pages.
0, will be treated as malpractice.

o’

g 42+8=

agonal cross lines on the remaining blank

fication, appeal to evaluator and /or equations written ¢

. Any revealing of identi

Important Note : 1. On completing your answers, compulsorily draw di
3

USN 16MCA25
Second Semester MCA Degree Examination, June/July 2017
System Software

Time: 3 hrs. Max. Marks: 80
Note: Answer FIVE full questions, choosing one full question from each module.
Module-1
1 a. Compare system software and application software. Give examples for each, (04 Marks)

b. With reference to SIC/XE machine architecture, explain instruction formats and addressing
modes clearly indicating the settings of different flag bits. (08 Marks)
¢. Give the target address generated for the following instructions (hexadecimal), if
(B) = 006000, (PC) = 003000, (X) = 000090 : i) 75101000, ii) 032026. (04 Marks)
OR
2 a. Explain the following with an example for each: i) WORD, i) START. (04 Marks)
b. With reference to VAX machine architecture, explain memory, registers, data formats and
instruction formats. (08 Marks)
¢. ALPHA is an array of 100 words. Write a sequence of instructions for SIC/XE to set all 100
elements of the array to 0. (04 Marks)
Module-2
3 a. Distinguish between a literal and an inmediate operand with an example for each. (04 Marks)
b. Generate the complete object program for the following assembly language program, clearly
showing the symbol table entries. All addresses are in hexadecimal.
Assume: LDT - 74, LDX - 04, LDCH - 50, STCH - 54, TIXR - B8, JLT -38, X -1, T-5.
ASCII character codes (decimal): E - 69, O - 79, F — 70,
COPY START 0
FIRST LDT #3
LDX #0
MOVECH LDCH STRI, X
STCH STR2,X
TIXR T
JER MOVECH
STRI BYTE C ‘EOF’
STR2 RESB 3
END FIRST
(08 Marks)
. Explain the features of MASM assembler. (04 Marks)
OR
4 a. What is a relocatable program? Explain the concept of program relocation with an example,
and the means for implementing it. (04 Marks)
b. What are program blocks? Mention the relevant assembler directives used in writing SIC/XE
source program involving program blocks and hence briefly discuss how are they handled
by an assembler. Give example. (08 Marks)
¢. Compare a two-pass assembler with a one-pass assembler. Bring out the difference involved
in handling forward references. (04 Marks)

1 of3

S

C.

16MCA25

Module-3
Briefly explain a simple boot strap loader with an algorithm or a source program. (08 Marks)
Distinguish between a linkage editor and a linking loader. (05 Marks)
Enlist any three loader options specified using a command language. (03 Marks)
OR
Discuss the detailed design of a linking loader with an example. (08 Marks)
Explain dynamic linking with suitable diagrams. (05 Marks)
Enlist the different types of SunOS linkers and the associated output modules produced.
(03 Marks)
Module-4
Mention the basic functions of a macroprocessor. (03 Marks)
Discuss with a suitable example, the usage of various data structures in handling an
assembly language program involving macros. (08 Marks)
Explain the ANSI C macro language with examples. (05 Marks)
OR
With an example briefly explain keyword macro parameters. (03 Marks)

Expand the following macro invocation statements using the macro definition given below.
i) RDBUFF FIl, BUFFER, (04, 12), LENGTH
ii) RDLOOP RDBUFF F2, BUFF, , LEN

RDBUFF MACRO &INDEV, &BUFADR, &EOR, &RECLTH

&EORCT SET %NITEMS (&EOR)
CLEAR = X
CLEAR A
HLDT #4096
$LOOP ~ TD =X ‘&INDEV’
JEQ $LOOP
RD =X ‘&INDEV’
&CTR SET 1

WHILE (&CTR LE &EORCT)
COMP =X ‘0000&EOR[&CTR]’

JEQ $EXIT
&CTR SET &CTR + 1
ENDW
STCH &BUFADR, X
TIXR T
JLT $LOOP
$EXIT STX &RECLTH
MEND
(08 Marks)
Mention the advantages of general purpose macro processors. Discuss the details that must
be considered while designing a general purpose macroprocessor. (05 Marks)

20f3

10

.

16MCA25

Module-5
What is a grammar? Using the BNF grammar below, represent the syntax analysis of the

PASCAL statement VAR := SUMSQ DIV 100 — MEAN * MEAN in the form of a parse
free.

<assign>:: = id : = <exp>

<exp> i = <term> | <exp> + <termy> | <exp> — <term>

<term> :: = <factor> | <term> * <factor> | <term> DIV <factor>

<factor>:: = id | int | (<exp>) (07 Marks)

Explain the various types of machine-independent code optimization techniques. (05 Marks)
Indicate whether the finite automation given in Fig.Q9(c) recognizes the following strings.
i) 9Alpha ii) Num_2 iii) Hello_ _world iv) bbb_9_

A
@
0

NN

-

-0

Fig.Q9(c) (04 Marks)

OR
Write the recursive-descent parse for a READ statement and show the corresponding syntax
tree constructed for the statement READ (VALUE). The BNF grammar is given by the

following:

<read> :: = READ (<id_list>)

<id_list>::=id { , id} (07 Marks)
Explain P-code compilers with a neat diagram. (05 Marks)
Assume the array A is declared A;:ARRAY{1..5, 1..6] OF INTEGER with each element
occupying 3 bytes. Generate quadruples for the statement A[I, J] : = 0. (04 Marks)

Jof3

Q1

Module 1

a. Compar e system softwar e and application software. Give example for each. (4 Marks)
Answer':
System Software Application Software

Q2

Intended to support the operation and use | An application program is primarily
of the computer concerned with the solution of some
problem, using the computer as tool

Focus is on the Computer system and not | The focus is on the application not on
on the application the computing system.

It depends on the structure of the | It does not depend on the structure of the
machine on which it is executed. machine it works

Ex. Operating system, Loader, Linkers, | Ex. Banking system, Inventory system.
assembler, compiler, text editors etc.

b. With referenceto SIC/XE machine architecture, explain instruction format and

addressing modes clearly indicating the settings of different flags.

Answer:

1

Instruction Formats

SIC/XE has larger memory hence instruction format of standard SIC version is no longer
suitable.

SIC/XE provide two possible options; using relative addressing (Format 3) and extend the
addressfield to 20 bit (Format 4).

In addition SIC/XE provides some instructions that do not reference memory at all. (Format 1
and Format 2) .

The new set of instruction format is as follows. Flag bit e is used to distinguish between
format 3 and format 4. (e=0 means format 3, e=1 means format 4)

Format 1 (1 byte)
8

op |

Example RSUB (return to subroutine)

opcode

| 0100 1100
4 C

2. Format 2 (2 bytes)
8 4 4
| op o [2 |

Example COMPR A, S (Compare the contents of register A & S)

Opcode A S
| 1010 0000 | 0000 | 0100 |
A 0 0 4

3. Format 3 (3 bytes)
6 11 11 1 1 12
| op |nli[x[blp [e] disp |

Example LDA #3(Load 3 to Accumlator A)

| 000000 |[0]1]/0|0]0 [O] 0000 0000 0011
0 ni x b p e 0 0 3
4. Format 4 (4 bytes)
6 11 11 1 1 20
_op [nfi[x[b]p |e] address |

Example JSUB RDREC(Jump to the address, 1036)

| 010010 |[1]1]/0|0]0 [1] 0000 0001 0000 0011 0110
ni x b p e

Addressing Modes

There are two addressing modes, indicated by the setting of the x bit in the instruction.

Mode Indication | Target address calculation
Direct x=0 TA = address
Indexed x=1 TA = address + (X)

Parentheses are used to indicate the contents of a register or a memory location. For example, (X)
represents the contents of register X.

Direct addressing mode

Example LDA TEN

| 0000 0000 | 1| 0010000 00000000 |
0 0 1 0 0 O

Opcode X TEN
Effective address (EA) = 1000

Content of the address 1000 is loaded to Accumulator.

Indexed addressing mode

Example STCH BUFFER, X
| 0101 0100 | 1| 001 000000000000 |
5 4 1 0 0 O

Opcode X BUFFER

Effective address (EA) = 1000+[X]
= 1000+content of the index register X

The Accumulator content, the character is loaded to the effective address.

Qlc. Givethetarget addressgenerated for thefollowinginstructions (hexadecimal), if
(B)=006000, (PC)=003000, (X)=000090 : i) 75101000, ii)032026.

Answer

i)75101000

| 011101 |o|1]/0]0]0 [1] 0000 0001 0000 0000 0000

n=0, i=1, x=0, b=0, p=0, e=0
since n=0 and i=1 itsimmediate addressing
TA= Operand Vaue

TA= (01000) 36
TA= (4096)s

Q2

i) 032026

00000 |1]1]/0/0[1 [O] 0000 0010 0110

n=1, i=1, x=0, b=0, p=1, e=0

TA= (PC) + disp
TA=003000+026
TA=003026

Explain the following with an examplefor each: i) WORD, ii) START
Answer
i) WORD

Generate one-word integer constant
Example:
THREE WORD 3

iy START

START specify the name and starting address of the program.
Example:
START 1000

Q2b. With referenceto VAX machine ar chitecture, explain memory, register, data
formats and instruction for mats.

VAX family of computers was introduce by Digital equipment corporation (DEC) in 1978.
Memory : The VAX memory consists of 8-bit bytes. 2 consecutive bytes form word, 4
consecutive bytes form long word, 8 consecutive bytes form quad ward, and 16 consecutive
bytes form an octaword. All VAX programs operate in a virtual address space of 232 bytes.

Registers. There are 16 general purpose registers on the VAX, denoted by Ro to R15, all are
32 bitsin length. R15 is program counter, R14 is stack pointer, R13 is frame pointer, R12 is
argument pointer, R11to R6 have no specia functions and RO to R5 are available for generd
use.

Data Formats: Integers are stored as binary numbers in byte, word, longword, quadword or
octaword. 2’s compliment representation is used for negative values. Characters are stored
using their 8-bit ASCII codes. There are four different floating point data formats on the VAX,
ranging in length from 4 to 16 bytes.

Instruction Format: VAX machine instruction uses a variable- length instruction format. Each
instruction consist of an operation code (1 or 2 bytes) followed by up to six operand specifiers,
depending on the type of instruction.

Addressing mode: VAX provide large number of addressing modes. register mode, register
deferred mode, auto increment and auto decrement modes, severa base relative addressing
modes program-counter relative modes ,indirect addressing mode (called deferred modes)
,immediate operands

Instruction Set : Goal of the VAX designers was to produce an instruction set that is symmetric
with respect to data type. The instruction mnemonics are formed by a prefix that specifiesthe
type of operation ,a suffix that specifies the data type of the operands, a modifier that givesthe
number of operandsinvolved

Input and Output: Input and output on the VAX are accomplished by 1/0 device controllers
Each controller has a set of control/status and data registers, which are assigned locations in the
physical address space (called I/O space)

Q2c. ALPHA isan array of 100 words. Write a sequence of instructionsfor SIC/XE to
set all 100 elementsof thearray to 0.

Answer

LDA #0

LDS #3

LDT #300

LDX #0
LOOPA STA ALPHA X

ADDR S X

COMP X, T

JLT LOOPA
ALPHA RESW 100

Module-2

Q3 a. Distinguish between aliteral and an immediate operand with an example for each.

Answer

Literd

with literals the assembler generates the specified value as the constant at some other memory
location. The address of this generated constant is used as target address of machine
instruction.

Example:

45

Immediate operand

With immediate addressing operand value is assembled as a part of instruction

Example:

Q3 b. Generatethe complete object program for the following assembly language program,

001A ENDFIL

LDA #9

:CKCEOF((

clearly showing the symbol table entries. All addressarein hexadecimal.

Assume: LDT — 74, LDX- 04, LDCH-50, STCH-54, TIXR-B8, JLT-38, X-1, T-5. ASCI|

character codes(decimal):E-69,0-79, F-70

COPY

FIRST

MOVECH

STR1

STR2

Answer
LOC
0000
0000
0003
0006
0009

START 0

LDT #3

LDX #0

LDCH STR1, X

STCH STR2,X

TIXR T

JLT MOVECH

BYTE C ’EOF’

RESB 3

END FIRST

Sour ce Statement

COPY START 0

FIRST LDT #3
LDX #0

MOVECH LDCH STR1, X
STCH STR2,X

Object Code

750003
050000
53A008

57A010

000C TIXR T B850

000E JLT MOVECH 3B2FF5
0011 STR1 BYTE C 'EOF’ 697970
001C STR2 RESB 3

0027 END FIRST

Q3 c. Explain thefeatures of MASM assembler.
Answer

It supports awide variety of macro facilities and structured programming idioms, including
high-level constructions for looping, procedure calls and alternation (therefore, MASM isan
example of ahigh-level assembler).

MASM is one of the few Microsoft development tools for which there was no separate 16-bit
and 32-bit version.

Assembler affords the programmer looking for additional performance athree pronged
approach to performance based solutions.

MASM can build very small high performance executable files that are well suited where size
and speed matter.

When additional performanceisrequired for other languages, MASM can enhance the
performance of these languages with small fast and powerful dynamic link libraries.

For programmers who work in Microsoft Visual C/C++, MASM builds modules and libraries
that are in the same format so the C/C++ programmer can build modules or librariesin MASM
and directly link them into their own C/C++ programs. This alows the C/C++ programmer to
target critical areas of their code in avery efficient and convenient manner, graphics

mani pulation, games, very high speed data manipulation and processing, parsing at speeds that
most programmers have never seen, encryption, compression and any other form of
information processing that is processor intensive.

MASM32 has been designed to be familiar to programmers who have aready written API
based code in Windows. The invoke syntax of MASM allows functions to be called in much
the same way as they are caled in ahigh level compiler.

OR

Q4 a What isarelocatable program? Explain the concept of program relocation with an
example, and the means for implementing it.

Answer

An object program that has the information necessary to perform this kind of modification is called the
relocatable program.

This can be accomplished with a Modification record havig following format:
Modification record
Co.1 M

Cal. 2-7 Starting location of the address field to be modified, relative to the beginning of the
program (Hex)

Coal. 8-9 Length of the address field to be modified, in half-bytes (Hex)

One modification record is created for each address to be modified The length is stored in half-bytes.
The starting location is the location of the byte containing the leftmost bits of the addressfield to be
modified. If the field contains an odd number of half-bytes, the starting location beginsin the middle
of thefirst byte.

Example of Program Relocation

0000
0006 |4B101036 | (+JSUB RDREC)
1036“| B410 ¢« — RDREC

1076

5000
5006 |4B106036 | (+JSUB RDREC)

6036 “| B410 <+— RDREC

7420

6076
7426 | 4B108456 | (+JSUB RDREC)
8456° | B410 le— RDREC
8496

The above diagram shows the concept of relocation. Initially the program isloaded at location
0000. The instruction JSUB isloaded at location 0006.

The addressfield of thisinstruction contains 01036, which is the address of the instruction
labelled RDREC. The second figure shows that if the program is to be loaded at new location
5000.

The address of the instruction JSUB gets modified to new location 6036. Likewise the third
figure shows that if the program is relocated at location 7420 the JSUB instruction would need
to be changed to 4B108456 that correspond to the new address of RDREC.

The only part of the program that require modification at load time are those that specify direct
addresses. The rest of the instructions need not be modified. The instructions which doesn’t
require modification are the ones that is not a memory address (immediate addressing) and PC-
relative, Base-relative instructions.

From the object program, it is not possible to distinguish the address and constant. The
assembler must keep some information to tell the loader.

For an address |label, its addressis assigned relative to the start of the program (START 0). The
assembler produces a Modification record to store the starting location and the length of the
addressfield to be modified. The command for the loader must also be a part of the object

program.

HCOF X .!\.JOU -._IO(..IU 01077 5 half-bvtes

1$UG&QQJQJ??Q?QﬁQEDEjﬁﬁ;l;Ujﬁqj}EZQ;Uhﬂqu}QJUﬂfﬁﬂUtUju}IEFECﬁEEUlU

TO00CI1LC130F20160100030F200D4510105D3E2003454FP4H

70010361084 10B400B44075101000E32019332FFADB2013A00433200857C0038850
A RN B4O 100032015 . . _ : prss
T0010531D3B2PEAL1340004P0000F18210774000E32011332FFAS3C003DF200EBE50
TO0107CO73B2FEF4AFOE0O05

00000705 _—~

00001405

MDOOO 7705

E000000

In the above object code the red boxes indicate the addresses that need modifications.

The object code lines at the end are the descriptions of the modification records for those instructions
which need change if relocation occurs. M00000705 is the modification suggested for the statement at

location 0007 and requires modification 5-half bytes.

Q4 b. What are program blocks? Mention therelevant assembler directives used in writing
SI C/XE source program involving program blocks and hence briefly discuss how arethey
handled by an assembler. Give example.

Answer

Program being assembled was treated as one single unit and instructions appeared in same way as they

were written.

Most assembler provides features that allow machine instruction and data to appear in a different order

from the corresponding source program.

Other features create severa independent part of the object program. These pats maintain their identity
and are handled separately by the loader.

Program block refers to segment of code that are rearranged within a single object program unit and
control section to refer to segments that are tranglated into independent object program units.

Assembler Directive USE indicate which portion of the source program belong to various blocks
USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block.

If no USE statements are included, the entire program belongs to this single block.

Each program block may actually contain several separate segments of the source program.

Assemblers rearrange these segments to gather together the pieces of each block and assign address.

Separate the program into blocks in a particular order.

Large buffer areais moved to the end of the object program.

Program readability is better if data areas are placed in the source program close to the statements that
reference them.

In the example below three blocks are used :
Default: executable instructions
CDATA: dl data areasthat are lessin length

CBLKS: al data areas that consists of larger blocks of memory.

(default) block _~ Block number

10000 0 COPY START 0
0000 0 FIRST STL RETADR 172063
0003 0 CLOOP JSUB RDREC 4B2021
0006 0 LDA LENGTH 032080
0009 0 COMP #0 290000
000C 0 JEQ ENDFIL 332006
000F 0 JSuB WRREC 4B203B
0012 0 J CLOOP 3F2FEE
0015 0 ENDFIL LDA =C'EOF 032055
0018 0 STA BUFFER 0F2056
001B 0 LDA #3 010003
001E 0 STA LENGTH 0F2048
0021 0 JSUB WRREC 482029
0024 0 J @RETADR 3E203F
10000 | 1 USE CDATA CDATA block
0000 1 RETADR RESW T
0003 1 LENGTH RESW 1
0000, 2 USE CBLKS «—— CBLKS block
0000 2 BUFFER RESB 4098

1000 2 BUFEND EQU *

1000 MAXLEN EQU BUFEND-BUFFER

R (default) block

0027 © RDREC USE

0027 0 CLEAR X B410

0029 0 CLEAR A B400

0028 0 CLEAR S B440

002D 0 +LDT #MAXLEN 75101000

0031 0 RLOOP TD INPUT E32038

0034 0 JEQ RLOOP 332FFA

0037 0 RD INPUT DB2032

003A 0 COMPR AS A004

003C 0 JEQ EXIT 332008

003F 0 STCH BUFFERX 57A02F

0042 0 TIXR T B850

0044 0 JLT RLOOP 3B2FEA

0047 0 EXIT STX LENGTH 13201F

004A 0 RSUB 4F0000

10006 | 1 USE CDATA*—CDATA block

0006 1 INPUT “BYTE XF1’ F1

A separate location counter for each program block is maintained.
Save and restore LOCCTR when switching between blocks.
At the beginning of ablock, LOCCTR issetto 0.

Assign each label an address relative to the start of the block.

)
i—i—ﬂ-i—i—g

Store the block name or number in the SYMTAB along with the assigned
relative address of the |abel

Indicate the block length as the latest value of LOCCTR for each block at the
end of Passl

4 Assign to each block a starting address in the object program by concatenating
the program blocks in a particular order

Pass2

4 Calculate the address for each symbol relative to the start of the object program
by adding:

4+ Thelocation of the symbol relative to the start of its block

+ The starting address of this block

Q4 c. Compare atwo pass assembler with a one-pass assembler. Bring out the differences
involved in handling forward references.

Answer

The trandation of the source program to the object program requires us to accomplish the following
functions:

1) Convert the mnemonic operation codes to their machine language equivalent.eg
trandate SLT to 14.

2) Convert symbolic operandsto their equivalent machine addresses. Eg translate
RETADR to 1033.

3) Build the machine instructionsin the proper format.

4) Convert the data constants specified in the source program into their interna
machine representations in the proper format. Eg. Translate EOF to 454F46

5) Write the object program and assembly listing.

All these steps except the second can be performed by sequentia processing of the
source program, one line at atime. Consider the instruction

10 1000 SRL RETADR 141033

Thisinstruction contains the forward refer ence that is reference to alabel
RETADR is defined later in the program.

If we attempt to trandlate the program line-by-line, we will be unable to process
this statement because we do not know the address that will be assigned to
RETADR.

Due to this problem most of the assemblers are designed to process the program in

two passes.

First pass does little more that scan the source program for label definition and
assign addresses.

The second pas performs most of the actual trandlation previously described.

One Pass Assembler Two Pass Assembler

Scans entire scurce file only once Require two passes to scan source file.

Flrst pass — responsible for label definition and introduce

them in symbol table.

Second pass — translates the instructions into assembly
language or generates machine code.

Generally Along with passl pass two is also required which

* Deals with syntax. * Generates actual Opcode.

* Constructs symbol table * Compute actual address of every abel.

* Creates label list * Azcign code address for debugging the information.

* [ndentifies the code segment, data segment, | » Translates operand name to appropriate register or memory
stack segment efc... code.

* Immediate value is tranzlated to binary strings (1's and O7s)

Cannot resolve forward references of data Can resolve forward references of data symbols.
symbols.

No abject program is written, hence no loader Loader is required as object code is generated.
iz required

Tends to be faster compared to two pass Two pass assembler requires rescanning. Hence slow
compared to one pass assembler.

Only creates tables with all symbels no address | Address of symbols can be calculated
of symbols iz calculated.

Module-3
Q5 a. Briefly explain a simple bootstrap loader with an algorithm or a sour ce program
Answer

When a computer isfirst turned on or restarted, a specia type of absolute loader, called bootstrap
loader is executed. This bootstrap loads the first program to be run by the computer -- usualy an
operating system.

The bootstrap itself begins at address 0. It loads the OS starting address 80

No header record or control information, the object code is consecutive bytes of memory.

The agorithm for the bootstrap loader is as follows
Begin
X=0x80 (the address of the next memory location to be loaded
L oop
A — GETC (and convert it from the ASCII character
code to the value of the hexadecimal digit)
save the value in the high-order 4 bitsof S
A -GETC
combine the value to form one byte A — (A+S)
storethe value (in A) to the address in register X
X< X+1

End

Much of the work of the bootstrap loader is performed by the subroutine GETC. This subroutine read
one character from device F1 and convertsit from the ASCII character code to the value of the
hexadecimal digit that is represented by that character

GETC A —read one character
if A=0x04 then jump to 0x80
if A<48then GETC
A — A-48 (0x30)
if A<10 then return
A~ A7

return

Q5 b. Distinguish between a linkage editor and a linking loader.

FIGURE 3.17 FPracessing cf an object program using {a) linking loader and {b) linkage

editar.
Object | Object .
program(s) program(s)
g <t
I Vv
; Linking ; Linkage
Library -y kiorary editor
Memory 1. Linked
program
(@)
Relocating
loader
Memory

(b)

Linking L cader

Linking loader performs all linking and relocation operations including automatic
library search if specified and loads the linked program directly into memory for
execution

Linking loader searched libraries and resolves external references every time the
program is executed.

Linkage Editor

A linkage editor produces a linked version of the program — often called a load module
or an executable image, which iswritten to afile or library for later execution.

Suitable when a program is to be executed many times without being reassembled
because resolution of external references and library searching are only performed
once.

Compared to linking loader, Linkage editors in general tend to offer more flexibility

and control, with a corresponding increase in complexity and overhead

Q5 c. Enlist any three options specified using a command language.
Answer

Here are the some examples of how option can be specified.

INCLUDE program-name (library-name) - read the designated object program from alibrary
DELETE csect-name — delete the named control section from the set pf programs being loaded

CHANGE namel, name2 - external symbol namel to be changed to name2 wherever it appearsin the
object programs

LIBRARY MYLIB - search MYLIB library before standard librariesNOCALL STDDEV, PLOT,
CORREL - no loading and linking of unneeded routines Here is one more example giving, how
commands can be specified as a part of object file, and the respective changes are carried out by the
loader.

OR
Q6 a. Discussthe detailed design of linking loader with an example.
Answer

The agorithm for alinking loader is considerably more complicated than the absolute loader program,
which is aready given. The concept given in the program linking section is used for developing the
algorithm for linking loader. The modification records are used for relocation so that the linking and
relocation functions are performed using the same mechanism.

Linking Loader uses two-passes
Pass 1: Assign addresses to all external symbols

Pass 2: Perform the actual loading, relocation, and linking

Data Structures

1) External Symbol Table (ESTAB)
Thistableis analogousto SYMTAB

ESTAB is used to stores the name and address of each external symbol in the set of control
section being loaded.

The table also often indicates in which control section the symbol is defined. A Hashed
organization istypically used for this table.

Coniolsecin Syl Al Lengh

PROGA 4000 &
Lsia 40
BNDA 4054

PROCGB 4063 T
LISIB 4003
BE 4008

PROCGE? 40z 51
LISTC 4112
BENDC 4124

2) Program Load Address (PROGADDR)

PROGADDR is the beginning address in memory where the linked program isto be
loaded. Its value is supplied to the loader by the operating system.

3) Control Section Address (CSADDR)
CSADDR isthe starting address assigned to the control section currently being scanned by the loader.

This address is added to all relative address within the control section to convert them
to actual address.

Algorithm

Pass 1
Pass 1 assign addresses to all external symbols.

The variables & Data structures used during pass 1 are, PROGADDR (program load address) from
OS, CSADDR (control section address), CSLTH (control section length) and ESTAB.

The pass 1 processes the Define Record.

The agorithm for Pass 1 of Linking Loader is given below.

Pass1: (only Header and Define records are concerned)

begin
get FROCATDR from oporating sweotem
set CSADDR to PROCGANDR [(for firar contranl asction)
while not end of input do
bagin
read mext input record (Header record Zor control secticon)
set USLTH to centrel section _ength
search =8UAB for control secticn nams
if found then
set error flag {duplicate external symbol}
else
enter control section name into ESTAS with value CSADDR
while record type # "=’ do
begin
read next input record
if record type = ‘D’ then
for =ach syubol in Lhe zecord do
begin
search ESTAR for symbol name
1f found then
satl arror flag {duplicate external symbol)
elsa
ancer _=wnbol dnto FATAP with walue
{Csnnnk + indicated address)

and {for}
end {while = ‘E‘}
add CSrTH to CEATHRE {starting address for next comtrol section)
end (while nat =oF)
end {Pass 1}

Figure 3.11(a) Algarithm for Pass 1 of a linking loader.

Pass 2
Pass 2 of linking loader perform the actual loading, relocation, and linking.
It uses modification record and lookup the symbol in ESTAB to obtain its address.

Finally it uses end record of a main program to obtain transfer address, which is a starting address
needed for the execution of the program.

The pass 2 process Text record and Modification record of the object programs. The algorithm for
Pass 2 of Linking Loader is given below.

Pass 2:

begin

set CSADDR Lo PROGADDR

set EXECADDR Lo PROGADCR

while nct end of irput do

begin

read next input record {Header recorct
st 0510 o control section length
while record type ¥ 'E’ do

bagin
read nexrt dnpurn record
if record tyoe = 1" than
bagin

{if ebject cnde is in character torm, convert
inko internal representation)
nmova gniec. code from record to locaticon
(CSADDR + cspecifiad address)
end [if ‘'T’}
elpe if rocord type = ‘M’ then
begin
search OSTAD for modifying svmbol name
if found then
add cr subtract symbol value at location
(CSADDR —-speci_l‘_'i_ed address)

elsa
set error flag (undeflined exlernal synlbol)
end {if "mM°]}
end {while # "'E'}
if an address is specified {in End record}! then
set EXECADDR to (CSADDR + specified address)
add CSITH to CSADDR [/ the next control scction
and {while not EOF}
Jumrp to location given by EXECATDRE {to start execution of loaded program}
and [Pazs 2}

Figure 3.11{b) Algorithm for Pass 2 of a linking loader.

Q6 b. Explain dynamic linking with suitable diagrams.

Answer

The scheme that postpones the linking functions until execution.

A subroutineis loaded and linked to the rest of the program when it isfirst called.

This type of functionsis usually called dynamic linking, dynamic loading or load on call.

The advantages of dynamic linking are, it allow several executing programs to share one copy of a
subroutine or library.

In an object oriented system, dynamic linking makes it possible for one object to be shared by severa
programs.

Dynamic linking provides the ability to load the routines only when (and if) they are needed.
The actual loading and linking can be accomplished using operating system service request.

Instead of executing a JSSUB instruction that refers to an external symbol, the program makes aload-
and-call service request to the OS.

The OS examines its internal tables to determine whether or not the routine is already |oaded.

Control isthen passed from the OS to routine being called.

When the called subroutine completes its processing, it returns to its caller. OS then returns control to
the program that issued the request.

- Oyramiz
{gat of the
cperating loader \\
syslem| \\
Luxd-enul-cel® 4
ZARHANDL
Library
L Usar Uscr

fregram RlugEEm

ERRHANL .

__| Dynamic Dynamic | Dynamic

loader loader fm- Ioader
Load-and-call
ERAHAMDOL

Y User User P User

nrogram program program

Lss
i ERRHANDL ERRHANDL ERRHAMDL

(e}

FIGURE 318 Lcading and sailing of o subrowime asig dynaeic Heaag.

Q6 c. Enlist the different types of SunOslinkersand the associated output modules produced.
Answer

SunOS provide two different Linkers, called Link-editor and the run-time linker.

Link-editor:
Take one or more object modules (by assembler or compiler) and produce one single output module as

1) A relocatable object module, suitable for further link-editor

2) A static executable, al symbols are bound and ready to run

3) A dynamic executable, with some symbols being bounded at run time

4) A shared object, that can be bound at run time to other dynamic executables by run-time linker

Run-timelinker:

Bind the shared objects with a dynamic executable, also check dependency among shared objects.
Load, re-location, and linking.

Lazing binding:

During link-editing, callsto global defined procedures are converted to references to a procedure
linkage table

When a procedure is called first time at run time, it is passed to run-time linker viathis table, the linker
looks the actual address and place it in the call. Then in the future, the call directly goesto the
procedure without viathe table. Somehow similar to dynamic linking.

Module-4
Q7. aMention the basic function of a macro processor.
Answer

Basic Macro Processor Functions

1 Macro Definition and Expansion
2. Macro Processor Algorithms and Data structures

Macro Definition and Expansion:
Two new assembler directives are used in macro definition

MACRO: identify the beginning of a macro definition

MEND: identify the end of a macro definition Prototype for the macro
Each parameter begins with ‘&’

Name MACRO parameters

Body

MEND

Macro Expansion: The program with macrosis supplied to the macro processor. Each macro
invocation statement will be expanded into the statements that form the body of the macro, with the
arguments from the macro invocation substituted for the parameters in the macro prototype.

During the expansion, the macro definition statements are deleted since they are no longer needed.
Macro Processor Algorithm and Data structures

It is easy to design a two-pass macro processor

Pass 1: Process all macro definitions

Pass 2: Expand all macro invocation statements

However, one-pass may be enough Because all macros would have to be defined during the first pass
before any macro invocations were expanded.

Q7 b. Discusswith a suitable example, the usage of various data structuresin handling an
assembly language program involving macr os.

Answer
Data Structures

DEFTAB (Definition Table)

Stores the macro definition including macro prototype and macro body

Comment lines are omitted.

References to the macro instruction parameters are converted to a positional notation
for efficiency in substituting arguments.

NAMTAB (Name Table)

Stores macro names
Serves as an index to DEFTAB
Pointers to the beginning and the end of the macro definition (DEFTAB)

ARGTAB (Argument Table)

Stores the arguments according to their positionsin the argument list.

Asthe macro is expanded the arguments from the Argument table are substituted for the
corresponding parameters in the macro body.

The figure below shows the different data structures described and their relationship.

MAMTAB DEFTAB
| [o .

.-//* RDBUFF &INDEV,&3UFADR.&RECLTH
CLEAR X

CLEAR A
CLEAR 3
+HLDT #4096
TD =X'7TL
JEQ “—3
RD =X'71"’
COMFPR
JEQ *+11
ARGTAR STCH 12.X
E1 TIXR T
JLT =19
STX 3
MEND

ADBUFF] -

T
tn

L=

BUFFER

v

(o

LENGTH

(b) (a)

Fig 4.4

In fig 4.4(a) definition of RDBUFF is stored in DEFTAB, with an entry in NAMTARB having the
pointers to the beginning and the end of the definition. The arguments referred by the instructions are
denoted by their positional notations. For example, TD =X’?1’

The above instruction is to test the availability of the device whose number is given by the parameter
&INDEV. Intheinstruction thisis replaced by its positional value? 1.

Figure 4.4(b) showsthe ARTAB asit would appear during expansion of the RDBUFF statement as
given below: CLOOP RDBUFF F1, BUFFER, LENGTH For the invocation of the macro RDBUFF,
thefirst parameter is F1 (input device code), second is BUFFER (indicating the address where the
characters read are stored), and the third is LENGTH (which indicates total length of the record to be
read). When the ?n notation is encountered in aline fro DEFTAB, asimple indexing operation
supplies the proper argument from ARGTAB.

The agorithm of the Macro processor is given below. This has the procedure DEFINE to make the
entry of macro name in the NAMTAB, Macro Prototype in DEFTAB. EXPAND is called to set up the
argument valuesin ARGTAB and expand a Macro Invocation statement. Procedure GETLINE is
called to get the next line to be processed either from the DEFTAB or from the file itself.

When a macro definition is encountered it is entered in the DEFTAB. The normal approach isto
continue entering till MEND is encountered. If there is a program having a Macro defined within
another Macro.

While defining in the DEFTAB the very first MEND is taken as the end of the Macro definition. This
does not compl ete the definition as there is another outer Macro which compl etes the definition of
Macro as awhole. Therefore the DEFINE procedure keeps a counter variable LEVEL. Every timea
Macro directive is encountered this counter isincremented by 1. The moment the innermost Macro
ends indicated by the directive MEND it starts decreasing the value of the counter variable by one.
The last MEND should make the counter value set to zero. So when LEV EL becomes zero, the MEND
corresponds to the original MACRO directive.

Q7 c. Explain the ANSI C macro language with examples.
Answer
e Chighleve language
* In ANSI C language, definations and invocations of macros are handled by a pre-processor
* For examples:
— #defineNULL 0, #define EOF (-1), #define EQ ==
— Also called constant definition
* More complicate, macro with parameters:
— #define ABSDIFF(X,y) ((X)>(y)? (X)-(y): (y)-(X))
— S0 ABSDIFF (1+1,3-5), ABSDIFF(1,3.1415), ABSDIFF(‘D’,’A’).
— #define ABSDIFF(X,y) x>y?Xx-y: y-x will result in problem.
— Note: the importance of parentheses, due to the simple string substitution.
» Conditional compilation
— Examplel
» #ifndef BUFFER_SIZE
* #define BUFFER_SIZE 1024
o #endif

— Example2

» #define DEBUG 1

o #f DEBUG==1
e printf(....);
o #endif

o pintf(...) will appears in the program. If change #define DEBUG 0, then the
printf(...) will not.

» Also #ifdef DEBUG
. printf(...);
. #Hendif

* Inthis case, #define DEBUG will have printf(...) in the program and printf(...)
will not appear in program without #define DEBUG

OR
Q8 a. With an example briefly explain keyword macro parameters.
Answer

Positiona parameter:

parameters and arguments were associated with each other according to their positionsin
the macro prototype and the macro invocation statement

if argument isto be omitted, null value should be used.
Not suitable if amacro has alarge number of parameters and only few of them has values

Keyword parameters:

each argument value is written with a keyword that named the corresponding parameter
Arguments may appear in any order.

Null arguments no longer need to be used.

It iseasier to read and much less error-prone than the positional method.

Each parameter name is followed by an equal sign, which identifies a keyword parameter

The parameter is assumed to have the default value if its name does not appear in the macro invocation
Statement

EXAMPLE

RDBUFF MACRO &INDEV=F1, &BUFADR=, &RECLTH=, &EOR=04, &MAXLTH=4096

IF (%EOR NE *)
&EORCK SET 1 _
ENDIF Parameters with default value

RDBUFF RECLTH=LENGTH, BUFADR=BUFFER, EOR=, INDEV=F3

Q8 b. Expand the following macr o invocation statements suing the macro definition given below.
i) RDBUFF F1, BUFFER, (04, 12), LENGTH
i) RDLOOP RDBUFF F2, BUFF, ,LEN

RDBUFF MACRO &INDEV, & BUFADR,& EOR,&RECLTH

&EORCT SET %NITEM S(& EOR)
CLEAR X
CLEAR A
+LDT #4096
$LOOP TD =X ‘&INDEV’
JEQ $LOOP
RD =X ‘&INDEV’
&CTR SET 1

WHILE (&CTR LE &EORCT)

COMP =X ‘0000&EOR[&CTR]’
JEQ $EXIT
&CTR SET &CTR+1
ENDW
STCH &BUFADR, X
TIXR T

JLT $LOOP

$EXIT STX &RECLTH
MEND
Answer

1) RDBUFF F1, BUFFER, (04, 12), LENGTH

CLEAR X

CLEAR A

+LDT #4096
$AALOOP TD =X ‘F1’

JEQ $AALOOP

RD =X‘F1’

COMP =X ‘000004’

JEQ SAAEXIT

COMP =X ‘000012

JEQ SAAEXIT

STCH BUFFER, X

TIXR T

JLT $AALOOP
SAAEXIT STX LENGTH

i) RDLOOP RDBUFF F2, BUFF, , LEN

CLEAR X

CLEAR A

+LDT #4096
$ABLOOP TD =X ‘F2’

JEQ $ABLOOP

RD =X ‘F2’

STCH BUFF, X

TIXR T
JLT $ABLOOP

SABEXIT STX LEN

Q8 C. Mention the advantages of general purpose macro processor. Discussthe detailsthat must
be considered while designing a general purpose macro processor .

1) General-Purpose Macro Processors

Macro processors that do not dependent on any particular programming language, but can be used
with avariety of different languages

Pros
. Programmers do not need to learn many macro languages.

. Although its development costs are somewhat greater than those for alanguage specific macro
processor, this expense does not need to be repeated for each language, thus save substantial overall
cost.

Cons

. Large number of details must be dealt with in areal programming language Situations in which
normal macro parameter substitution should not occur, e.g., comments.

. Facilities for grouping together terms, expressions, or statements '] Tokens, e.g., identifiers,
constants, operators, keywords

. Syntax had better be consistent with the source programming language

Module-5

Q9 a. What isgrammar ? Using the BNF grammar below, represent the syntax analysis of the
PASCAL statement VAR :=SUM SQ DIV 100-MEAN * MEAN in theform of a parsetree.

<assign>:: =id:=<exp>
<exp>:: = <term> | <exp> + <term> | <exp> - <term>
<term> :: = <factor> | <term> *<factor> | <term> DIV <factor>

<factor>::id |int | (<exp>)

Answer

A grammar for programming language is formal description of the syntax, or form, of programs and
individual statements written in the language. The grammar does not describe the semantics or
meaning of the various statements.

b. Explain the varioustypes of machine-independent code optimization techniques.
Answer

1) Elimination of common sub expressions.

One important source code optimization is the elimination of common sub expressions. These sub
expressions that appear at more than one point in the program and that compute the same value.

Common sub expressions are usually detected through the analysis of an intermediate form of the
program

Example:

1) = #1 |
5) * #2 J i3
12) * #2 J i10

We see that quadruples 5 and 12 are same except for the name of the intermediate result produced.
Operand J does not change value between 5 and 12. It is not possible to reach quadruples 12 without

passing through 5. This means we can delete quadruple 12 and replace any reference to its result (i10)
with reference to 13, the result of quadruple 5.

This modification eliminates the duplicate calculation of 2*J, which we identified previously as a
common sub expression in the source statement

2) Removal of loop variants.

These are the sub expressions within aloop whose values do not change from one iteration of the loop
to the next. Thus their values can be computed once before loop is entered, rather than being

recal culated for each iteration. Because most programs spend most of their running time in the
execution of loops, the time saving from this sort of optimization can be highly significant.

Example

Loop-invariant computation is the term 2*|. the result of this computation depends only on the operand
J, which does not change in value during the execution of the loop. Thus it can be moved to the point
immediately before the loop is entered.

3) Substitution of more efficient operation for less efficient one.

Consider following example:
DO 10 | =1,20
TABLE(l) = 2**|

This DO loop creates atable that contains the first 20 powers of 2. On closer examination, we can see
that there is amore efficient way to perform the computation. For each iteration of the loop, the value
of | increased by 1. Therefore, the value of 2**| for the current iteration can be found by multiplying
the value for the previous iteration by 2. Clearly this method of computing 2** | is much more efficient
than performing a series of multiplications or using alogarithmic technique. Such atransformation is
called reduction in strength of an operation.

There are number of other possibilities for machine-impendent code optimization.

For example, computations whose operand values are known at compilation time can be performed by
the compiler. This optimization is known as folding.

Other optimization include converting a loop into straight line code(loop unrolling) and margining of
the bodies of loop (loop jamming))

c. Indicate whether the finite automation given in Fig. Q9(c) recognizes the following strings.

i) 9AL PHA ii) NUM_2iii) HELLO__ word iv) bbb 9_

A-Z a-z 09

A-Z a-z 0-9
Answer

1) 9ALPHA - Not Recognized

i) NUM_2 - Recognized

iii) HELLO__ word — Not Recognized
iv) bbb 9 - Not Recognized

OR

Q10 a Writetherecursive-decent parsefor a READ statement and show the corresponding
syntax tree constructed for the statement for the statement READ(VALUE). The BNF grammar
isgiven by thefollowing:

<read> ::= READ(<id_list>)

<id_list> ::=id { ,id}

b. Explain P-code compilerswith a neat diagram.

Answer

P-code compilers (also called bytecode compilers) are very similar in concept to
interpreters.

In both cases, the source program is analyzed and converted into an intermediate form,
which is then executed interpretively.

With a P-code compiler, however, this intermediate form is the machine language for a
hypothetical computer, often called pseudo-machine or P-machine.

The source program is compiled, with the resulting object program being in P-code.
This P-code program is then read and executed under the control of a P-code interpreter

The main advantage of this approach is portability of software. It isnot necessary for
the compiler to generate different code for different computers, because the p-code
object programs can be executed on any machine that has a p-code interpreter.

Even the compiler itself can be transported if it iswritten in the language that it
compiles. To accomplish this, the source version of the compiler is compiled into p-
code; this p-code can then be interpreted on another computer.

In this way a p-code compiler can be used without modification on awide variety of
system if ap-code interpreter iswritten for each different machine.

The design of a P-machine and the associated P-code is often related to the
requirements of the language being compiled.

The interpretive execution of a p-code program may be much slower than the execution
of the equivalent machine code.

P-code object program is often much smaller than a corresponding machine-code
program would be. This particularly useful n machines with severely limited memory
size

Many p-code compilers designed for a single user running on dedicated microcomputer
system.

If execution speed isimportant some P-code compilers support the use of machine
language subroutines.

By rewriting a small number of commonly used routines in machine language, rather
than P-code, it is often possible to achieve substantial improvements in performance.
But this approach scarifies some of the portability associated with the use of P-code
compiler

c. Assumethearray A isdeclared A:ARRAY{1..5, 1..6] of INTEGER with each element
occupying 3 bytes. Generate quadruplesfor the statement A[l,J] :=0

Answer

*

I #1 i1
11 5 12
J #1 i3
12 13 14
i4 #3 i5

