
CM
RIT

 L
ib

ra
ry

CM
RIT

 L
ib

ra
ry

CM
RIT

 L
ib

ra
ry

Module 1

Q1

a. Compare system software and application software. Give example for each. (4 Marks)

Answer:

System Software Application Software

Intended to support the operation and use
of the computer

An application program is primarily
concerned with the solution of some
problem, using the computer as tool

Focus is on the Computer system and not
on the application

The focus is on the application not on
the computing system.

It depends on the structure of the
machine on which it is executed.

It does not depend on the structure of the
machine it works

Ex. Operating system, Loader, Linkers,
assembler, compiler, text editors etc.

Ex. Banking system, Inventory system.

Q2 b. With reference to SIC/XE machine architecture, explain instruction format and
addressing modes clearly indicating the settings of different flags.

Answer:

Instruction Formats

 SIC/XE has larger memory hence instruction format of standard SIC version is no longer
suitable.

 SIC/XE provide two possible options; using relative addressing (Format 3) and extend the
address field to 20 bit (Format 4).

 In addition SIC/XE provides some instructions that do not reference memory at all. (Format 1
and Format 2) .

 The new set of instruction format is as follows. Flag bit e is used to distinguish between
format 3 and format 4. (e=0 means format 3, e=1 means format 4)

1. Format 1 (1 byte)
8
op

Example RSUB (return to subroutine)

opcode
0100 1100

4 C

2. Format 2 (2 bytes)
8 4 4

op r1 r2

Example COMPR A, S (Compare the contents of register A & S)
Opcode A S

1010 0000 0000 0100
A 0 0 4

3. Format 3 (3 bytes)
6 1 1 1 1 1 1 12
op n i x b p e disp

Example LDA #3(Load 3 to Accumlator A)
0000 00 0 1 0 0 0 0 0000 0000 0011

0 n i x b p e 0 0 3
4. Format 4 (4 bytes)

6 1 1 1 1 1 1 20
op n i x b p e address

Example JSUB RDREC(Jump to the address, 1036)
0100 10 1 1 0 0 0 1 0000 0001 0000 0011 0110

n i x b p e

Addressing Modes

There are two addressing modes, indicated by the setting of the x bit in the instruction.

Mode Indication Target address calculation

Direct x = 0 TA = address

Indexed x = 1 TA = address + (x)

Parentheses are used to indicate the contents of a register or a memory location. For example, (X)
represents the contents of register X.

Direct addressing mode

Example LDA TEN

0000 0000 1 001 0000 0000 0000
0 0 1 0 0 0

Opcode x TEN

Effective address (EA) = 1000

Content of the address 1000 is loaded to Accumulator.

Indexed addressing mode

Example STCH BUFFER, X

0101 0100 1 001 0000 0000 0000
5 4 1 0 0 0

Opcode x BUFFER

Effective address (EA) = 1000+[X]

= 1000+content of the index register X

The Accumulator content, the character is loaded to the effective address.

Q1 c. Give the target address generated for the following instructions (hexadecimal), if
(B)=006000, (PC)=003000, (X)=000090 : i) 75101000, ii)032026.

Answer

i)75101000

0111 01 0 1 0 0 0 1 0000 0001 0000 0000 0000

n=0, i=1, x=0, b=0, p=0, e=0

since n=0 and i=1 its immediate addressing

TA= Operand Value
TA= (01000)16

TA= (4096)8

ii) 032026

000 00 1 1 0 0 1 0 0000 0010 0110

n=1, i=1, x=0, b=0, p=1, e=0

TA= (PC) + disp
TA=003000+026
TA=003026

Q2
a. Explain the following with an example for each: i) WORD, ii) START

Answer

i) WORD

Generate one-word integer constant
Example:
THREE WORD 3

ii) START

START specify the name and starting address of the program.
Example:
START 1000

Q2 b. With reference to VAX machine architecture, explain memory, register, data
formats and instruction formats.
VAX family of computers was introduce by Digital equipment corporation (DEC) in 1978.
Memory : The VAX memory consists of 8-bit bytes. 2 consecutive bytes form word, 4
consecutive bytes form long word, 8 consecutive bytes form quad ward, and 16 consecutive
bytes form an octaword. All VAX programs operate in a virtual address space of 232 bytes.

Registers: There are 16 general purpose registers on the VAX, denoted by Ro to R15, all are
32 bits in length. R15 is program counter, R14 is stack pointer, R13 is frame pointer, R12 is
argument pointer, R11to R6 have no special functions and R0 to R5 are available for general
use.

Data Formats: Integers are stored as binary numbers in byte, word, longword, quadword or
octaword. 2’s compliment representation is used for negative values. Characters are stored
using their 8-bit ASCII codes. There are four different floating point data formats on the VAX,
ranging in length from 4 to 16 bytes.

Instruction Format: VAX machine instruction uses a variable- length instruction format. Each
instruction consist of an operation code (1 or 2 bytes) followed by up to six operand specifiers,
depending on the type of instruction.

Addressing mode: VAX provide large number of addressing modes. register mode, register
deferred mode, auto increment and auto decrement modes, several base relative addressing
modes program-counter relative modes ,indirect addressing mode (called deferred modes)
,immediate operands

Instruction Set : Goal of the VAX designers was to produce an instruction set that is symmetric
with respect to data type. The instruction mnemonics are formed by a prefix that specifies the
type of operation ,a suffix that specifies the data type of the operands, a modifier that gives the
number of operands involved

Input and Output: Input and output on the VAX are accomplished by I/O device controllers
Each controller has a set of control/status and data registers, which are assigned locations in the
physical address space (called I/O space)

Q2 c. ALPHA is an array of 100 words. Write a sequence of instructions for SIC/XE to
set all 100 elements of the array to 0.

Answer
LDA #0
LDS #3
LDT #300
LDX #0

LOOPA STA ALPHA,X
ADDR S,X
COMP X,T
JLT LOOPA

ALPHA RESW 100

Module-2

Q3 a. Distinguish between a literal and an immediate operand with an example for each.

Answer

Literal

 with literals the assembler generates the specified value as the constant at some other memory
location. The address of this generated constant is used as target address of machine
instruction.

 Example:

45 001A ENDFIL LDA =C‟EOF‟

Immediate operand

 With immediate addressing operand value is assembled as a part of instruction
 Example:

LDA #9

Q3 b. Generate the complete object program for the following assembly language program,
clearly showing the symbol table entries. All address are in hexadecimal.

Assume: LDT – 74, LDX- 04, LDCH-50, STCH-54, TIXR-B8, JLT-38, X-1, T-5. ASCII
character codes(decimal):E-69,O-79, F-70

COPY START 0

FIRST LDT #3

LDX #0

MOVECH LDCH STR1, X

STCH STR2,X

TIXR T

JLT MOVECH

STR1 BYTE C ’EOF’

STR2 RESB 3

END FIRST

Answer

LOC Source Statement Object Code

0000 COPY START 0

0000 FIRST LDT #3 750003

0003 LDX #0 050000

0006 MOVECH LDCH STR1, X 53A008

0009 STCH STR2,X 57A010

000C TIXR T B850

000E JLT MOVECH 3B2FF5

0011 STR1 BYTE C ’EOF’ 697970

001C STR2 RESB 3

0027 END FIRST

Q3 c. Explain the features of MASM assembler.

Answer

 It supports a wide variety of macro facilities and structured programming idioms, including
high-level constructions for looping, procedure calls and alternation (therefore, MASM is an
example of a high-level assembler).

 MASM is one of the few Microsoft development tools for which there was no separate 16-bit
and 32-bit version.

 Assembler affords the programmer looking for additional performance a three pronged
approach to performance based solutions.

 MASM can build very small high performance executable files that are well suited where size
and speed matter.

 When additional performance is required for other languages, MASM can enhance the
performance of these languages with small fast and powerful dynamic link libraries.

 For programmers who work in Microsoft Visual C/C++, MASM builds modules and libraries
that are in the same format so the C/C++ programmer can build modules or libraries in MASM
and directly link them into their own C/C++ programs. This allows the C/C++ programmer to
target critical areas of their code in a very efficient and convenient manner, graphics
manipulation, games, very high speed data manipulation and processing, parsing at speeds that
most programmers have never seen, encryption, compression and any other form of
information processing that is processor intensive.

 MASM32 has been designed to be familiar to programmers who have already written API
based code in Windows. The invoke syntax of MASM allows functions to be called in much
the same way as they are called in a high level compiler.

OR

Q4 a. What is a relocatable program? Explain the concept of program relocation with an
example, and the means for implementing it.

Answer

An object program that has the information necessary to perform this kind of modification is called the
relocatable program.

This can be accomplished with a Modification record havig following format:

Modification record

Col. 1 M

Col. 2-7 Starting location of the address field to be modified, relative to the beginning of the
program (Hex)

Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

One modification record is created for each address to be modified The length is stored in half-bytes.
The starting location is the location of the byte containing the leftmost bits of the address field to be
modified. If the field contains an odd number of half-bytes, the starting location begins in the middle
of the first byte.

Example of Program Relocation

 The above diagram shows the concept of relocation. Initially the program is loaded at location
0000. The instruction JSUB is loaded at location 0006.

 The address field of this instruction contains 01036, which is the address of the instruction
labelled RDREC. The second figure shows that if the program is to be loaded at new location
5000.

 The address of the instruction JSUB gets modified to new location 6036. Likewise the third
figure shows that if the program is relocated at location 7420 the JSUB instruction would need
to be changed to 4B108456 that correspond to the new address of RDREC.

 The only part of the program that require modification at load time are those that specify direct
addresses. The rest of the instructions need not be modified. The instructions which doesn’t
require modification are the ones that is not a memory address (immediate addressing) and PC-
relative, Base-relative instructions.

 From the object program, it is not possible to distinguish the address and constant. The
assembler must keep some information to tell the loader.

 For an address label, its address is assigned relative to the start of the program (START 0). The
assembler produces a Modification record to store the starting location and the length of the
address field to be modified. The command for the loader must also be a part of the object
program.

In the above object code the red boxes indicate the addresses that need modifications.

The object code lines at the end are the descriptions of the modification records for those instructions
which need change if relocation occurs. M00000705 is the modification suggested for the statement at
location 0007 and requires modification 5-half bytes.

Q4 b. What are program blocks? Mention the relevant assembler directives used in writing
SIC/XE source program involving program blocks and hence briefly discuss how are they
handled by an assembler. Give example.

Answer

Program being assembled was treated as one single unit and instructions appeared in same way as they
were written.

Most assembler provides features that allow machine instruction and data to appear in a different order
from the corresponding source program.

Other features create several independent part of the object program. These pats maintain their identity
and are handled separately by the loader.

Program block refers to segment of code that are rearranged within a single object program unit and
control section to refer to segments that are translated into independent object program units.

Assembler Directive USE indicate which portion of the source program belong to various blocks

USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block.

If no USE statements are included, the entire program belongs to this single block.

Each program block may actually contain several separate segments of the source program.

Assemblers rearrange these segments to gather together the pieces of each block and assign address.

Separate the program into blocks in a particular order.

Large buffer area is moved to the end of the object program.

Program readability is better if data areas are placed in the source program close to the statements that
reference them.

In the example below three blocks are used :

Default: executable instructions

CDATA: all data areas that are less in length

CBLKS: all data areas that consists of larger blocks of memory.

 Pass1

A separate location counter for each program block is maintained.

Save and restore LOCCTR when switching between blocks.

At the beginning of a block, LOCCTR is set to 0.

Assign each label an address relative to the start of the block.

Store the block name or number in the SYMTAB along with the assigned
relative address of the label

Indicate the block length as the latest value of LOCCTR for each block at the
end of Pass1

Assign to each block a starting address in the object program by concatenating
the program blocks in a particular order

 Pass2

Calculate the address for each symbol relative to the start of the object program
by adding:

The location of the symbol relative to the start of its block

The starting address of this block

Q4 c. Compare a two pass assembler with a one-pass assembler. Bring out the differences
involved in handling forward references.

Answer

The translation of the source program to the object program requires us to accomplish the following
functions:

1) Convert the mnemonic operation codes to their machine language equivalent.eg
translate SLT to 14.

2) Convert symbolic operands to their equivalent machine addresses. Eg translate
RETADR to 1033.

3) Build the machine instructions in the proper format.
4) Convert the data constants specified in the source program into their internal

machine representations in the proper format. Eg. Translate EOF to 454F46
5) Write the object program and assembly listing.

All these steps except the second can be performed by sequential processing of the

source program, one line at a time. Consider the instruction

10 1000 SRL RETADR 141033

This instruction contains the forward reference that is reference to a label

RETADR is defined later in the program.

If we attempt to translate the program line-by-line, we will be unable to process

this statement because we do not know the address that will be assigned to

RETADR.

Due to this problem most of the assemblers are designed to process the program in

two passes.

First pass does little more that scan the source program for label definition and

assign addresses.

The second pas performs most of the actual translation previously described.

Module-3

Q5 a. Briefly explain a simple bootstrap loader with an algorithm or a source program

Answer

When a computer is first turned on or restarted, a special type of absolute loader, called bootstrap
loader is executed. This bootstrap loads the first program to be run by the computer -- usually an
operating system.

The bootstrap itself begins at address 0. It loads the OS starting address 80

No header record or control information, the object code is consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

Loop

A←GETC (and convert it from the ASCII character

code to the value of the hexadecimal digit)

save the value in the high-order 4 bits of S

A←GETC

combine the value to form one byte A← (A+S)

store the value (in A) to the address in register X

X←X+1

End

Much of the work of the bootstrap loader is performed by the subroutine GETC. This subroutine read
one character from device F1 and converts it from the ASCII character code to the value of the
hexadecimal digit that is represented by that character

GETC A←read one character

if A=0x04 then jump to 0x80

if A<48 then GETC

A ← A-48 (0x30)

if A<10 then return

A ← A-7

return

Q5 b. Distinguish between a linkage editor and a linking loader.

Linking Loader

 Linking loader performs all linking and relocation operations including automatic
library search if specified and loads the linked program directly into memory for
execution

 Linking loader searched libraries and resolves external references every time the
program is executed.

Linkage Editor

 A linkage editor produces a linked version of the program – often called a load module
or an executable image, which is written to a file or library for later execution.

Linking Loader

 Linking loader performs all linking and relocation operations including automatic
library search if specified and loads the linked program directly into memory for
execution

 Linking loader searched libraries and resolves external references every time the
program is executed.

Linkage Editor

 A linkage editor produces a linked version of the program – often called a load module
or an executable image, which is written to a file or library for later execution.

Linking Loader

 Linking loader performs all linking and relocation operations including automatic
library search if specified and loads the linked program directly into memory for
execution

 Linking loader searched libraries and resolves external references every time the
program is executed.

Linkage Editor

 A linkage editor produces a linked version of the program – often called a load module
or an executable image, which is written to a file or library for later execution.

 Suitable when a program is to be executed many times without being reassembled
because resolution of external references and library searching are only performed
once.

 Compared to linking loader, Linkage editors in general tend to offer more flexibility

and control, with a corresponding increase in complexity and overhead

Q5 c. Enlist any three options specified using a command language.

Answer

Here are the some examples of how option can be specified.

INCLUDE program-name (library-name) - read the designated object program from a library

DELETE csect-name – delete the named control section from the set pf programs being loaded

CHANGE name1, name2 - external symbol name1 to be changed to name2 wherever it appears in the
object programs

LIBRARY MYLIB – search MYLIB library before standard libraries NOCALL STDDEV, PLOT,
CORREL – no loading and linking of unneeded routines Here is one more example giving, how
commands can be specified as a part of object file, and the respective changes are carried out by the
loader.

OR

Q6 a. Discuss the detailed design of linking loader with an example.

Answer

The algorithm for a linking loader is considerably more complicated than the absolute loader program,
which is already given. The concept given in the program linking section is used for developing the
algorithm for linking loader. The modification records are used for relocation so that the linking and
relocation functions are performed using the same mechanism.

Linking Loader uses two-passes

Pass 1: Assign addresses to all external symbols

Pass 2: Perform the actual loading, relocation, and linking

Data Structures

1) External Symbol Table (ESTAB)

This table is analogous to SYMTAB

ESTAB is used to stores the name and address of each external symbol in the set of control
section being loaded.

The table also often indicates in which control section the symbol is defined. A Hashed
organization is typically used for this table.

2) Program Load Address (PROGADDR)

PROGADDR is the beginning address in memory where the linked program is to be
loaded. Its value is supplied to the loader by the operating system.

3) Control Section Address (CSADDR)

CSADDR is the starting address assigned to the control section currently being scanned by the loader.

This address is added to all relative address within the control section to convert them
to actual address.

Algorithm

Pass 1

Pass 1 assign addresses to all external symbols.

The variables & Data structures used during pass 1 are, PROGADDR (program load address) from
OS, CSADDR (control section address), CSLTH (control section length) and ESTAB.

The pass 1 processes the Define Record.

The algorithm for Pass 1 of Linking Loader is given below.

Pass 2

Pass 2 of linking loader perform the actual loading, relocation, and linking.

It uses modification record and lookup the symbol in ESTAB to obtain its address.

Finally it uses end record of a main program to obtain transfer address, which is a starting address
needed for the execution of the program.

The pass 2 process Text record and Modification record of the object programs. The algorithm for
Pass 2 of Linking Loader is given below.

Q6 b. Explain dynamic linking with suitable diagrams.

Answer

The scheme that postpones the linking functions until execution.

A subroutine is loaded and linked to the rest of the program when it is first called.

This type of functions is usually called dynamic linking, dynamic loading or load on call.

The advantages of dynamic linking are, it allow several executing programs to share one copy of a
subroutine or library.

In an object oriented system, dynamic linking makes it possible for one object to be shared by several
programs.

Dynamic linking provides the ability to load the routines only when (and if) they are needed.

The actual loading and linking can be accomplished using operating system service request.

Instead of executing a JSUB instruction that refers to an external symbol, the program makes a load-
and-call service request to the OS.

The OS examines its internal tables to determine whether or not the routine is already loaded.

Control is then passed from the OS to routine being called.

When the called subroutine completes its processing, it returns to its caller. OS then returns control to
the program that issued the request.

Q6 c. Enlist the different types of SunOs linkers and the associated output modules produced.

Answer

SunOS provide two different Linkers, called Link-editor and the run-time linker.

Link-editor:

Take one or more object modules (by assembler or compiler) and produce one single output module as

1) A relocatable object module, suitable for further link-editor
2) A static executable, all symbols are bound and ready to run
3) A dynamic executable, with some symbols being bounded at run time
4) A shared object, that can be bound at run time to other dynamic executables by run-time linker

Run-time linker:

Bind the shared objects with a dynamic executable, also check dependency among shared objects.

Load, re-location, and linking.

Lazing binding:

During link-editing, calls to global defined procedures are converted to references to a procedure
linkage table

When a procedure is called first time at run time, it is passed to run-time linker via this table, the linker
looks the actual address and place it in the call. Then in the future, the call directly goes to the
procedure without via the table. Somehow similar to dynamic linking.

Module-4

Q7. a Mention the basic function of a macro processor.

Answer

Basic Macro Processor Functions

1. Macro Definition and Expansion

2. Macro Processor Algorithms and Data structures

Macro Definition and Expansion:

Two new assembler directives are used in macro definition

MACRO: identify the beginning of a macro definition

MEND: identify the end of a macro definition Prototype for the macro

Each parameter begins with ‘&’

Name MACRO parameters

:

Body

:

MEND

Macro Expansion: The program with macros is supplied to the macro processor. Each macro
invocation statement will be expanded into the statements that form the body of the macro, with the
arguments from the macro invocation substituted for the parameters in the macro prototype.

During the expansion, the macro definition statements are deleted since they are no longer needed.

Macro Processor Algorithm and Data structures

It is easy to design a two-pass macro processor

Pass 1: Process all macro definitions

Pass 2: Expand all macro invocation statements

However, one-pass may be enough Because all macros would have to be defined during the first pass
before any macro invocations were expanded.

Q7 b. Discuss with a suitable example, the usage of various data structures in handling an
assembly language program involving macros.

Answer

Data Structures

DEFTAB (Definition Table)

 Stores the macro definition including macro prototype and macro body

 Comment lines are omitted.
 References to the macro instruction parameters are converted to a positional notation

for efficiency in substituting arguments.

NAMTAB (Name Table)

 Stores macro names

 Serves as an index to DEFTAB
 Pointers to the beginning and the end of the macro definition (DEFTAB)

ARGTAB (Argument Table)

 Stores the arguments according to their positions in the argument list.

 As the macro is expanded the arguments from the Argument table are substituted for the
corresponding parameters in the macro body.

 The figure below shows the different data structures described and their relationship.

Fig 4.4

In fig 4.4(a) definition of RDBUFF is stored in DEFTAB, with an entry in NAMTAB having the
pointers to the beginning and the end of the definition. The arguments referred by the instructions are
denoted by their positional notations. For example, TD =X’?1’

The above instruction is to test the availability of the device whose number is given by the parameter
&INDEV. In the instruction this is replaced by its positional value? 1.

Figure 4.4(b) shows the ARTAB as it would appear during expansion of the RDBUFF statement as
given below: CLOOP RDBUFF F1, BUFFER, LENGTH For the invocation of the macro RDBUFF,
the first parameter is F1 (input device code), second is BUFFER (indicating the address where the
characters read are stored), and the third is LENGTH (which indicates total length of the record to be
read). When the ?n notation is encountered in a line fro DEFTAB, a simple indexing operation
supplies the proper argument from ARGTAB.

The algorithm of the Macro processor is given below. This has the procedure DEFINE to make the
entry of macro name in the NAMTAB, Macro Prototype in DEFTAB. EXPAND is called to set up the
argument values in ARGTAB and expand a Macro Invocation statement. Procedure GETLINE is
called to get the next line to be processed either from the DEFTAB or from the file itself.

(b) (a)

When a macro definition is encountered it is entered in the DEFTAB. The normal approach is to
continue entering till MEND is encountered. If there is a program having a Macro defined within
another Macro.

While defining in the DEFTAB the very first MEND is taken as the end of the Macro definition. This
does not complete the definition as there is another outer Macro which completes the definition of
Macro as a whole. Therefore the DEFINE procedure keeps a counter variable LEVEL. Every time a
Macro directive is encountered this counter is incremented by 1. The moment the innermost Macro
ends indicated by the directive MEND it starts decreasing the value of the counter variable by one.
The last MEND should make the counter value set to zero. So when LEVEL becomes zero, the MEND
corresponds to the original MACRO directive.

Q7 c. Explain the ANSI C macro language with examples.

Answer

• C high level language

• In ANSI C language, definations and invocations of macros are handled by a pre-processor

• For examples:

– #define NULL 0, #define EOF (-1), #define EQ ==

– Also called constant definition

• More complicate, macro with parameters:

– #define ABSDIFF(x,y) ((x)>(y)? (x)-(y): (y)-(x))

– So ABSDIFF (I+1,J-5), ABSDIFF(I,3.1415), ABSDIFF(‘D’,’A’).

– #define ABSDIFF(x,y) x>y? x-y: y-x will result in problem.

– Note: the importance of parentheses, due to the simple string substitution.

• Conditional compilation

– Example1

• #ifndef BUFFER_SIZE

• #define BUFFER_SIZE 1024

• #endif

– Example 2

• #define DEBUG 1

• …

• #if DEBUG==1

• printf(….);

• #endif

• pintf(…) will appears in the program. If change #define DEBUG 0, then the
printf(…) will not.

• Also #ifdef DEBUG

• printf(…);

• #endif

• In this case, #define DEBUG will have printf(…) in the program and printf(…)
will not appear in program without #define DEBUG

OR

Q8 a. With an example briefly explain keyword macro parameters.

Answer

Positional parameter:

 parameters and arguments were associated with each other according to their positions in
the macro prototype and the macro invocation statement

 if argument is to be omitted, null value should be used.

 Not suitable if a macro has a large number of parameters and only few of them has values

Keyword parameters:

 each argument value is written with a keyword that named the corresponding parameter
 Arguments may appear in any order.

 Null arguments no longer need to be used.
 It is easier to read and much less error-prone than the positional method.

Each parameter name is followed by an equal sign, which identifies a keyword parameter

The parameter is assumed to have the default value if its name does not appear in the macro invocation
statement

EXAMPLE

Q8 b. Expand the following macro invocation statements suing the macro definition given below.

i) RDBUFF F1, BUFFER, (04, 12), LENGTH

ii) RDLOOP RDBUFF F2, BUFF, , LEN

RDBUFF MACRO &INDEV, &BUFADR,&EOR,&RECLTH

&EORCT SET %NITEMS(&EOR)

CLEAR X

CLEAR A

+LDT #4096

$LOOP TD =X ‘&INDEV’

JEQ $LOOP

RD =X ‘&INDEV’

&CTR SET 1

WHILE (&CTR LE &EORCT)

COMP =X ‘0000&EOR[&CTR]’

JEQ $EXIT

&CTR SET &CTR + 1

ENDW

STCH &BUFADR, X

TIXR T

JLT $LOOP

$EXIT STX &RECLTH

MEND

Answer

1) RDBUFF F1, BUFFER, (04, 12), LENGTH

CLEAR X

CLEAR A

+LDT #4096

$AALOOP TD =X ‘F1’

JEQ $ AALOOP

RD =X ‘F1’

COMP =X ‘000004’

JEQ $AAEXIT

COMP =X ‘000012’

JEQ $AAEXIT

STCH BUFFER, X

TIXR T

JLT $AALOOP

$AAEXIT STX LENGTH

ii) RDLOOP RDBUFF F2, BUFF, , LEN

CLEAR X

CLEAR A

+LDT #4096

$ABLOOP TD =X ‘F2’

JEQ $ ABLOOP

RD =X ‘F2’

STCH BUFF, X

TIXR T

JLT $ABLOOP

$ABEXIT STX LEN

Q8 C. Mention the advantages of general purpose macro processor. Discuss the details that must
be considered while designing a general purpose macro processor.

1) General-Purpose Macro Processors

Macro processors that do not dependent on any particular programming language, but can be used
with a variety of different languages

Pros

• Programmers do not need to learn many macro languages.

• Although its development costs are somewhat greater than those for a language specific macro
processor, this expense does not need to be repeated for each language, thus save substantial overall
cost.

Cons

• Large number of details must be dealt with in a real programming language Situations in which
normal macro parameter substitution should not occur, e.g., comments.

• Facilities for grouping together terms, expressions, or statements Tokens, e.g., identifiers,
constants, operators, keywords

• Syntax had better be consistent with the source programming language

Module-5

Q9 a. What is grammar? Using the BNF grammar below, represent the syntax analysis of the
PASCAL statement VAR :=SUMSQ DIV 100 –MEAN * MEAN in the form of a parse tree.

<assign> :: = id:=<exp>

<exp> :: = <term> | <exp> + <term> | <exp> - <term>

<term> :: = <factor> | <term> *<factor> | <term> DIV <factor>

<factor> :: id | int | (<exp>)

Answer

A grammar for programming language is formal description of the syntax, or form, of programs and
individual statements written in the language. The grammar does not describe the semantics or
meaning of the various statements.

b. Explain the various types of machine-independent code optimization techniques.

Answer

1) Elimination of common sub expressions.

One important source code optimization is the elimination of common sub expressions. These sub
expressions that appear at more than one point in the program and that compute the same value.

Common sub expressions are usually detected through the analysis of an intermediate form of the
program

Example:

1) := #1 I

5) * #2 J i3

12) * #2 J i10 .

We see that quadruples 5 and 12 are same except for the name of the intermediate result produced.
Operand J does not change value between 5 and 12. It is not possible to reach quadruples 12 without

Answer

A grammar for programming language is formal description of the syntax, or form, of programs and
individual statements written in the language. The grammar does not describe the semantics or
meaning of the various statements.

b. Explain the various types of machine-independent code optimization techniques.

Answer

1) Elimination of common sub expressions.

One important source code optimization is the elimination of common sub expressions. These sub
expressions that appear at more than one point in the program and that compute the same value.

Common sub expressions are usually detected through the analysis of an intermediate form of the
program

Example:

1) := #1 I

5) * #2 J i3

12) * #2 J i10 .

We see that quadruples 5 and 12 are same except for the name of the intermediate result produced.
Operand J does not change value between 5 and 12. It is not possible to reach quadruples 12 without

Answer

A grammar for programming language is formal description of the syntax, or form, of programs and
individual statements written in the language. The grammar does not describe the semantics or
meaning of the various statements.

b. Explain the various types of machine-independent code optimization techniques.

Answer

1) Elimination of common sub expressions.

One important source code optimization is the elimination of common sub expressions. These sub
expressions that appear at more than one point in the program and that compute the same value.

Common sub expressions are usually detected through the analysis of an intermediate form of the
program

Example:

1) := #1 I

5) * #2 J i3

12) * #2 J i10 .

We see that quadruples 5 and 12 are same except for the name of the intermediate result produced.
Operand J does not change value between 5 and 12. It is not possible to reach quadruples 12 without

passing through 5. This means we can delete quadruple 12 and replace any reference to its result (i10)
with reference to i3, the result of quadruple 5.

This modification eliminates the duplicate calculation of 2*J, which we identified previously as a
common sub expression in the source statement

2) Removal of loop variants.

These are the sub expressions within a loop whose values do not change from one iteration of the loop
to the next. Thus their values can be computed once before loop is entered, rather than being
recalculated for each iteration. Because most programs spend most of their running time in the
execution of loops, the time saving from this sort of optimization can be highly significant.

Example

Loop-invariant computation is the term 2*j. the result of this computation depends only on the operand
J, which does not change in value during the execution of the loop. Thus it can be moved to the point
immediately before the loop is entered.

3) Substitution of more efficient operation for less efficient one.

Consider following example:

DO 10 I = 1,20

TABLE(I) = 2**I

This DO loop creates a table that contains the first 20 powers of 2. On closer examination, we can see
that there is a more efficient way to perform the computation. For each iteration of the loop, the value
of I increased by 1. Therefore, the value of 2**I for the current iteration can be found by multiplying
the value for the previous iteration by 2. Clearly this method of computing 2**I is much more efficient
than performing a series of multiplications or using a logarithmic technique. Such a transformation is
called reduction in strength of an operation.

There are number of other possibilities for machine-impendent code optimization.

For example, computations whose operand values are known at compilation time can be performed by
the compiler. This optimization is known as folding.

Other optimization include converting a loop into straight line code(loop unrolling) and margining of
the bodies of loop (loop jamming))

c. Indicate whether the finite automation given in Fig. Q9(c) recognizes the following strings.

i) 9ALPHA ii) NUM_2 iii) HELLO_ _ word iv) bbb_9_

Answer

i) 9ALPHA - Not Recognized
ii) NUM_2 - Recognized
iii) HELLO_ _ word – Not Recognized
iv) bbb_9_ - Not Recognized

OR

Q10 a Write the recursive-decent parse for a READ statement and show the corresponding
syntax tree constructed for the statement for the statement READ(VALUE). The BNF grammar
is given by the following:

<read> ::= READ(<id_list>)

<id_list> ::= id { ,id}

1 2 3

A-Z a-z 0-9

A-Z a-z 0-9

A-Z a-z _

b. Explain P-code compilers with a neat diagram.

Answer

 P-code compilers (also called bytecode compilers) are very similar in concept to
interpreters.

 In both cases, the source program is analyzed and converted into an intermediate form,
which is then executed interpretively.

 With a P-code compiler, however, this intermediate form is the machine language for a
hypothetical computer, often called pseudo-machine or P-machine.

 The source program is compiled, with the resulting object program being in P-code.

 This P-code program is then read and executed under the control of a P-code interpreter

 The main advantage of this approach is portability of software. It is not necessary for
the compiler to generate different code for different computers, because the p-code
object programs can be executed on any machine that has a p-code interpreter.

 Even the compiler itself can be transported if it is written in the language that it
compiles. To accomplish this, the source version of the compiler is compiled into p-
code; this p-code can then be interpreted on another computer.

 In this way a p-code compiler can be used without modification on a wide variety of
system if a p-code interpreter is written for each different machine.

 The design of a P-machine and the associated P-code is often related to the
requirements of the language being compiled.

 The interpretive execution of a p-code program may be much slower than the execution
of the equivalent machine code.

b. Explain P-code compilers with a neat diagram.

Answer

 P-code compilers (also called bytecode compilers) are very similar in concept to
interpreters.

 In both cases, the source program is analyzed and converted into an intermediate form,
which is then executed interpretively.

 With a P-code compiler, however, this intermediate form is the machine language for a
hypothetical computer, often called pseudo-machine or P-machine.

 The source program is compiled, with the resulting object program being in P-code.

 This P-code program is then read and executed under the control of a P-code interpreter

 The main advantage of this approach is portability of software. It is not necessary for
the compiler to generate different code for different computers, because the p-code
object programs can be executed on any machine that has a p-code interpreter.

 Even the compiler itself can be transported if it is written in the language that it
compiles. To accomplish this, the source version of the compiler is compiled into p-
code; this p-code can then be interpreted on another computer.

 In this way a p-code compiler can be used without modification on a wide variety of
system if a p-code interpreter is written for each different machine.

 The design of a P-machine and the associated P-code is often related to the
requirements of the language being compiled.

 The interpretive execution of a p-code program may be much slower than the execution
of the equivalent machine code.

b. Explain P-code compilers with a neat diagram.

Answer

 P-code compilers (also called bytecode compilers) are very similar in concept to
interpreters.

 In both cases, the source program is analyzed and converted into an intermediate form,
which is then executed interpretively.

 With a P-code compiler, however, this intermediate form is the machine language for a
hypothetical computer, often called pseudo-machine or P-machine.

 The source program is compiled, with the resulting object program being in P-code.

 This P-code program is then read and executed under the control of a P-code interpreter

 The main advantage of this approach is portability of software. It is not necessary for
the compiler to generate different code for different computers, because the p-code
object programs can be executed on any machine that has a p-code interpreter.

 Even the compiler itself can be transported if it is written in the language that it
compiles. To accomplish this, the source version of the compiler is compiled into p-
code; this p-code can then be interpreted on another computer.

 In this way a p-code compiler can be used without modification on a wide variety of
system if a p-code interpreter is written for each different machine.

 The design of a P-machine and the associated P-code is often related to the
requirements of the language being compiled.

 The interpretive execution of a p-code program may be much slower than the execution
of the equivalent machine code.

 P-code object program is often much smaller than a corresponding machine-code
program would be. This particularly useful n machines with severely limited memory
size

 Many p-code compilers designed for a single user running on dedicated microcomputer
system.

 If execution speed is important some P-code compilers support the use of machine
language subroutines.

 By rewriting a small number of commonly used routines in machine language, rather
than P-code, it is often possible to achieve substantial improvements in performance.
But this approach scarifies some of the portability associated with the use of P-code
compiler

c. Assume the array A is declared A:ARRAY{1..5, 1..6] of INTEGER with each element
occupying 3 bytes. Generate quadruples for the statement A[I,J] :=0

Answer

- I #1 i1

* i1 5 i2

- J #1 i3

+ i2 i3 i4

* i4 #3 i5

:= #0 A[i5]

