
CM
RIT

 L
ib

ra
ry

1a. Structural and Functional Technique

 Both Structural and Functional Technique is used to ensure adequate testing
 Structural analysis basically test the uncover error occur during the coding of the program.
 Functional analysis basically test he uncover occur during implementing requirements and design specifications.
 Functional testing basically concern about the results but not the processing.
 Structural testing is basically concern both the results and also the process.
 Structural testing is used in all the phases where design, requirements and algorithm is discussed.
 The main objective of the Structural testing to ensure that the functionality is working fine and the product is technically good

enough to implement in the real environment.
 Functional testing is sometimes called as black box testing, no need to know about the coding of the program.
 Structural testing is sometimes called as white box testing because knowledge of code is very much essential. We need to

understand the code written by other users.

b.

Static quality attributes: structured, maintainable, testable code as well as the availability of correct and complete documentation.
Dynamic quality attributes: software reliability, correctness, completeness, consistency, usability, and performance
Reliability is a statistical approximation to correctness, in the sense that 100% reliability is indistinguishable from correctness.
Roughly speaking, reliability is a measure of the likelihood of correct function for some “unit” of behavior, which could be a single
use or program execution or a period of time.

Correctness will be established via requirement specification and the program text to prove that software is behaving as expected.
Though correctness of a program is desirable, it is almost never the objective of testing. To establish correctness via testing would
imply testing a program on all elements in the input domain. In most cases that are encountered in practice, this is impossible to
accomplish. Thus correctness is established via mathematical proofs of programs.
While correctness attempts to establish that the program is error free, testing attempts to find if there are any errors in it. Thus
completeness of testing does not necessarily demonstrate that a program is error free.

Completeness refers to the availability of all features listed in the requirements, or in the user manual. Incomplete software is one
that does not fully implement all features required.
Consistency refers to adherence to a common set of conventions and assumptions. For example, all buttons in the user interface
might follow a common color coding convention. An example of inconsistency would be when a database application displays the
date of birth of a person in the database.
Usability refers to the ease with which an application can be used. This is an area in itself and there exist techniques for usability
testing. Psychology plays an important role in the design of techniques for usability testing.

Performance refers to the time the application takes to perform a requested task. It is considered as a non-functional requirement. It
is specified in terms such as ``This task must be performed at the rate of X units of activity in one second on a machine running at
speed Y, having Z gigabytes of memory."

c.
Testing Debugging

1. Testing always starts with known conditions, uses
predefined methods, and has predictable outcomes too.

1. Debugging starts from possibly un-known initial
conditions and its end cannot be predicted, apart from
statistically.

2. Testing can and should definitely be planned,
designed, and scheduled.

2. The procedures for, and period of, debugging cannot
be so constrained.

3. It proves a programmers failure. 3. It is the programmer’s vindication.
4. It is a demonstration of error or apparent correctness. 4. It is always treated as a deductive process.

5. Testing as executed should strive to be predictable,
dull, constrained, rigid, and inhuman.

5. Debugging demands intuitive leaps, conjectures,
experimentation, and some freedom also.

6. Much of the testing can be done without design
knowledge.

6. Debugging is impossible without detailed design
knowledge.

7. It can often be done by an outsider. 7. It must be done by an insider.
8. Much of test execution and design can be automated. 8. Automated debugging is still a dream for

programmers.
9. Testing purpose is to find bug. 9. Debugging purpose is to find cause of bug.

2a.

b. Basic principles of software testing -
• General engineering principles:

– Partition: divide and conquer
– Visibility: making information accessible
– Feedback: tuning the development process

• Specific A&T principles:
– Sensitivity: better to fail every time than sometimes
– Redundancy: making intentions explicit
– Restriction: making the problem easier

3a.

b.

c. The SATM system communicates with bank customers via the 15 screens shown in following figure. Using a terminal with features as
shown in Figure 2.3, SATM customers can select any of three transaction types: deposits, withdrawals, and balance inquiries. For
simplicity, these transactions can only be done on a checking account. When a bank customer arrives at an SATM station, screen 1 is
displayed. The bank customer accesses the SATM system with a plastic card encoded with a personal account number (PAN), which is a
key to an internal customer account file, containing, among other things, the customer’s name and account information. If the customer’s

PAN matches the information in the customer account file, the system presents screen 2 to the customer. If the customer’s PAN is not
found, screen 4 is displayed, and the card is kept. At screen 2, the customer is prompted to enter his or her personal identification
number (PIN). If the PIN is correct (i.e., matches the information in the customer account file), the system displays screen 5; otherwise,
screen 3 is displayed. The customer has three chances to get the PIN correct; after three failures, screen 4 is displayed, and the card is
kept. On entry to screen 5, the customer selects the desired transaction from the options shown on screen. If balance is requested, screen
14 is then displayed. If a deposit is requested, the status of the deposit envelope slot is determined from a field in the terminal control
file. If no problem is known, the system displays screen 7 to get the transaction amount. If a problem occurs with the deposit envelope
slot, the system displays screen 12. Once the deposit amount has been entered, the system displays screen 13, accepts the deposit
envelope, and processes the deposit. The system then displays screen 14. If a withdrawal is requested, the system checks the status
(jammed or free) of the withdrawal chute in the terminal control file. If jammed, screen 10 is displayed; otherwise, screen 7 is
displayed so the customer can enter the withdrawal amount. Once the withdrawal amount is entered, the system checks the
terminal status file to see if it has enough currency to dispense. If it does not, screen 9 is displayed; otherwise, the withdrawal is
processed. The system checks the customer balance (as described in the balance request transaction); if the funds in the account
are insufficient, screen 8 is displayed. If the account balance is sufficient, screen 11 is displayed and the money is dispensed. The
balance is printed on the transaction receipt as it is for a balance request transaction. After the cash has been removed, the system
displays screen 14. When the “No” button is pressed in screens 10, 12, or 14, the system presents screen 15 and returns the
customer’s ATM card. Once the card is removed from the card slot, screen 1 is displayed. When the “Yes” button is pressed in
screens 10, 12, or 14, the system presents screen 5 so the customer can select additional transactions.

4a. Boundary Value Analysis: Boundary testing is the process of testing between extreme ends or boundaries between partitions of the
input values.

 So these extreme ends like Start- End, Lower- Upper, Maximum-Minimum, Just Inside-Just Outside values are called boundary
values and the testing is called "boundary testing".

 The basic idea in boundary value testing is to select input variable values at their:

1. Minimum
2. Just above the minimum
3. A nominal value
4. Just below the maximum
5. Maximum

• In Boundary Testing, Equivalence Class Partitioning plays a good role
• Boundary Testing comes after the Equivalence Class Partitioning.

Generalizing boundary value analysis: There are two approaches to generalizing Boundary Value Analysis. We can do this by the
number of variables or by the ranges these variables use. To generalise by the number of variables is relatively simple. This is the
approach taken as shown by the general Boundary Value Analysis technique using the critical fault assumption. Generalizing by ranges
depends on the type of the variables. For example in the NextDate example proposed by P.C. Jorgensen, we have variable for the year,
month and day. Languages similar to the likes of FORTRAN would normally encode the month’s variable so that January corresponded
to 1 and February corresponded to 2 etc. Also it would be possible in some languages to declare an enumerated type {Jan, Feb, Mar,......,
Dec}. Either way this type of declaration is relatively simple because the ranges have set values. When we do not have explicit bounds
on these variable ranges then we have to create our own. These are known as artificial bounds and can be illustrated via the use of the Tri
angle problem. The point raised by P.C. Jorgensen was that we can easily impose a lower bound on the length of an edge for the tri-
angle as an edge with a negative length would be “silly”. The problem occurs when trying to decide upon an upper bound for the length
of each length. We could use a certain set integer, we could allow the program to use the highest possible integer (normally denoted as
something to the effect of MaxInt). The arbitrary nature of this problem can lead to messy results or non concise test cases.

b. Equivalence Class Test Cases for Triangle Problem:

c. Decision Table: Decision tables have been used to represent and analyze complex logical relationships since the early 1960s. They
are ideal for describing situations in which a number of combinations of actions are taken under varying sets of conditions. A decision
table has four portions: the part to the left of the bold vertical line is the stub portion; to the right is the entry portion. The part above the
bold horizontal line is the condition portion, and below is the action portion. Thus, we can refer to the condition stub, the condition
entries, the action stub, and the action entries. A column in the entry portion is a rule. Rules indicate which actions, if any, are taken for
the circumstances indicated in the condition portion of the rule. Following example is the decision table of the triangle problem

5a. DD Path - A DD-path is a sequence of nodes in a program graph such that
Case 1: It consists of a single node with indeg = 0.
Case 2: It consists of a single node with outdeg = 0.
Case 3: It consists of a single node with indeg ≥ 2 or outdeg ≥ 2.
Case 4: It consists of a single node with indeg = 1 and outdeg = 1.
Case 5: It is a maximal chain of length ≥ 1.

b.

c. Data Flow Testing: Data flow testing is a family of test strategies based on selecting paths through the program's control flow in order
to explore sequences of events related to the status of variables or data objects. Dataflow Testing focuses on the points at which variables
receive values and the points at which these values are used.

Data Flow testing helps us to pinpoint any of the following issues:

 A variable that is declared but never used within the program.
 A variable that is used but never declared.
 A variable that is defined multiple times before it is used.
 Deallocating a variable before it is used.

Slice-Based Testing Definitions

 Given a program P, and a program graph G(P) in which statements and statement fragments are numbered, and a set V of
variables in P, the slice on the variable set V at statement fragment n, written S(V,n), is the set node numbers of all statement
fragments in P prior to n that contribute to the values of variables in V at statement fragment n

 The idea of slices is to separate a program into components that have some useful meaning

 We will include CONST declarations in slices
 Five forms of usage nodes

 P-use (used in a predicate (decision))
 C-use (used in computation)

 O-use (used for output, e.g. writeln())
 L-use (used for location, e.g. pointers)
 I-use (iteration, e.g. internal counters)

 Two forms of definition nodes
 I-def (defined by input, e.g. readln())
 A-def (defined by assignment)

 For now, we presume that the slice S(V,n) is a slice on one variable, that is, the set V consists of a single variable, v

 If statement fragment n (in S(V,n)) is a defining node for v, then n is included in the slice
 If statement fragment n (in S(V,n)) is a usage node for v, then n is not included in the slice
 P-uses and C-uses of other variables are included to the extent that their execution affects the value of the variable v
 O-use, L-use, and I-use nodes are excluded from slices
 Consider making slices compliable

Slice-Based Testing Examples
 Find the following program slices
 S(commission,48)
 S(commission,40)
 S(commission,39)
 S(commission,38)
 S(sales,35)
 S(num_locks,34)
 S(num_stocks,34)
 S(num_barrels,34)

 S(commission,48)
 {1-5,8-11,13,14,19-30,36,47,48,53}

 S(commission,40), S(commission,39), S(commission,38)
 {Ø}

 S(sales,35)
 {Ø}

 S(num_locks,34)
 {1,8,9,10,13,14,19, 22,23,24,26,29,30, 53}

 S(num_stocks,34)
 {1,8,9,10,13,14,20, 22-25,27,29,30,53}

 S(num_barrels,34)
 {1,8,9,10,13,14,21-25,28,29,30,53}

6a.

6b.There are different levels during the process of testing. In this chapter, a brief description is provided about these levels.

Levels of testing include different methodologies that can be used while conducting software testing. The main levels of software testing
are:

 Functional Testing
 Non-functional Testing

Functional Testing

This is a type of black-box testing that is based on the specifications of the software that is to be tested. The application is tested by
providing input and then the results are examined that need to conform to the functionality it was intended for. Functional testing of a
software is conducted on a complete, integrated system to evaluate the system's compliance with its specified requirements.

There are five steps that are involved while testing an application for functionality.

Steps Description
I The determination of the functionality that the intended application is meant to perform.

II The creation of test data based on the specifications of the application.

III The output based on the test data and the specifications of the application.

IV The writing of test scenarios and the execution of test cases.

V The comparison of actual and expected results based on the executed test cases.

An effective testing practice will see the above steps applied to the testing policies of every organization and hence it will make sure that
the organization maintains the strictest of standards when it comes to software quality.

Unit Testing

This type of testing is performed by developers before the setup is handed over to the testing team to formally execute the test cases.
Unit testing is performed by the respective developers on the individual units of source code assigned areas. The developers use test data
that is different from the test data of the quality assurance team.

The goal of unit testing is to isolate each part of the program and show that individual parts are correct in terms of requirements and
functionality.

Limitations of Unit Testing

Testing cannot catch each and every bug in an application. It is impossible to evaluate every execution path in every software
application. The same is the case with unit testing.

There is a limit to the number of scenarios and test data that a developer can use to verify a source code. After having exhausted all the
options, there is no choice but to stop unit testing and merge the code segment with other units.

Integration Testing

Integration testing is defined as the testing of combined parts of an application to determine if they function correctly. Integration testing
can be done in two ways: Bottom-up integration testing and Top-down integration testing.

S.N. Integration Testing Method

1
Bottom-up integration

This testing begins with unit testing, followed by tests of progressively higher-level combinations of units called modules or builds.

2
Top-down integration

In this testing, the highest-level modules are tested first and progressively, lower-level modules are tested thereafter.

In a comprehensive software development environment, bottom-up testing is usually done first, followed by top-down testing. The
process concludes with multiple tests of the complete application, preferably in scenarios designed to mimic actual situations.

System Testing

System testing tests the system as a whole. Once all the components are integrated, the application as a whole is tested rigorously to see
that it meets the specified Quality Standards. This type of testing is performed by a specialized testing team.

System testing is important because of the following reasons:

 System testing is the first step in the Software Development Life Cycle, where the application is tested as a whole.
 The application is tested thoroughly to verify that it meets the functional and technical specifications.
 The application is tested in an environment that is very close to the production environment where the application will be

deployed.
 System testing enables us to test, verify, and validate both the business requirements as well as the application architecture.

Regression Testing

Whenever a change in a software application is made, it is quite possible that other areas within the application have been affected by
this change. Regression testing is performed to verify that a fixed bug hasn't resulted in another functionality or business rule violation.
The intent of regression testing is to ensure that a change, such as a bug fix should not result in another fault being uncovered in the
application.

Regression testing is important because of the following reasons:

 Minimize the gaps in testing when an application with changes made has to be tested.
 Testing the new changes to verify that the changes made did not affect any other area of the application.
 Mitigates risks when regression testing is performed on the application.
 Test coverage is increased without compromising timelines.
 Increase speed to market the product.

Acceptance Testing

This is arguably the most important type of testing, as it is conducted by the Quality Assurance Team who will gauge whether the
application meets the intended specifications and satisfies the client’s requirement. The QA team will have a set of pre-written scenarios
and test cases that will be used to test the application.

More ideas will be shared about the application and more tests can be performed on it to gauge its accuracy and the reasons why the
project was initiated. Acceptance tests are not only intended to point out simple spelling mistakes, cosmetic errors, or interface gaps, but
also to point out any bugs in the application that will result in system crashes or major errors in the application.

By performing acceptance tests on an application, the testing team will deduce how the application will perform in production. There are
also legal and contractual requirements for acceptance of the system.

Alpha Testing

This test is the first stage of testing and will be performed amongst the teams (developer and QA teams). Unit testing, integration testing
and system testing when combined together is known as alpha testing. During this phase, the following aspects will be tested in the
application:

 Spelling Mistakes
 Broken Links
 Cloudy Directions
 The Application will be tested on machines with the lowest specification to test loading times and any latency problems.

Beta Testing

This test is performed after alpha testing has been successfully performed. In beta testing, a sample of the intended audience tests the
application. Beta testing is also known as pre-release testing. Beta test versions of software are ideally distributed to a wide audience on

the Web, partly to give the program a "real-world" test and partly to provide a preview of the next release. In this phase, the audience
will be testing the following:

 Users will install, run the application and send their feedback to the project team.
 Typographical errors, confusing application flow, and even crashes.
 Getting the feedback, the project team can fix the problems before releasing the software to the actual users.
 The more issues you fix that solve real user problems, the higher the quality of your application will be.
 Having a higher-quality application when you release it to the general public will increase customer satisfaction.

Non-Functional Testing

This section is based upon testing an application from its non-functional attributes. Non-functional testing involves testing a software
from the requirements which are nonfunctional in nature but important such as performance, security, user interface, etc.

Some of the important and commonly used non-functional testing types are discussed below.

Performance Testing

It is mostly used to identify any bottlenecks or performance issues rather than finding bugs in a software. There are different causes that
contribute in lowering the performance of a software:

 Network delay
 Client-side processing
 Database transaction processing
 Load balancing between servers
 Data rendering

Performance testing is considered as one of the important and mandatory testing type in terms of the following aspects:

 Speed (i.e. Response Time, data rendering and accessing)
 Capacity
 Stability
 Scalability

Performance testing can be either qualitative or quantitative and can be divided into different sub-types such as Load testing and Stress
testing.

Load Testing

It is a process of testing the behavior of a software by applying maximum load in terms of software accessing and manipulating large
input data. It can be done at both normal and peak load conditions. This type of testing identifies the maximum capacity of software and
its behavior at peak time.

Most of the time, load testing is performed with the help of automated tools such as Load Runner, AppLoader, IBM Rational
Performance Tester, Apache JMeter, Silk Performer, Visual Studio Load Test, etc.

Virtual users (VUsers) are defined in the automated testing tool and the script is executed to verify the load testing for the software. The
number of users can be increased or decreased concurrently or incrementally based upon the requirements.

Stress Testing

Stress testing includes testing the behavior of a software under abnormal conditions. For example, it may include taking away some
resources or applying a load beyond the actual load limit.

The aim of stress testing is to test the software by applying the load to the system and taking over the resources used by the software to
identify the breaking point. This testing can be performed by testing different scenarios such as:

 Shutdown or restart of network ports randomly
 Turning the database on or off

 Running different processes that consume resources such as CPU, memory, server, etc.

Usability Testing

Usability testing is a black-box technique and is used to identify any error(s) and improvements in the software by observing the users
through their usage and operation.

According to Nielsen, usability can be defined in terms of five factors, i.e. efficiency of use, learn-ability, memory-ability, errors/safety,
and satisfaction. According to him, the usability of a product will be good and the system is usable if it possesses the above factors.

Nigel Bevan and Macleod considered that usability is the quality requirement that can be measured as the outcome of interactions with a
computer system. This requirement can be fulfilled and the end-user will be satisfied if the intended goals are achieved effectively with
the use of proper resources.

Molich in 2000 stated that a user-friendly system should fulfill the following five goals, i.e., easy to Learn, easy to remember, efficient
to use, satisfactory to use, and easy to understand.

In addition to the different definitions of usability, there are some standards and quality models and methods that define usability in the
form of attributes and sub-attributes such as ISO-9126, ISO-9241-11, ISO-13407, and IEEE std.610.12, etc.

UI vs Usability Testing

UI testing involves testing the Graphical User Interface of the Software. UI testing ensures that the GUI functions according to the
requirements and tested in terms of color, alignment, size, and other properties.

On the other hand, usability testing ensures a good and user-friendly GUI that can be easily handled. UI testing can be considered as a
sub-part of usability testing.

Security Testing

Security testing involves testing a software in order to identify any flaws and gaps from security and vulnerability point of view. Listed
below are the main aspects that security testing should ensure:

 Confidentiality
 Integrity
 Authentication
 Availability
 Authorization
 Non-repudiation
 Software is secure against known and unknown vulnerabilities
 Software data is secure
 Software is according to all security regulations
 Input checking and validation
 SQL insertion attacks
 Injection flaws
 Session management issues
 Cross-site scripting attacks
 Buffer overflows vulnerabilities
 Directory traversal attacks

Portability Testing

Portability testing includes testing software with the aim to ensure its reusability and that it can be moved from another software as well.
Following are the strategies that can be used for portability testing:

 Transferring installed software from one computer to another.
 Building executable (.exe) to run the software on different platforms.

Portability testing can be considered as one of the sub-parts of system testing, as this testing type includes overall testing of a software
with respect to its usage over different environments. Computer hardware, operating systems, and browsers are the major focus of
portability testing. Some of the pre-conditions for portability testing are as follows:

 Software should be designed and coded, keeping in mind the portability requirements.
 Unit testing has been performed on the associated components.
 Integration testing has been performed.
 Test environment has been established.

7a. Mutation testing (or Mutation analysis or Program mutation) is used to design new software tests and evaluate the quality of
existing software tests. Mutation testing involves modifying a program in small ways. Each mutated version is called a mutant and tests
detect and reject mutants by causing the behavior of the original version to differ from the mutant. This is called killing the mutant. Test
suites are measured by the percentage of mutants that they kill. New tests can be designed to kill additional mutants. Mutants are based
on well-defined mutation operators that either mimic typical programming errors (such as using the wrong operator or variable name) or
force the creation of valuable tests (such as dividing each expression by zero). The purpose is to help the tester develop effective tests or
locate weaknesses in the test data used for the program or in sections of the code that are seldom or never accessed during execution.
Mutation testing is a form of white-box testing.

Fault-based testing:
o Adequacy of test set = Ability to detect faults
o Methods:

 Error seeding
 Mutation testing

 Program mutation testing
 SPEC-mutation testing

b. Test Oracle: In computing, software testers and software engineers can use an oracle as a mechanism for determining whether a test
has passed or failed. The use of oracles involves comparing the output(s) of the system under test, for a given test-case input, to the
output(s) that the oracle determines that product should have.

Self-Checking Code as Oracle
• An oracle can also be written as self-checks
– Often possible to judge correctness without predicting results
• Advantages and limits: Usable with large, automatically generated test suites, but often only a partial check
– e.g., structural invariants of data structures

c. Capture and Replay
• Sometimes there is no alternative to human input and observation
– Even if we separate testing program functionality from GUI, some testing of the GUI is required
• We can at least cut repetition of human testing
• Capture a manually run test case, replay it automatically
– with a comparison-based test oracle: behavior same as previously accepted behavior
• reusable only until a program change invalidates it
• lifetime depends on abstraction level of input and output

8. a. Document analysis is a form of qualitative research in which documents are interpreted by the researcher to give voice and meaning
around an assessment topic (Bowen, 2009). Analyzing documents incorporates coding content into themes similar to how focus group or
interview transcripts are analyzed (Bowen,2009). A rubric can also be used to grade or score document. There are three primary types of
documents (O’Leary, 2014):

 Public Records: The official, ongoing records of an organization’s activities. Examples include student transcripts, mission
statements, annual reports, policy manuals, student handbooks, strategic plans, and syllabi.

 Personal Documents: First-person accounts of an individual’s actions, experiences, and beliefs. Examples include calendars, e-
mails, scrapbooks, blogs, Facebook posts, duty logs, incident reports, reflections/journals, and newspapers.

 Physical Evidence: Physical objects found within the study setting (often called artifacts). Examples include flyers, posters,
agendas, handbooks, and training materials.

Before actual document analysis takes place, the researcher must go through a detailed planning process in order to ensure reliable
results. O’Leary outlines an 8-step planning process that should take place not just in document analysis, but all textual analysis (2014):

1. Create a list of texts to explore (e.g., population, samples, respondents, participants).
2. Consider how texts will be accessed with attention to linguistic or cultural barriers.
3. Acknowledge and address biases.
4. Develop appropriate skills for research.
5. Consider strategies for ensuring credibility.
6. Know the data one is searching for.
7. Consider ethical issues (e.g., confidential documents).
8. Have a backup plan.

A researcher can use a huge plethora of texts for research, although by far the most common is likely to be the use of written documents
(O’Leary, 2014). There is the question of how many documents the researcher should gather. Bowen suggests that a wide array of
documents is better, although the question should be more about quality of the document rather than quantity (Bowen, 2009). O’Leary
also introduces two major issues to consider when beginning document analysis. The first is the issue of bias, both in the author or
creator of the document, and the researcher as well (2014). The researcher must consider the subjectivity of the author and also the
personal biases he or she may be bringing to the research. Bowen adds that the researcher must evaluate the original purpose of the
document, such as the target audience (2009). He or she should also consider whether the author was a firsthand witness or used
secondhand sources. Also important is determining whether the document was solicited, edited, and/or anonymous (Bowen, 2009).
O’Leary’s second major issue is the “unwitting” evidence, or latent content, of the document. Latent content refers to the style, tone,
agenda, facts or opinions that exist in the document. This is a key first step that the researcher must keep in mind (O’Leary, 2014).
Bowen adds that documents should be assessed for their completeness; in other words, how selective or comprehensive their data is
(2009). Also of paramount importance when evaluating documents is not to consider the data as “necessarily precise, accurate, or
complete recordings of events that have occurred” (Bowen, 2009, p. 33). These issues are summed up in another eight-step process
offered by O’Leary (2014):

1. Gather relevant texts.
2. Develop an organization and management scheme.
3. Make copies of the originals for annotation.
4. Asses authenticity of documents.
5. Explore document’s agenda, biases.
6. Explore background information (e.g., tone, style, purpose).
7. Ask questions about document (e.g., Who produced it? Why? When? Type of data?).
8. Explore content.

Step eight refers to the process of exploring the “witting” evidence, or the actual content of the documents, and O’Leary gives two major
techniques for accomplishing this (2014). One is the interview technique. In this case, the researcher treats the document like a
respondent or informant that provides the researcher with relevant information (O’Leary, 2014). The researcher “asks” questions then
highlights the answer within the text. The other technique is noting occurrences, or content analysis, where the researcher quantifies the
use of particular words, phrases and concepts (O’Leary, 2014). Essentially, the researcher determines what is being searched for, then
documents and organizes the frequency and amount of occurrences within the document. The information is then organized into what is
“related to central questions of the research” (Bowen, 2009, p. 32). Bowen notes that some experts object to this kind of analysis, saying
that it obscures the interpretive process in the case of interview transcriptions (Bowen, 2009). However, Bowen reminds us that
documents include a wide variety of types, and content analysis can be very useful for painting a broad, overall picture (2009).
According to Bowen (2009), content analysis, then, is used as a “first-pass document review” (p. 32) that can provide the researcher a
means of identifying meaningful and relevant passages.

b. TEST DESIGN SPECIFICATION

Test processes determine whether the development products of a given activity conform to the requirements of that activity and whether
the system and/or software satisfies its intended use and user needs. The scope of testing encompasses software-based systems, computer
software, hardware, and their interfaces.

829-2008 – IEEE Standard for Software and System Test Documentation, is an IEEE standard that specifies the form of a set of
documents for use in eight defined stages of software testing, each stage potentially producing its own separate type of document.

Software quality assurance test documentation includes:

Test Design Specification
The test design is the first stage in developing the tests for software testing projects. It records what needs to be tested, and is derived
from the documents that come into the testing stage, such as requirements and designs. It records which features of a test item are to be
tested, and how a successful test of these features would be recognized.

The test design does not record the values to be entered for a test, but describes the requirements for defining those values.

This document is very valuable, but is often missing on many projects. The reason is that people start writing test cases before they have
decided what they are going to test.

IEEE 829 Test Design Specification Template

Test Design Specification Identifier
• Specify the unique identifier assigned to this test procedure. Supply a reference to the associated test procedure specification. The
naming convention should follow the same general rules as the software it is related, for coordinating software versions within
configuration management.
• Unique “short” name for the case
• Version date and version number of the case
• Version Author and contact information
• Revision history

Features to be Tested
The set of test objectives covered by this test design specification. It is the overall purpose of this document to group related test items
together.
• Features
• Attributes and Characteristics
• Groupings of features
• Level of testing appropriate to test item if this test design specification covers more that
one level of testing
• Reference to the original documentation where this test objective (feature) was obtained.

Approach Refinements
Add the necessary level of detail and refinement based on the original approach defined in
the test plan associated with this test design specification.
• Selection of specific test techniques
• Reasons for technique selection
• Method(s) for results analysis
• Tools etc.
• Relationship of the test items/features to the levels of testing
• Summarize any common information that may relate to multiple test cases or procedures.
Centralizing common information reduces document size, and simplifies maintenance.
• Shared Environment
• Common setup/recovery
• Case dependencies

Test Identification
• Identification of each test case with a short description of the case, it’s test level or any
other appropriate information required to describe the test relationship.
• Identification of each test procedure with a short description of the case, it’s test level or
any other appropriate information required to describe the test relationship.

Feature Pass/Fail Criteria
Describe the criteria for assessing the feature or set of features and whether the test(s) were successful of not.

