heavy and self-sufficient

 Independence that increases the robustness and extensibility

 Message independence is implemented through the use of header blocks

 packets of supplementary meta information stored in the envelope's header area.

 It further reinforces the characteristics of contemporary SOA related to fostering reuse,

interoperability, and composability.

 Examples of the types of features a message can be outfitted with using header blocks

include:

o processing instructions that may be executed by service intermediaries or the

ultimate receiver

o routing or workflow information associated with the message

o security measures implemented in the message

o reliability rules related to the delivery of the message

o context and transaction management information

o correlation information

Message styles

 The SOAP specification was originally designed to replace proprietary RPC protocols

 Distributed components to be serialized into XML documents, transported, and then

deserialized into the native component format upon arrival.

Two types of Message styles

1. RPC-style message runs contrary to the emphasis SOA places on independent,

intelligence-heavy messages.

2. SOA relies on document-style messages to enable larger payloads, coarser interface

operations, and reduced message transmission volumes between services.

Attachments

 To facilitate requirements for the delivery of data not so easily formatted into an XML

document, the use oSf OAP attachment technologies exist.

 Each provides a different encoding mechanism used to bundle data in its native format

with a SOAP message.

 SOAP attachments are commonly employed to transport binary files, such as images.

Faults

 SOAP messages offer the ability to add exception handling logic by providing an

optionafla ult section

 It resides within the body area.

 The typical use for this section is to store a simple message used to deliver error

condition information when an exception occurs.

5.4.2. Nodes

The programs that services use to transmit and receive SOAP messages are referred to as SOAP

nodes.

 Regardless of how they are implemented, SOAP nodes must conform to the processing

standard set forth in the versions of the SOAP specification they support.

 Vendor-neutral communications framework upon which SOA is based on the SOAP

node.

 It is what guarantees that a SOAP message sent by the SOAP node from service A can be

received and processed by a SOAP node from any other service.

Node types

 SOAP nodes are given labels that identify their type, depending on what form of

processing they are involved with in a given message processing scenario.

 Below is a list of type labels associated with SOAP nodes

 The SOAP specification has a different use for the term "role" and instead refers to these

SOAP types or labels as concepts.

o SOAP sendera SOAP node that transmits a message

o SOAP receivera SOAP node that receives a message

o SOAP intermediarya SOAP node that receives and transmits a message, and

optionally processes the message prior to transmission

o initial SOAP senderthe first SOAP node to transmit a message

o ultimate SOAP receiverthe last SOAP node to receive a message

SOAP intermediaries

Service intermediaries transition through service provider and service requestor roles, SOAP

intermediary nodes move through SOAP receiver and SOAP sender types when processing a

message

SOAP nodes acting as intermediaries can be classified as forwarding or active.

When a SOAP node acts as a forwarding intermediary, it is responsible for relaying the contents

of a message to a subsequent SOAP node. In doing so, the intermediary will often process and

alter header block information relating to the forwarding logic it is executing.

Active intermediary nodes are distinguished by the type of processing they perform above and

beyond forwarding-related functions. An active intermediary is not required to limit its

processing logic to the rules and instructions provided in the header blocks of a message it

receives. It can alter existing header blocks, insert new ones, and execute a variety of supporting

actions.

5.4.3. Message paths

A message path refers to the route taken by a message from when it is first sent until it arrives at

its ultimate destination. Therefore, a message path consists of at least one initial sender, one

ultimate receiver, and zero or more intermediaries (Figure 5.26). Mapping and modeling

message paths becomes an increasingly important exercise in SOAs, as the amount of

intermediary services tends to grow along with the expansion of a service-oriented solution.

Design considerations relating to the path a message is required to travel often center around

performance, security, context management, and reliable messaging concerns.

Note also that a message path is sometimes not predetermined. The use of header blocks

processed by intermediaries can dynamically determine the path of a message. This may be the

result of routing logic, workflow logic, or environmental conditions

When used within the context of SOAP nodes, this term is qualified and therefore referred to as a

SOAP message path. While a message path in abstract can be purely logical, the SOAP node

perspective is always focused on the actual physical transport route. A SOAP message path is

comprised of a series of SOAP nodes, beginning with the initial SOAP sender and ending with

the ultimate SOAP receiver. Every node refers to a physical installation of SOAP software, each

with its own physical address.

4.a. What is MEP? Explain various types of MPS

Message exchange patterns
Every task automated by a Web service can differ in both the nature of the application logic

being executed and the role played by the service in the overall execution of the business task.

Regardless of how complex a task is, almost all require the transmission of multiple messages.

The challenge lies in coordinating these messages in a particular sequence so that the individual

actions performed by the message are executed properly and in alignment with the overall

business task .

The fundamental characteristic of the fire-and-forget pattern is that a response to a transmitted

message is not expected.

Message exchange patterns (MEPs) represent a set of templates that provide a group of already

mapped out sequences for the exchange of messages. The most common example is a request

and response pattern. Here the MEP states that upon successful delivery of a message from one

service to another, the receiving service responds with a message back to the initial requestor.

Many MEPs have been developed, each addressing a common message exchange requirement. It

is useful to have a basic understanding of some of the more important MEPs, as you will no

doubt be finding yourself applying MEPs to specific communication requirements when

designing service-oriented solutions.

Primitive MEPs
Before the arrival of contemporary SOA, messaging frameworks were already well used by

various messaging-oriented middleware products. As a result, a common set of primitive MEPs

has been in existence for some time.

Request-response

This is the most popular MEP in use among distributed application environments and the one

pattern that defines synchronous communication (although this pattern also can be applied

asynchronously).

The request-response MEP establishes a simple exchange in which a message is first transmitted

from a source (service requestor) to a destination (service provider). Upon receiving the

message, the destination (service provider) then responds with a message back to the source

(service requestor).

Fire-and-forget
This simple asynchronous pattern is based on the unidirectional transmission of messages from a

source to one or more destinations .

A number of variations of the fire-and-forget MEP exist, including:

The single-destination pattern, where a source sends a message to one destination only.

The multi-cast pattern, where a source sends messages to a predefined set of destinations.

The broadcast pattern, which is similar to the multi-cast pattern, except that the message is sent

out to a broader range of recipient destinations.

Complex MEPs
Even though a message exchange pattern can facilitate the execution of a simple task, it is really

more of a building block intended for composition into larger patterns. Primitive MEPs can be

assembled in various configurations to create different types of messaging models, sometimes

called complex MEPs.

The publish-and-subscribe pattern introduces new roles for the services involved with the message

exchange. They now become publishers and subscribers, and each may be involved in the

transmission and receipt of messages. This asynchronous MEP accommodates a requirement for a

publisher to make its messages available to a number of subscribers interested in receiving them.

Step 1 in the publish-and-subscribe MEP could be implemented by a request-response MEP, where

the subscriber's request message, indicating that it wants to subscribe to a topic, is responded to by a

message from the publisher, confirming that the subscription succeeded or failed.

Step 2 then could be supported by one of the fire-and-forget patterns, allowing the publisher to

broadcast a series of unidirectional messages to subscribers

4.b Explain atomic transactions in detail

Atomic transactions :Transactions have been around for almost as long as automated computer

solutions have existed. When managing certain types of corporate data, the need to wrap a series

of changes into a single action is fundamental to many business process requirements. Atomic

transactions implement the familiar commit and rollback features to enable cross-service

transaction support

.

Atomic transactions apply an all-or-nothing requirement to work performed as part of an activity

ACID transactions
The protocols provided by the WS-AtomicTransaction specification enable cross-service

transaction functionality comparable to the ACID-compliant transaction features found in most

distributed application platforms.

For those of you who haven't yet worked with ACID transactions, let's quickly recap this

important standard. The term "ACID" is an acronym representing the following four required

characteristics of a traditional transaction:

Atomic Either all of the changes within the scope of the transaction succeed, or none of them

succeed. This characteristic introduces the need for the rollback feature that is responsible for

restoring any changes completed as part of a failed transaction to their original state.

Consistent None of the data changes made as a result of the transaction can violate the validity of

any associated data models. Any violations result in a rollback of the transaction.

Isolated If multiple transactions occur concurrently, they may not interfere with each other. Each

transaction must be guaranteed an isolated execution environment.

Durable Upon the completion of a successful transaction, changes made as a result of the

transaction can survive subsequent failures.

Atomic transaction protocols :WS-AtomicTransaction is a coordination type, meaning that it is

an extension created for use with the WS-Coordination context management framework we

covered in the previous section. To participate in an atomic transaction, a service first receives a

coordination context from the activation service. It can subsequently register for available atomic

transaction protocols.

The following primary transaction protocols are provided:

A Completion protocol, which is typically used to initiate the commit or abort states of the

transaction.

The Durable 2PC protocol for which services representing permanent data repositories should

register.

The Volatile 2PC protocol to be used by services managing non-persistent (temporary) data.

Most often these protocols are used to enable a two-phase commit (2PC) that manages an atomic

transaction across multiple service participants.

The atomic transaction coordinator
When WS-AtomicTransaction protocols are used, the coordinator controller service can be

referred to as an atomic transaction coordinator. This particular implementation of the WS-

Coordination coordinator service represents a specific service model. The atomic transaction

coordinator plays a key role in managing the participants of the transaction process and in

deciding the transaction's ultimate outcome.

5. a Explain in detail about Choreography in SOA

(10)

Choreography

The Web Services Choreography Description Language (WS-CDL) is one of several

specifications that attempts to organize information exchange between multiple organizations (or

even multiple applications within organizations), with an emphasis on public collaboration

Figure 6.37. A choreography enables collaboration between its participants.

6.7.1. Collaboration

 An important characteristic of choreographies is that they are intended for public message

exchanges.

 The goal is to establish a kind of organized collaboration between services representing

different service entities, only no one entity (organization) necessarily controls the

collaboration logic.

 Choreographies therefore provide the potential for establishing universal interoperability

patterns for common inter-organization business tasks.

6.7.2. Roles and participants

 Within any given choreography, a Web service assumes one of a number of predefined roles.

 This establishes what the service does and what the service can do within the context of a

particular business task.

 Roles can be bound to WSDL definitions, and those related are grouped accordingly,

categorized as participants (services).

6.7.3. Relationships and channels

 Every action that is mapped out within a choreography can be broken down into a series of

message exchanges between two services.

 Each potential exchange between two roles in a choreography is therefore defined

individually as a relationship.

 Every relationship consequently consists of exactly two roles.

 Channels provides the means of establishing the nature of the conversation, by defining the

characteristics of the message exchange between two specific roles.

 WS-CDL specification, as it fosters dynamic discovery and increases the number of potential

participants within large-scale collaborative tasks.

6.7.4. Interactions and work units

 The actual logic behind a message exchange is encapsulated within an interaction.

 Interactions are the fundamental building blocks of choreographies because the completion

of an interaction represents actual progress within a choreography.

 Related to interactions are work units.

 These impose rules and constraints that must be adhered to for an interaction to successfully

complete

6.7.5. Reusability, composability, and modularity

 Each choreography can be designed in a reusable manner, allowing it to be applied to

different business tasks comprised of the same fundamental actions.

 A choreography can be assembled from independent modules.

 These modules can represent distinct sub-tasks and can be reused by numerous different

parent choreographies

Figure 6.38. A choreography composed of two smaller choreographies.

6.7.6. Orchestrations and choreographies

 Both Orchestrations and choreographies represent complex message interchange patterns

 Both include multi-organization participants.

 An orchestration expresses organization-specific business workflow. This means that an

organization owns and controls the logic behind an orchestration, even if that logic involves

interaction with external business partners.

 A choreography, on the other hand, is not necessarily owned by a single entity. It acts as a

community interchange pattern used for collaborative purposes by services from different

provider entities

Figure 6.39. A choreography enabling collaboration between two different orchestrations

5. b Discuss in detail about the common principles of service orientation (10)

 Services are reusable— Regardless of whether immediate reuse opportunities exist,

services are designed to support potential reuse.

 Services share a formal contract— For services to interact, they need not share anything

but a formal contract that describes each service and defines the terms of information

exchange.

 Services are loosely coupled— Services must be designed to interact without the need for

tight, cross-service dependencies.

 Services abstract underling logic— The only part of a service that is visible to the outside

world is what is exposed via the service contract. Underlying logic, beyond what is

expressed in the descriptions that comprise the contract, is invisible and irrelevant to

service requestors.

 Services are composable— Services may compose other services. This allows logic to be

represented at different levels of granularity and promotes reusability and the creation of

abstraction layers.

 Services are autonomous— The logic governed by a service resides within an explicit

boundary. The service has control within this boundary and is not dependent on other

services for it to execute its governance.

 Services are stateless— Services should not be required to manage state information, as

that can impede their ability to remain loosely coupled. Services should be designed to

maximize statelessness even if that means deferring state management elsewhere.

 Services are discoverable—Services should allow their descriptions to be discovered and

understood by humans and service requestors that may be able to make use of their logic.

8.3.1 Services are reusable

Service-orientation encourages reuse in all services, regardless if immediate requirements for

reuse exist. By applying design standards that make each service potentially reusable, the

chances of being able to accommodate future requirements with less development effort are

increased. Inherently reusable services also reduce the need for creating wrapper services that

expose a generic interface over top of less reusable services.

8.3.2 Services share a formal contract

Service contracts provide a formal definition of:

• the service endpoint

• each service operation

• every input and output message supported by each operation • rules and characteristics of the

service and its operations

Services are loosely coupled :

No one can predict how an IT environment will evolve. How automation solutions grow,

integrate, or are replaced over time can never be accurately planned out because the requirements

that drive these changes are almost always external to the IT environment. Being able to

ultimately respond to unforeseen changes in an efficient manner is

a key goal of applying service-orientation

Services abstract underlying logic

Also referred to as service interface-level abstraction, it is this principle that allows services

to act as black boxes, hiding their details from the outside world. The scope of logic represented

by a service significantly influences the design of its operations and its position

within a process.

Services are composable

A service can represent any range of logic from any types of sources, including other services.

The main reason to implement this principle is to ensure that services are designed so that they

can participate as effective members of other service compositions if ever required. This

requirement is irrespective of whether the service itself composes others to accomplish its work

Services are autonomous

Autonomy requires that the range of logic exposed by a service exist within an explicit boundary.

This allows the service to execute self-governance of all its processing. It also eliminates

dependencies on other services, which frees a service from ties that could inhibit its deployment

and evolution (Figure 8.22). Service autonomy is a primary consideration when deciding how

application logic should be divided up into services and which operations should be grouped

together within a service context.

Services are stateless

Services should minimize the amount of state information they manage and the duration for

which they hold it. State information is data-specific to a current activity. While a service is

processing a message, for example, it is temporarily stateful (Figure 8.24). If a service is

responsible for retaining state for longer periods of time, its ability to remain available to other

requestors will be impeded

Services are discoverable

Discovery helps avoid the accidental creation of redundant services or services that implement

redundant logic. Because each operation provides a potentially reusable piece of processing

logic, metadata attached to a service needs to sufficiently describe not only the service’s overall

purpose, but also the functionality offered by its operations.

6.a. Explain the application service Layer

 they expose functionality within a specific processing context

 they draw upon available resources within a given platform

 they are solution-agnostic

 they are generic and reusable

 they can be used to achieve point-to-point integration with other application services

 they are often inconsistent in terms of the interface granularity they expose

 they may consist of a mixture of custom-developed services and third-party services that

have been purchased or leased

Typical examples of service models implemented as application services include the following:

utility service

When a separate business service layer exists, there is a strong motivation to turn all application

services into generic utility services. This way they are implemented in a solution-agnostic

manner, providing reusable operations that can be composed by business services to fulfill

business-centric processing requirements. Alternatively, if business logic does not reside in a

separate layer, application services may be required to implement service models more

associated with the business service layer. For example, a single application service also can be

classified as a business service if it interacts directly with application logic and contains

embedded business rules.

Services that contain both application and business logic can be referred to as hybrid application

services or just hybrid services. This service model is commonly found within traditional

distributed architectures. It is not a recommended design when building service abstraction

layers

Finally, an application service also can compose other, smaller-grained application services

(such as proxy services) into a unit of

coarse-grained application logic. Aggregating application services is frequently done to

accommodate integration requirements.

Application services that exist solely to enable integration between systems often are referred to

as application integration services or simply integration services. Integration services often are

implemented as controllers.

Because they are common residents of the application service layer, now is a good time to

introduce the wrapper service model. Wrapper services most often are utilized for integration

purposes. They consist of services that encapsulate ("wrap") some or all parts of a legacy

environment to expose legacy functionality to service requestors. The most frequent form of

wrapper service is a service adapter provided by legacy vendors. This type of out-of-the-box

Web service simply establishes a vendor-defined service interface that expresses an underlying

API to legacy logic.

Another variation of the wrapper service model not discussed in this book is the proxy service,

also known as an auto-generated WSDL. This simply provides a WSDL definition that mirrors

an existing component interface. It establishes an endpoint on the component's behalf, essentially

allowing it to participate in SOAP communication. The proxy service should not be confused

with a service proxy, which is used by service requestors to contact service providers

6.b. Explain the business service layer and orchestration service layer

While application services are responsible for representing technology and application logic, the

business service layer introduces a service concerned solely with representing business logic,

called the business service

Business service layer abstraction leads to the creation of two further business service models:

1. Task-centric business service A service that encapsulates business logic specific to a task or

business process. This type of service generally is required when business process logic is not

centralized as part of an orchestration layer. Task-centric business services have limited reuse

potential.

2. Entity-centric business service A service that encapsulates a specific business entity (such as an

invoice or timesheet). Entity-centric services are useful for creating highly reusable and business

process-agnostic services that are composed by an orchestration layer or by a service layer

consisting of task-centric business services (or both).

Orchestration is more valuable to us than a standard business process, as it allows us to directly

link process logic to service interaction within our workflow logic. This combines business

process modeling with service-oriented modeling and design. And, because orchestration

languages (such as WS-BPEL) realize workflow management through a process service model,

orchestration brings the business process into the service layer, positioning it as a master

composition controller.

The orchestration service layer introduces a parent level of abstraction that alleviates the need for

other services to manage interaction details required to ensure that service operations are

executed in a specific sequence (Figure 9.5). Within the orchestration service layer, process

services compose other services that provide specific sets of functions, independent of the

business rules and scenario-specific logic required to execute a process instance.

7.a Explain WS-Addressing language basics

17.1.1. The EndpointReference element

The EndpointReference element is used by the From, ReplyTo, and FaultTo elements described

in the Message information header

elements section. This construct can be comprised of a set of elements that assist in providing

service interface information (including

supplementary metadata), as well as the identification of service instances.

The WS-Addressing elements described in Table 17.1 can be associated with an

EndpointReference construct.

17.1.2. Message information header elements

This collection of elements (first introduced as concepts in Chapter 7) can be used in various

ways to assemble metadata-rich SOAP

header blocks. Table 17.2 lists the primary elements and provides brief descriptions.

17.1.3. WS-Addressing reusability

The endpoint identification and message routing mechanisms provided by WS-Addressing

establish a generic set of extensions useful to custom service-oriented solutions but also reusable

by other WS-* specifications. As such, WS-Addressing can be viewed as a utility specification

that further supports the notion of composability within SOA.

Although we don't discuss the WS-Notification or WS-Eventing languages in any detail, let's

take a brief glimpse at their Header constructs for some examples of how WS-Addressing

message information header elements are reused in support of other WS-* extensions.

8.Write short notes on the following

a. WSDL

Service Description provides the key to establishing a consistently loosely coupled form of

communication between services implemented as Web services.

Description documents are required to accompany any service wanting to act as an ultimate

receiver.

The primary service description document is the WSDL definition

b. XML

• XML was a W3C creation derived from the popular Standard Generalized Markup

Language (SGML) that has existed since the late 60s.

• World Wide Web Consortium (W3C) is the main international standards organization

for WWW

• purpose : Working together in the development of standards for the World Wide Web

• Widely used meta language

• It allowed Organizations to add intelligence to raw document data.

• XML gained popularity during the eBusiness movement of the late 90s

• Server-side scripting languages made conducting business via the Internet viable.

• By XML, developers were able to attach meaning and context to any piece of information

transmitted across Internet protocols.

• Not only was XML used to represent data in a standardized manner, but the language

itself was used as the basis for a series of additional specifications.

• The XML Schema Definition Language (XSD) and the XSL Transformation Language

(XSLT) were both authored using XML.

• These specifications, in fact, have become key parts of the core XML technology set.

• The XML data representation architecture represents the foundation layer of SOA.

• Within it, XML establishes the format and structure of messages traveling throughout

services.

• XSD schemas preserve the integrity and validity of message data,

• XSLT is employed to enable communication between disparate data representations

through schema mapping.

• In other words, you cannot make a move within SOA without involving XML.

XML

<item>

 <title>Empire Burlesque</title>

 <note>Special Edition</note>

 <quantity>1</quantity>

 <price>10.90</price>

 </item>

c. SOAP

 All communication between services is message-based,

 The messaging framework chosen must be standardized so that all services, regardless of

origin, use the same format and transport protocol.

 Message-centric application design that an increasing amount of business and application

logic is embedded into messages.

 The SOAP specification was chosen to meet all of these requirements

 Universally accepted as the standard transport protocol for messages processed by Web

services

5.4.1. Messages

Simple Object Access Protocol, the SOAP specification's main purpose is to define a standard

message format.

The structure of this format is quite simple, but its ability to be extended and customized

Envelope, header, and body

Every SOAP message is packaged into a container known as an envelope.

Much like the metaphor this conjures up, the envelope is responsible for housing all parts of the

message

d. Security

Security requirements for automation solutions are nothing new to the world of IT. Similarly,

service-oriented applications need to be

outfitted to handle many of the traditional security demands of protecting information and

ensuring that access to logic is only granted to those permitted.

However, the SOAP messaging communications framework, upon which contemporary SOA is

built, emphasizes particular aspects of security that need to be accommodated by a security

framework designed specifically for Web services.

A family of security extensions parented by the WS-Security specification comprise such a

framework, further broadened by a series Of supplementary specifications with specialized

feature sets. The basic functions performed by the following three core specifications:

 WS-Security

 XML-Signature

 XML-Encryption

Additionally, we'll briefly explore the fundamental concepts behind single sign-on, a form of

centralized security that complements these WS-Security extensions. Before we begin, it is worth

noting that this section organizes security concepts as they pertain to and support the following

five common security requirements: identification, authentication, authorization, confidentiality,

and integrity.

