
CM
RIT

 L
ib

ra
ry

CM
RIT

 L
ib

ra
ry

MCA - 13MCA41 - Analysis and Design of Algorithms

July 2017

Q1. (a) Define Algorithm, Explain the steps involed in algorithm designand

analysis process with neat diagram.

Sol:

An algorithm is a sequence of unambiguous instructions for solving a problem.

I.e., for obtaining a required output for any legitimate input in a finite amount

of time.

Understanding the problem:

 The first important thing to solve a problem to understand a

problem sufficiently. This may require the problem to be read

multiple times, asking questions if required and working out smaller

instances of problem by hand.

 Sometimes the problem at hand might already have many

algorithms to solve them. In such a case choose the algorithm that

might be best.

 It is also important to specify the kind of inputs for the problem

so that the algorithm can be designed to work correctly under all

circumstances.

∗Ascertaining the capabilities of a computational Device:

 Machines that exexure instructions sequentially follow the random access

model(RAM). Algorithms designed fir such machines are called sequential

algorithms. Majority of algorithms are sequential algorithms.

 Newer machines can run instructions parallel and algorithms which have

written for such machines are called parallel algorithms. RAM model

doesn’t support this.

For complex problem which involve processing large amounts of data in

real time it helps to be aware of the computational power and the memory

available in the machine where the program is to be executed

∗ Choosing between exact and approximate problem solving:

 There are two situations in which we may have to go for approximate

solution:

 If the quantity to be computed cannot be calculated exactly. For example

finding square roots, solving non linear equations etc.

 Complex algorithms may have solutions which take an unreasonably long

amount of time if solved exactly. In such a case we may opt for going for

a fast but approximate solution.

∗Deciding on data structures:

Data structures play a vital role in designing and analyzing the algorithms.

Some of the algorithm design techniques also depend on the structuring data

specifying a problem’s instance.

∗Algorithm Design Techniques:

An algorithm design technique is a general approach to solving problems

algorithmically that is applicable to a variety of problems from different areas

of computing. Various design methods for algorithms exist, some of which are –

divide and conquer, dynamic programming, greedy algorithms etc.

∗Methods of specifying an Algorithm:

Algorithm can be specified in using natural language, but due to the

inherent ambiguity, a psuedocode representation which is closer to the

computer language is used. Flowchart which is a diagrammatic representation of

the flow of the algorithms was used in the earlier days but has decreased in

popularity due to complexity for large programs. Thus the most prevelant

method of specifying an algorithm is using psuedocode.

∗ Proving an Algorithm’s correctness:

Correctness has to be proved for every algorithm. To prove that the

algorithm gives the required result for every legitimate input in a finite amount

of time. For some algorithms, a proof of correctness is quite easy; for others it

can be quite complex. Mathematical Induction is normally used for proving

algorithm correctness.

(b) Write formal definition of asymptotic notations with graph representations.

Sol:

Sol: Definition: A function t(n) is said to be in 0[g(n)]. Denoted t(n) ∈ 0[g(n)], if

t(n) is bounded above by some constant multiple of g(n) for all large n ie.., there

exist some positive constant c and some non negative integer no such that t(n) ≤

cg(n) for all n≥no.

Eg. 100n+5 ∈ 0 (n
2
)

Ω -Notation:

Definition: A fn t(n) is said to be in Ω[g(n)], denoted t(n) ∈Ω[g(n)], if t(n) is

bounded below by some positive constant multiple of g(n) for all large n, ie.,

there exist some positive constant c and some non negative integer n0 s.t.

t(n) ≥ cg(n) for all n ≥ n0.

For example: n
3
∈ Ω(n

2
), Proof is n

3
≥ n

2
for all n ≥ n0. i.e., we can select c=1 and

n0=0.

θ - Notation:

Definition: A function t(n) is said to be in θ [g(n)], denoted t(n)∈ θ (g(n)), if t(n)

is bounded both above and below by some positive constant multiples of g(n) for

all large n, ie., if there exist some positive constant c1 and c2 and some

nonnegative integer n0 such that c2g(n) ≤ t(n) ≤ c1g(n) for all n ≥ n0..

For example: n
2
∈ θ(n

2
+4n+1), Proof is 7n

2
≥ n

2
+4n+1 for all n ≥ 0. i.e., we can

select c=7 and n0=0.

(c) List the steps involved in analyzing the time efficiency of non recursive

algorithms.

General Plan for Analyzing Efficiency of Nonrecursive Algorithms

1. Decide on a parameter (or parameters) indicating an input's size.

2. Identify the algorithm's basic operation. (As a rule, it is located in its

innermost

loop.)

3. Check whether the number of times the basic operation is executed depends

only

on the size of an input. If it also depends on some additional property, the

worst-

case, average-case, and, if necessary, best-case efficiencies have to be

investigated separately.

4. Set up a sum expressing the number of times the algorithm's basic operation

is

executed.

5. Using standard formulas and rules of sum manipulation either find a closed-

form formula for the count or, at the very least, establish its order of growth.

For example Consider the element uniqueness problem: check whether

all the elements in a given array are distinct. This problem can be solved by the

following straightforward algorithm.

ALGORITHM UniqueElements(A[0..n - 1])

//Checks whether all the elements in a given array are distinct

//Input: An array A[0..n - 1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise.

for i «— 0 to n — 2 do

 for j' <- i
:
+ 1 to n - 1 do

 if A[i] = A[j]

 return false

return true

Since the innermost loop contains a single operation (the comparison of two

elements), we should consider it as the algorithm's basic operation. There are

two kinds of worst-case inputs (inputs for which the algorithm does not exit

the loop prematurely): arrays with no equal elements and arrays in which the

last two elements are the only pair of equal elements. For such inputs, one

comparison is made for each repetition of the innermost loop, i.e., for each

value of the loop's variable j between its limits i + 1 and n - 1; and this is

repeated for each value of the outer loop, i.e., for each value of the loop's

variable i between its limits 0 and n - 2. Accordingly, we get:

Q2.(a) Solve the recurrence relation and draw a tree of recursive calls for the

tower of Hanoi problem.

Q2 (b) Write an algorithm for bubble sort and obtain an expression for the

number of times the basic operation is executed.

Sol:

The algorithm for bubble sort is as follows:

Analysis:

The no of key comparisons is the same for all arrays of size n, it is

obtained by a sum which is similar to selection sort.

Q2 (c) Sort the E,X,A,M,P,L,E in an alphabetical order by using selection sort.

Discuss whether selection sort satisfies stable and in place properties of

sorting algorithms.

Sol:

Selection sort is stable since the first minimum element from remaining

elements is chosen at every stage and thus among two records having the same

key value the one which occurs first always comes before the latter one.

Selection sort is in place since no extra memory is required for the sorting

process.

Q3. (a) Write algorithm for merge sort. Find time complexity of merge sort

using master's theorem.

Sol: The pseudocode for Merge sort is as follows:

Algorithm merge(arr,l,mid, u)

 Create a temporary array C[0..u]

 i<-- l

 j <-- mid+1

 k <-- l // index into temporary array

 while i <=mid and j <=u

 if arr[i] <= arr[j]

 C[k] <-- arr[i]

 i <-- i+1

 else

 C[k] <-- arr[j]

 j <-- j+1

 k <-- k+1

 //copying rest of elements from first subarray

 while i<=mid

 C[k] <-- arr[i]

 i <-- i+1

 k <-- k+1

 //copying rest of elements from second subarray

 while j<=u

 C[k] <-- arr[j]

 j <-- j+1

 k <-- k+1

 // copying all elements from temp array to original array

 for i in l to u

 arr[i] <-- C[i]

Algorithm mergesort(arr,l,u)

 // only do it if the array contains atleast 2 elements

 if l < u

 mid = (l+u)/2

 mergesort(A,l,mid)

 mergesort(A,mid+1,u)

 Merge(A,l,mid,u)

Analysis

We first analyse the merge function used for mergesort. We notice that to

merge an array with n elements at every step(in the first three loops)

anelement is always copied to the temporary array C. Since there are n elements

to be copied the number of operations in the first three loops is n. Similarly in

the last loop when the elements are copied from temporary array to the original

array(arr) there are again “n” copies. Thus the total number of copy operations

in the algorithm merge is O(n).

Analyzing the mergesort algorithm we find that each call involves two recursive

calls to mergesort with the problem size half and a call to merge which takes

O(n) time . Thus the recurrence can be wtitten as:

T(n) = 2 T(n/2)+cn.

Applying the master’s method, a=2, b=2 and d=1. Thus a=bd and thus case 2 of

Master’s method applies. Thus T(n) = O(nlgn).

Q3.(b) Apply strassen's method to multiply the matrices given below

A=[1 2 B=[8 7

 5 6] 1 2]

Sol: First we find the 7 products

[m
1
+ m

4
– m

5
+ m

7
m

3
+ m

5]

[m
2

+ m
4

m
1
+ m

3
– m

2
+ m

6]

Where,

m
1
= (a

00
+ a

11
) * (b

00
+ b

11
)

m
2

= (a
10

+ a
11

)* b
00

m
3

= a
00

* (b
01

- b
11

)

m
4

= a
11

* (b
10

– b
00

)

m
5

= (a
00

+ a
01

) * b
11

m
6

= (a
10

– a
00

) * (b
00

+ b
01

)

m
7

= (a
01

- a
11

) * (b
10

+ b
11

)

m1= 70, m2= 88, m3=5, m4=-42, m5=6, m6=60, m7=-12

The product of matrices =

[70-42 – 6

-12

5+6]

[88-42

70

+ 5

– 88

+ 60

]

= [10 11

 46 47]

Q3. (c) Discuss when the best, worst and average case efficiency occurs in

binary search program along with their time efficiency.

Sol:

Binary search algorithm is as follows:

Algorithm binsearch(A[0..n-1],key,l,u)

 If l>u

 Return -1

 While (l <=u)

 Mid (l+u)/2

 If A[mid] = key

 Return mid

 Else if A[mid] < key

 Return binsearch(A, l,mid-1)

 Else

 Return binsearch(A,mid+1,u)

Thus the recurrence would be C(n) = C(n/2)+1 , n>1 and C(1) = 0

The problem size at each step reduces by half each time. The additional amount

in computing the mid element and comparison with the key is constant time

operation and thus the 1 in the above expression.

Using master’s method, we find a=1 , b=2 and d=0. The a=bd and thus it is the

second case.

Hence C(n) = O(lgn)

Best Case: When the key is located as the middle element

Worst case: when key is not found

Average case: Other cases when key not in the middle but present in the array.

Q4. (a) Write an algorithm for insertion sort and find its time complexity in

worst case.

Sol: Insertion sort is used for sorting an array. The decrease and conquer idea

is to assume that the smaller problem of sorting the array A[0..n − 2] has

already been solved to give

us a sorted array of size n − 1: A[0]≤ . . . ≤ A[n − 2]. We need is to find an

appropriate position for A[n − 1] among the sorted elements and insert it there.

This is done by scanning the sorted subarray from right to left until the first

element smaller than or equal to A[n − 1] is encountered to insert A[n − 1] right

after that element.

Algorithm for insertion sort

The operation of insertion sort is illustrated through the example shown below:

Analysis:

Since for this algorithm the time complexity is dependent on the kind of input

we do worst case and best case analysis.

Worst Case:

In the worst case, A[j]> v is executed the largest number of times, i.e., for

every j = i − 1, . . . , 0. Since v = A[i], it happens if and only if A[j]>A[i] for j = i −

1, . . . , 0 which means that the array is sorted in decreasing order. The number

of key comparisons for such an input is:

Q4 (b) Write the similarities and dissimilarities of BFS and DFS.

Sol:

Given below is the comparison between DFS and BFS:

Similarities are:

 Both have the same time complexity for any graph representation.

 Both can be used for checking for graph connectedness and acyclicity.

 Both algorithms can be traced by drawing a Traversal forests .

Differences:

 DFS inherently uses a stack whereas BFS uses a queue

 The traversal forest for DFS has only back edges(for undirected graph)

whereas that for BFS has cross edges.

BFS can be used to find minimum edge paths whereas DFS can be used for

finding articulation points.

Q4 (c) Apply BFS on the following graph. Find for each vertex the distance

from source. Consider the source as 'a'.

Sol:

Q4. (d) What do you mean by topological order of a graph? Find the topological

ordering of the graph using source removal method.

Sol: For a Directed Acyclic Graph we can list its vertices in such an order that;

for every edge in the graph, the vertex where the edge starts is listed before

the vertex where the edge ends. This problem is called topological sorting.

Topological sorting can be used to solve real world problems such as task

scheduling where there is a dependency of a task on other tasks to be

performed. Topological sorting is different from other sorting algorithms

because the elements have a partial order and not a total order and thus the

order of vertices arranged in topological order is not unique.

Q5. (a)Write an algorithm for sorting by distribution counting . Apply the same

algorithm to sort the element: 12 13 10, 12, 10, 12, 11, 10, 13.

Sol:

Counting sort algorithm is an example of a situation where using extra memory

results in a efficient sorting technique. The idea is to count the frequencies of

occurrence of each value in an array. Thus if the set of elements belong to a

small range of numbers [l..u] then we can initially maintain a count of number of

times each number occurs in an array F. Thus F[0] would store the frequency of

occurance of l , F[1] would store the same of l+2 and F[u-l] would store the

frequency of u occurring. The next step is to find the cumulative sum of

elements in F. Thus F[i] would store the number of values in the original array

which are less than the element associated with i, i.e. l+i. The elements of A

whose values are equal to the lowest possible value l are copied into the first

F[0]elements of S, i.e., positions 0 through F[0]− 1;the elements of value l + 1

are copied to positions from F[0] to (F[0]+ F[1]) − 1; and so on.. The algorithm

for the same is given below:

(Q5(b) Apply Horspool's algorithm to search a pattern PAPPAR in the text

PAPPAPPAPPARRASSAN

Sol:

Q6((a) Write an algorithm for computing binomial coefficient C(n,K). What is

the time efficiency of this algorithm?

Sol:

The formula for finding Binomial coefficient is :

C(n,r) = C(n-1,r)+C(n-1,r-1) , if n > r

 = 1, if n=r or r=0

The formula for binomial coefficient is recursive and gives rise to overlapping

subproblems and thus is naturally solved using dynamic programming approach.

as follows:

Algo BinCoeff(n,r)

 Create a matrix C(n+1,r+1)

 for i <-- 0 to n

 C(i,0) <-- 1

 for i<-- 1 to r

 C(i,i) <-- 1

 for i<-- 2 to n

 for j<-- 1 to min(r,i-1)

 C(i,j) <-- C(i-1,j)+C(i-1,j-1)

This algorithm takes time O(nr) by avoiding repeated computation of overlapping

terms.

Q6(b) Find the transitive closure for the graph whose adjacency matrix is given

by:

0 1 0 0

0 0 0 1

0 0 0 0

1 0 1 0

Sol:

(c) Apply bottom up dynamic programming to the following instance of knpsacl

problem. Capacity of knapsack W=5

Sol:

Q7(a) Write an algorithm for Prim's minimal spanning tree algorithm.

Sol:

Prim’s algorithm is used for solving the minimal spanning tree problem. Spanning

tree of an undirected connected graph is its connected acyclic subgraph(tree)

that contains all the vertices of the graph. If such a graph has weights assigned

to its edges, a minimum spanning tree is its spanning tree of the smallest

weight, where the weight of a tree is defined as the sum of the weights on all

its edges. The minimum spanning tree problem is the problem of finding a

minimum spanning tree for a given weighted connected graph.

Prim’s algorithm constructs a minimum spanning tree through a sequence of

expanding subtrees. The initial subtree in such a sequence consists of a single

vertex selected arbitrarily from the set V of the graph’s vertices. On each

iteration, the algorithm expands the current tree in the greedy manner by

simply attaching to it the nearest vertex(i.e. connected using the min weight)

not in that tree. The algorithm stops after all the graph’s vertices have been

included in the tree being constructed. Since the algorithm expands a tree by

exactly one vertex on each of its iterations, the total number of such iterations

is n − 1, where n is the number of vertices in the graph. The pseudocode of this

algorithm is as follows.

To implement Prim’s algorithm we attach two labels to a vertex: the name of the

nearest tree vertex and the length (the weight) of the corresponding edge.

Vertices that are not adjacent to any of the tree vertices can be given the ∞

label indicating their “infinite” distance to the tree vertices and a null label for

the name of the nearest tree vertex. With such labels,

finding the next vertex to be added to the current tree T =(VT,ET) becomes a

simple task of finding a vertex with the smallest distance label in the set V –

VT. Afterwehave identified a vertex u* to be added to the tree, we need to

perform two operations:

(b)Find shortest distance and shortest path from 'a' to all vertices in the

graph.

Sol:

(c) Construct Huffman code for the following data:

Encode the text ABCABC-AD

Decode the string whose encoding is 11111001010101

Sol:

Q8 (a) Write a note on NP-Complete problems.

Sol:

Class NP is the class of decision problems that can be solved by

nondeterministic polynomial algorithms. This class of problems is called

nondeterministic polynomial.

The problems in class P are in NP because the polynomial time solution can be

used for guessing and the result of verification can be ignored and hence . But

in addition P also contains decision problems which currently don’t have a

polynomial time solution e.g. Hamiltonian circuit problem, knapsack, graph

coloring etc. The question as to whether P = NP remains unanswered.

A decision problem D is said to be NP-complete if:

1. it belongs to class NP

2. every problem in NP(Q) is polynomially reducible to D i.e. it should be

possible to change an instance of Q to an instance of D and get the answer of Q

from the output of D in polynomial time.

The first example of NP complete problem(proved by Cook) is CNF-

satisfiability problem which is to determine given a Boolean expression in

CNF form whether or not one can assign values true and false to variables to

make the entire expression true. Other examples of NP-Complete problems are

: Hamiltonian circuit, traveling salesman, partition, bin packing,

and graph coloring etc.NP complete problems are very important because even if

one of the problems are solvable in polynomial time then a wide variety of

important problems would have a polynomial time solution.

(b) Find the subsets to form the given sum using backtracking

S={3,5,6,7} and d=15

Sol:

(c) Write a problem statement for the assignment problem and find the optimal

solution for the instance with construction of state space tree

Sol: Problem Statement : There are n people who need to be assigned to

execute n jobs, one person per job. (That is, each person is assigned to exactly

one job and each job is assigned to exactly one person.) The cost that would

accrue if the ith person is assigned to the jth job is a known quantity C[i, j] for

each pair i, j = 1, 2, . . . , n. The problem is to find an assignment with the

minimum total cost.

Best solution : a->2, b->1 c->3,d->4 Min Cost = 13

(d) Differentiate branch and bound and backtracking techniques.

Sol: Backtracking and branch and bound are similar to each other because they

are normally used to solve problems whose state space grows exponential. To

save time in searching in the huge search space a method is employed to prune

some states which would not lead to a solution. Backtracking checks for a

partially constructed solution satisfying constraints whereas branch and bound

also uses an additional bound per state which decides if a state is promising or

not. If a state is unpromising then the state is not explored/expanded.

