
CM
RIT

 L
ib

ra
ry

CM
RIT

 L
ib

ra
ry

Module - 1

1. a)

A processor includes a set of registers that provide memory. But, this memory is faster and

smaller than the main memory. These registers can be segregated into two types based on

their functionalities as discussed in the following sections.

User – visible Registers

These registers enable the assembly language programmer to minimize the main memory references

by optimizing register use. Higher level languages have an optimizing compiler which will make a

choice between registers and main memory to store variables. Some languages like C allow the

programmers to decide which variable has to be stored in register.

A user visible register is generally available to all programs. Types of registers that are available are:

data, address and condition code registers.

Data Registers: They can be assigned to different types of functions by the programmer.

Sometimes, these are general purpose and can be used with any machine instruction that performs

operations on data. Still, there are some restrictions like – few registers are used for floating-point

operations and few are only for integers.

Address Registers: These registers contain main memory addresses of data and instructions. They

may be of general purpose or may be used for a particular way of addressing memory. Few examples

are as given below:

o Index Registers: Indexed addressing is a common mode of addressing which involves adding and

index to a base value to get the effective address.

o Segment Pointer: In segmented addressing, a memory is divided into segments (a variable-length

block of words). In this mode of addressing, a register is used to hold the base address of the

segment.

o Stack Pointer: If there is a user-visible stack addressing, then there is a register pointing to the top

of the stack. This allows push and pop operations on instructions stored in the stack.

Control and Status Registers

The registers used by the processor to control its operation are called as Control and Status registers.

This registers are also used for controlling the execution of programs. Most of such registers are not

visible to the user. Along with MAR, MBR, I/OAR and I/OBR discussed earlier, following registers

are also needed for an instruction to execute:

 Program Counter: that contains the address of next instruction to be fetched.

 Instruction Register(IR): contains the instruction most recently fetched.

All processor designs also include a register or set of registers, known as program status

word (PSW). It contains condition codes and status information like interrupt enable/disable bit and

kernel/user mode bit.

Condition codes (also known as flags) are bits set by the processor hardware as the result of

operations. For example, an arithmetic operation may produce a positive, negative, zero or overflow

result. Condition code bits are collected into one or more registers. And, they are the part of a control

register. These bits only can be read to know the feedback of the instruction execution, but they can’t

be altered

1. b)

The normal sequence of the processor may be interrupted by other modules like I/O,

memory etc. Table 1.1 gives the list of common interrupts.

Table 1.1 Classes of Interrupts

Figure1.5 Program flow of control with and without interrupts

The aim of interrupts is to improve the processor utilization. For example, most I/O sevices are

slower than the processor. If the processor gives the instruction for WRITE something on I/O

devices, the I/O unit takes two steps for the job –

 I/O program may copy the data to be written into the buffer etc. and prepare for the

actual I/O operation.

 The actual I/O command has to be executed.

Without interrupts, the processor would sit idle while the I/O unit is preparing (the first step)

itself for the job. But, in case of interrupts, the processor just gives intimation to the I/O unit

first. While I/O unit prepares itself, the processor would continue to execute the next

instructions in the program. When I/O unit is ready, in between, it will do the actual I/O command

and come back to normal flow of execution. Refer Figure 1.5 for understanding

this concept.

Interrupts and the Instruction Cycle

Whenever interrupts are introduced in the system, the processor gives information to the I/O unit and

without waiting for I/O operation to complete; it will continue to execute next instruction . When the

external device is ready to accept more data from the processor, the I/O module sends an interrupt

request signal to the processor. Now, the processor suspends the current operation of the program

and responds to a routine (or a function) of I/O device, which is called as interrupt handler. When

the interrupt processing is completed, the processor resumes the execution. To allow interrupts, an

interrupt stage is added along with fetch stage and execute stage as shown in Figure 1.6.

In the interrupt stage, the processor checks for any possible interrupt signal. If no interrupt

is pending, it will go the fetch stage. If an interrupt signal is there, the processor suspends

current execution and executes interrupt handler routine. The interrupt handler routine is a

part of OS, which identifies nature of interrupt and performs necessary action. After

completing interrupt handler routine, the processor resumes the program execution from

the point where it was suspended.

It is understood that some overhead is involved in this process. Extra instructions have to

be executed in the interrupt handler to determine type of interrupt, to decide the appropriate

action etc. But, instead of processor sitting idle for I/O operation and wasting huge amount

of time, the concepts of interrupts are found to be efficient.

2.a) OPERATING SYSTEM SERVICES

An OS provides an environment for the execution of programs. Also, it provides certain services to

the programs and its users. Though these services differ from one OS to the other, following are

some general services provided by any OS. Program execution: The system must be able to load a

program into memory and to run that program. The program must be able to end its execution, either

normally or abnormally (indicating error).

 I/O operations: A running program may require I/O. This I/O may involve a file or an I/O device.

For efficiency and protection, users usually cannot control I/O devices directly. Therefore, the

OS must provide a means to do I/O.

 File-system manipulation: The OS must facilitate the programs to read and write the files. And

also, programs must be allowed to create and delete files by name.

 Communications: Processes may need to exchange information with each other. These processes

may be running on same computer or on different computers.

Communications may be implemented via shared memory, or by the technique of message passing,

in which packets of information are moved between processes by the OS.

 Error detection: The OS constantly needs to be aware of possible errors. Errors may occur in any

of CPU, memory hardware, I/O devices, user program etc. For each type of error, the OS should take

the appropriate action to ensure correct and consistent computing. OS also has another set of

functionalities to help the proper functioning of itself.

 Resource allocation: When multiple users are logged on the system or multiple jobs are running at

the same time, resources must be allocated to each of them. OS has to manage many resources like

CPU cycles, main memory, and file storage etc. OS uses CPU scheduling routines for effective

usage of CPU. These routines manage speed of the CPU, the jobs that must be executed, the number

of registers available, and such other factors.

 Accounting: We want to keep track of which users use how many and which kinds of computer

resources. This record keeping may be used for accounting (so that users can be billed) or simply for

accumulating usage statistics. Usage statistics may be a valuable tool for researchers who wish to

reconfigure the system to improve computing services.

 Protection: Information on a multi-user computer system must be secured. When multiple

processes are executing at a time, one process should not interfere with the others. Protection

involves ensuring that all access to system resources is controlled. System must be protected from

outsiders as well. This may be achieved by authenticating the users by means of a password. It also

involves defending external I/O devices, modems, network adapters etc. from invalid access.

2.b)

A special signal or message generated and send by the user program or system itself to invoke a

module of operating system so that it can work with it and access the control of the hardware.

System call changes the mode of the application from user mode to kernel mode. Now when the

mode is changed the application can complete its request to access the control of the hardware.

Let us consider a read system call. The system call constitutes of three parameters, file name, pointer

to the buffer and number of bytes to read. The function call looks like, count= read(fd, buffer,

nbytes). The count consist of total number of bytes to read and if some error occur it is set to -1

which is also indicated by a global variable errno. The program should check this error variable

timely to check if any error has occurred. The 1st and the 3rd parameters are passed by value and the

2nd parameter is passed by reference i.e. the buffer address is passed. Now when the read procedure

is called by the user program the control is transferred to the read procedure. At this stage the

parameters are pushed onto the stack (step 1, 2, 3) and the control is now completely transferred to

the read procedure. Then the system call number is put into the register(step 5) and a TRAP

instruction is executed that switches from user mode to kernel mode(step 6). Now the system call

number is examined and then the dispatcher dispatches to the correct system call handler via table of

pointers to the system call handler(step 7). After that the system call handler works(step 8). Then

the control is transferred to the user program from the read procedure (step 10).

Finally, SP is incremented to clean up the stack. In this way the job of read system call is completed

Types of system call and their examples:

Module - 2

3.a) The various States of the Process are as Followings:-

1) New State: When a user request for a Service from the System , then the System will first

initialize the process or the System will call it an initial Process . So Every new Operation which is

Requested to the System is known as the New Born Process.

2) Running State: When the Process is Running under the CPU, or When the Program is Executed

by the CPU , then this is called as the Running process and when a process is Running then this will

also provides us Some Outputs on the Screen.

3) Waiting: When a Process is Waiting for Some Input and Output Operations then this is called as

the Waiting State. And in this process is not under the Execution instead the Process is Stored out of

Memory and when the user will provide the input then this will Again be on ready State.

4) Ready State: When the Process is Ready to Execute but he is waiting for the CPU to Execute

then this is called as the Ready State. After the Completion of the Input and outputs the Process will

be on Ready State means the Process will Wait for the Processor to Execute.

Terminated State: After the Completion of the Process , the Process will be Automatically

terminated by the CPU . So this is also called as the Terminated State of the Process. After executing

the whole Process the Processor will also de-allocate the Memory which is allocated to the Process.

So this is called as the Terminated Process.

.

Five-state Process Model

Multiple Blocked queues

 3.b)

User – level and Kernel – level Threads

A thread can be implemented as either a user – level thread (ULT) or kernel – level thread

(KLT). The KLT is also known as kernel – supported threads or lightweight processes.

User – level Threads: In ULT, all work of thread management is done by the application and

the kernel is not aware of the existence of threads. It is shown in

Figure 3.12 (a).

Any application can be programmed to be multithreaded by using a threads library, which a

package of routines for ULT management. Usually, an application begins with a single thread

and begins running in that thread. This application and its thread are allocated to a single

process managed by the kernel. The application may spawn a new thread within the same

process during its execution. But, kernel is not aware of this activity.

The advantages of ULT compared to KLT are given below:

 Thread switching doesn’t require kernel mode privileges. Hence, the overhead of two

switches (user to kernel and kernel back to user) is saved.

 Scheduling can be application specific. So, OS scheduling need not be disturbed.

 ULTs can run on any OS. So, no change in kernel design is required to support

ULTs.

There are certain disadvantages of ULTs compared to KLTs:

 Usually, in OS many system calls are blocking. So, when a ULT executes a system

call, all the threads within the process are blocked.

 In a pure ULT, a multithreaded application cannot take advantage of multiprocessing.

Kernel – level Threads: In pure KLT model, all work of thread management is done by the

kernel. Thread management code will not be in the application level. This model is shown in

Figure 3.12(b). The kernel maintains context information for the process as a whole and for

individual threads within the process. So, there are certain advantages of KLT :

 The kernel can simultaneously schedule multiple threads from the same process on multiple

processors.

 If one thread in a process is blocked, the kernel can schedule another thread of the same

process.

 Kernel routines themselves can be multithreaded.

But, there is a disadvantage as well: The transfer of control from one thread to another within

the same process requires a mode switch to the kernel.

Combined Approach: Some OS provide a combination of ULT and KLT as shown in Figure

3.12 (c). In this model, thread creation is done completely in user space. The multiple ULTs

from a single application are mapped onto number of KLTs. The programmer may adjust the

number of KLTs for a particular application and processor to achieve the best results.

4.a)

SJF (Non preemptive)

P

2

P

4

P3 P5 P1

 0 1 2 4 9 19

 AWT = 9+0+2+1+4 = 16/5 = 3.2 ms

Turnaround Time : = 19+1 +4 +2 + 9 = 35/5 = 7 ms

Priority (Non-preemptive)

P

2

P5 P1 P3 P

4

 0 1 6 16

18 19

 AWT = 6+0+16+18+1 = 41/5 = 8.2 ms

Turnaround Time = 16 + 1 +18 +19 +6 = 60/5 = 12 ms

4.b) Reader-writers prolem

Any number of readers may simultaneously read the file

• Only one writer at a time may write to the file

• If a writer is writing to the file, no reader may read it

• If there is at least one reader reading the data area, no writer may write to it.

• Readers only read and writers only write

Reader’s have priority Unless a writer has permission to access the object, any reader

requesting access to the object will get it. Note this may result in a writer waiting indefinitely

to access the object.

Writers Have Priority

When a writer wishes to access the object, only readers which have already obtained

permission to access the object are allowed to complete their access; any readers that request

access after the writer has done so must wait until the writer is done. Note this may result in

readers waiting indefinitely to access the object The following semaphores and variables are

added:

– A semaphore rsem that inhibits all readers while there is at least one writer desiring access to

the data area

– A variable writecount that controls the setting of rsem

– A semaphore y that controls the updating of writecount

– A semaphore z that prevents a long queue of readers to build up on rsem

Module – 3

5.a

Deadlock can be defined as the permanent blocking of a set of processes that either compete

for system resources or communicate with each other. A set of processes is deadlocked when

each process in the set is blocked awaiting an event (typically the freeing up of some requested

resource) that can only be triggered by another blocked process in the set. Deadlock is

permanent because none of the events is ever triggered

Deadlock can arise if four conditions hold simultaneously:

 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

Mutual exclusion

At least one resource must be non-sharable mode i.e. only one process can use a resource at a

time. The requesting process must be delayed until the resource has been released. But mutual

exclusion is required to ensure consistency and integrity of a database.

Hold and wait

A process must be holding at least one resource and waiting to acquire additional resources

held by other processes.

No preemption A resource can be released only voluntarily by the process holding it after that

process has completed its task i.e. no resource can be forcibly removed from a process holding

it.

Circular wait

There exists a set {P0, P1, …, Pn} of waiting processes such that P0 is waiting for a resource

that is held by P1, P1 is waiting for a resource that is held by P2,…… …, Pn–1 is waiting for

a resource that is held by Pn, and Pn is waiting for a resource that is held by P0.

5.b

 Five philosophers spend their lives thinking and eating.

 Philosophers share a common circular table surrounded by five chairs, each belonging

to one philosopher.

 In center of the table is a bowl of rice (or spaghetti), and the table is laid with five

single chopsticks.

 From time to time, philosopher gets hungry and tries to pick up the two chopsticks that

are closest to her (the chopsticks that are between her and her left and right neighbors).

A philosopher may pick up only one chopstick at a time.

She cannot pick up a chopstick that is already in hand of a neighbor.

When a hungry philosopher has both her chopsticks at the same time, she eats without

releasing her chopsticks.

When she finishes eating, she puts down both of her chopsticks and start thinking again. The

problem is to ensure that no philosopher will be allowed to starve because he cannot ever pick

up both forks.

The dinning philosopher problem is considered a classic problem because it is an example of a

large class of concurrency-control problems.

 Shared data

 semaphore chopstick[5];

 Initially all values are 1

 A philosopher tries to grab the chopstick by executing wait operation and releases the

chopstick by executing signal operation on the appropriate semaphores.

This solution guarantees that no two neighbors are eating simultaneously but it has a

possibility of creating a deadlock and starvation.

 Allow at most four philosophers to be sitting simultaneously at the table.

 Allow a philosopher to pick up her chopsticks if both chopsticks are available.

 An odd philosopher picks up her left chopstick first and an even philosopher picks up her

right chopstick first.

 Finally no philosopher should starve.

6.a)

There are three common techniques for structuring a page table. They are:

Hierarchical Paging - Break up the logical address space into multiple page tables. A simple

technique is a two-level page table.

Hashed Page Table –

Inverted Page Table –

6.b)

Assuming 3 frames, find the number of page faults when the following algorithms are used: i) LRU

ii) FIFO iii) Optimal. Note that initially all the frames are empty.

FIFO Page Replacement

It is the simplest page – replacement algorithm. As the name suggests, the first page which has been

brought into memory will be replaced first when there no space for new page to arrive. Initially, we

assume that no page is brought into memory. Hence, there will be few (that is equal to number of

frames) page faults, initially. Then, whenever there is a request for a page, it is checked inside the

frames. If that page is not available, page – replacement should take place. Example: Consider a

reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 Let the number of frames be 3.

In the above example, there are 15 page faults.

LRU Page Replacement

Least Recently Used page replacement algorithm states that: Replace the page that has not been

used for the longest period of time. This algorithm is better than FIFO. Example:

Optimal Page Replacement Algorithm An Optimal Page Replacement algorithm (also known as

OPT or MIN algorithm) do not suffer from Belady’s anomaly. It is stated as: Replace the page that

will not be used for the longest period of time.

Here, number of page faults = 9

This algorithm results in lowest page – faults.

7.a) File operations

File is an abstract data type. To define it properly, we need to define certain operations on

it:

 Creating a file: This includes two steps: find the space in file system and make an entry

in the directory.

 Writing a file: To write a file, we make a system call specifying both the name of the file

and the information to be written to the file. Using the name of the file, the system

searches the directory to find the location of the file. The system must keep a write

pointer to the location in the file where the next write is to take place. The write pointer

must be updated whenever a write occurs.

 Reading a file: To read from a file, we use a system call that specifies the name of the

file and where (in memory) the next block of the file should be put.

 Repositioning within a file: The directory is searched for the appropriate entry, and

the current-file-position is set to a given value. This file operation is also known as file

seek.

 Deleting a file: To delete a file, search the directory. Then, release all file space and erase the

directory entry.

 Truncating a file: The user may want to erase the contents of a file but keep its attributes. Rather

than forcing the user to delete the file and then recreate it, the truncation allows all attributes to

remain unchanged-except for file length. The file – length is reset to zero and its file space released.

Other common operations include appending new information to the end of an existing file and

renaming an existing file.

Most of the file operations involve searching the directory for the entry associated with the named

file. To avoid this constant searching, the OS keeps small table (known as open – file table)

containing information about all open files. When a file operation is requested, this table is checked.

When the file is closed, the OS removes its entry in the open-file table.

Every file which is open has certain information associated with it:

 File pointer: Used to track the last read-write location. This pointer is unique to each process.

 File open count: When a file is closed, its entry position (the space) in the open-file table must be

reused. Hence, we need to track the number of opens and closes using the file open count.

 Disk location of the file: Most file operations require the system to modify data within the file. So,

location of the file on disk is essential.

 Access rights: Each process opens a file in an access mode (read, write, append etc).

This information is by the OS to allow or deny subsequent I/O requests.

7.b) The Virtual File System (VFS)

Figure gif shows the relationship between the Linux kernel's Virtual File System and it's real file

systems. The virtual file system must manage all of the different file systems that are mounted at any

given time. To do this it maintains data structures that describe the whole (virtual) file system and

the real, mounted, file systems.

Rather confusingly, the VFS describes the system's files in terms of superblocks and inodes in much

the same way as the EXT2 file system uses superblocks and inodes. Like the EXT2 inodes, the VFS

inodes describe files and directories within the system; the contents and topology of the Virtual File

System. From now on, to avoid confusion, I will write about VFS inodes and VFS superblocks to

distinquish them from EXT2 inodes and superblocks.

As each file system is initialised, it registers itself with the VFS. This happens as the operating

system initialises itself at system boot time. The real file systems are either built into the kernel itself

or are built as loadable modules. File System modules are loaded as the system needs them, so, for

example, if the VFAT file system is implemented as a kernel module then it is only loaded when a

VFAT file system is mounted. When a block device based file system is mounted, and this includes

the root file system, the VFS must read its superblock. Each file system type's superblock read

routine must work out the file system's topology and map that information onto a VFS superblock

data structure. The VFS keeps a list of the mounted file systems in the system together with their

VFS superblocks. Each VFS superblock contains information and pointers to routines that perform

particular functions.

So, for example, the superblock representing a mounted EXT2 file system contains a pointer to the

EXT2 specific inode reading routine. This EXT2 inode read routine, like all of the file system

specific inode read routines, fills out the fields in a VFS inode. Each VFS superblock contains a

pointer to the first VFS inode on the file system. For the root file system, this is the inode that

represents the ``/'' directory. This mapping of information is very efficient for the EXT2 file system

but moderately less so for other file systems.

8 a) Free space management.

Since disk space is limited, we need to reuse the space from deleted files for new files, if possible.

To keep track of free disk space, the system maintains a free-space list. The freespace list records all

free disk blocks-those not allocated to some file or directory. To create a file, we search the free-

space list for the required amount of space, and allocate that space to the new file. This space is then

removed from the free-space list. When a file is deleted, its disk space is added to the free-space list.

Free-space management is done using different techniques as explained hereunder.

Linked List

Another approach to free-space management is to link together all the free disk blocks, keeping a

pointer to the first free block in a special location on the disk and caching it in memory. This first

block contains a pointer to the next free disk block, and so on. However, this scheme is not efficient.

To traverse the list, we must read each block, which requires substantial I/O time. Fortunately,

traversing the free list is not a frequent action. Usually, the OS simply needs a free block so that it

can allocate that block to a file, so the first block in the free list is used.

Grouping

A modification of the free-list approach is to store the addresses of n free blocks in the first free

block. The first n-1 of these blocks are actually free. The last block contains the addresses of another

n free blocks, and so on. The importance of this implementation is that the addresses of a large

number of free blocks can be found quickly, unlike in the standard linked-list approach.

8. b)

The direct-access nature of disks allows us flexibility in the implementation of files. In almost every

case, many files will be stored on the same disk. The main problem is how to allocate space to these

files so that disk space is utilized effectively and files can be accessed quickly. Three major methods

of allocating disk space are: contiguous, linked, and indexed.

Contiguous Allocation

In contiguous allocation, files are assigned to contiguous areas of secondary storage. A

user specifies in advance the size of the area needed to hold a file to be created. If the desired

amount of contiguous space is not available, the file cannot be created. A contiguous allocation of

disk space is shown in Figure 7.11.

One advantage of contiguous allocation is that all successive records of a file are normally

physically adjacent to each other. This increases the accessing speed of records. It means that if

records are scattered through the disk it is accessing will be slower. For sequential access the file

system remembers the disk address of the last block and when necessary reads the next block. For

direct access to block B of a file that starts at location L, we can immediately access block L+B.

Thus contiguous allocation supports both sequential and direct accessing. The disadvantage of

contiguous allocation algorithm is, it suffers from external fragmentation. As files are allocated and

deleted, the free disk space is broken into little pieces. Depending on the total amount of disk storage

and the average file size, external

fragmentation may be a minor or a major problem.

Linked Allocation

Linked allocation solves all problems of contiguous allocation. With linked allocation, each file is a

linked list of disk blocks; the disk blocks may be scattered anywhere on the disk. The directory

contains a pointer to the first and last blocks of the file as shown in Figure 7.12.

Linked allocation solves the problem of external fragmentation, which was present in contiguous

allocation. But, still it has a disadvantage: Though it can be effectively used for sequential-access

files, to find ith file, we need to start from the first location. That is, random-access is not possible.

Indexed Allocation

This method allows direct access of files and hence solves the problem faced in linked allocation.

Each file has its own index block, which is an array of disk-block addresses. The ith entry in the

index block points to the ith block of the file. The directory contains the address of the index block

as shown in Figure 7.13.

9.a)

The job of allocating CPU time to different tasks within an OS. While scheduling is normally

thought of as the running and interrupting of processes, in Linux, scheduling also includes the

running of the various kernel tasks. Running kernel tasks encompasses both tasks that are requested

by a running process and tasks that execute internally on behalf of a device driver.

Various aspects of scheduling in Linux are discussed here.

Kernel Synchronization: A request for kernel-mode execution can occur in two ways:

o A running program may request an operating system service, either explicitly via a system call, or

implicitly, for example, when a page fault occurs.

 o A device driver may deliver a hardware interrupt that causes the CPU to start executing a kernel-

defined handler for that interrupt. Kernel synchronization requires a framework that will allow the

kernel’s critical sections to run without interruption by another critical section.

Linux uses two techniques to protect critical sections:

o Normal kernel code is non-preemptable : when a time interrupt is received while a process is

executing a kernel system service routine, the kernel’s need_resched flag is set so that the scheduler

will run once the system all has completed and control is about to be returned to user mode.

o The second technique applies to critical sections that occur in an interrupt service routines. By

using the processor’s interrupt control hardware to disable interrupts during a critical section, the

kernel guarantees that it can proceed without the risk of concurrent access of shared data structures.

Process Scheduling: Linux uses two process-scheduling algorithms: o A time-sharing algorithm for

fair preemptive scheduling between multiple processes

o A real-time algorithm for tasks where absolute priorities are more important than fairness A

process’s scheduling class defines which algorithm to apply. For time-sharing processes, Linux uses

a prioritized, credit based algorithm.

Symmetric Multiprocessing: Linux 2.0 was the first Linux kernel to support SMP hardware;

separate processes or threads can execute in parallel on separate processors. To preserve the kernel’s

nonpreemptible synchronization requirements, SMP imposes the restriction, via a single kernel

spinlock, that only one processor at a time may execute kernel-mode code.

9.b)

To the user, Linux’s file system appears as a hierarchical directory tree obeying UNIX semantics.

Internally, the kernel hides implementation details and manages the multiple different file systems

via an abstraction layer, that is, the virtual file system (VFS). The Linux VFS is designed around

object-oriented principles and is composed of two components:

 A set of definitions that define what a file object is allowed to look like

o The inode-object and the file-object structures represent individual files

o the file system object represents an entire file system

 A layer of software to manipulate those objects.

10. a) Component of Linux

Ans: The Linux system is composed of three main bodies of code, in line with most traditional

UNIX implementations:

1. Kernel. The kernel is responsible for maintaining all the important abstractions of the operating

system, including such things as virtual memory and processes.

2. System libraries. The system libraries define a standard set of functions through which

applications can interact with the kernel. These functions implement much of the operating-system

functionality that does not needthe full privileges of kernel code.

3. System utilities. The system utilities are programs that perform individual, specialized

management tasks. Some system utilities may be invoked just once to initialize and configure some

aspect of the system; others—

known as daemons in UNIX terminology—may run permanently, handling such tasks as responding

to incoming network connections, accepting logon requests from terminals, and updating log files.

Figure 21.1 illustrates the various components that make up a full Linux system. The most important

distinction here is between the kernel and everything else. All the kernel code executes in the

processor's privileged mode with full access to all the physical resources of the computer. Linux

refers to this privileged mode as kernel mode.

10.b) Shared memory

In computer programming, shared memory is a method by which program processes can exchange

data more quickly than by reading and writing using the regular operating system services. For

example, a client process may have data to pass to a server process that the server process is to

http://whatis.techtarget.com/definition/process
http://searchenterprisedesktop.techtarget.com/definition/client
http://whatis.techtarget.com/definition/server

modify and return to the client. Ordinarily, this would require the client writing to an output file

(using the buffers of the operating system) and the server then reading that file as input from the

buffers to its own work space. Using a designated area of shared memory, the data can be made

directly accessible to both processes without having to use the system services. To put the data in

shared memory, the client gets access to shared memory after checking a semaphore value, writes

the data, and then resets the semaphore to signal to the server (which periodically checks shared

memory for possible input) that data is waiting. In turn, the server process writes data back to the

shared memory area, using the semaphore to indicate that data is ready to be read.

10.c) Inter process communication

Like UNIX, Linux informs processes that an event has occurred via signals. There is a

limited number of signals, and they cannot carry information: Only the fact that a signal

occurred is available to a process. The Linux kernel does not use signals to communicate

with processes with are running in kernel mode, rather, communication within the kernel is

accomplished via scheduling states and wait-queue structures.

Passing of Data among Processes: The pipe mechanism allows a child process to inherit a

communication channel to its parent; data written to one end of the pipe can be read by the other.

Shared memory offers an extremely fast way of communicating; any data written by one process to a

shared memory region can be read immediately by any other process that has mapped that region

into its address space. To obtain synchronization, however, shared memory must be used in

conjunction with another inter process communication mechanism.

10.d) journelling

A journaling filesystem is a filesystem that maintains a special file called a journal that is used to

repair any inconsistencies that occur as the result of an improper shutdown of a computer. Such

shutdowns are usually due to an interruption of the power supply or to a software problem that

cannot be resolved without a rebooting.

A filesystem is a way of storing information on a computer that usually consists of a hierarchy

of directories (also referred to as the directory tree) that is used to organize files. Each hard disk

drive (HDD) or other storagedevice as well as each partition (i.e., logically independent section of a

HDD) can have a different type of filesystem if desired.

Journaling filesystems write metadata (i.e., data about files and directories) into the journal that is

flushed to the HDD before each command returns. In the event of a system crash, a given set of

updates may have either been fully committed to the filesystem (i.e., written to the HDD), in which

case there is no problem, or the updates will have been marked as not yet fully committed, in which

case the system will read the journal, which can be rolled up to the most recent point of data

consistency.

http://searchcio-midmarket.techtarget.com/definition/buffer
http://searchenterpriselinux.techtarget.com/definition/semaphore
http://www.linfo.org/filesystem.html
http://www.linfo.org/file.html
http://www.linfo.org/computer.html
http://www.linfo.org/information.html
http://www.linfo.org/directory.html
http://www.linfo.org/directory_tree.html
http://www.linfo.org/hdd.html
http://www.linfo.org/hdd.html
http://www.linfo.org/hdd.html
http://www.linfo.org/storage.html
http://www.linfo.org/partition.html
http://www.linfo.org/metadata.html
http://www.linfo.org/command.html
http://www.linfo.org/crash.html

