
~o
Z
c
;9•...
o
0.
.§

USN 16MCA21

Second Semester MCA'Degree Examination, June/July 2017
Python Programming

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE/ull questions,choosingonefull question/rom eachmodule.

1
Module-l

a. How does a computer run a Python Program? Explain with a neat diagram.
b. Explain and construct the memory model of variables in Python.
c. List any four built - in string functions in Python and explain.

(06 Marks)
(06 Marks)
(04 Marks)

2
OR

a. Predict the output of the following code and justify your answer:
City = "Bengaluru"
City [1] = City [8] = "e"
City [6] = "0"
Print (city).

b. Trace the function call and explain the memory model of the following code:
deff(x) :

X=2 *x
return x

x=l
x=f(x+l).

c. Discuss the usage of the following with respect to the print ( ) function
i) sep argument ii) end argument iii) .format (arguments). (06 Marks)

(02 Marks)

(08 Marks)

3
Module-2

a. Pred ict the output of the following and justify your answer (04 Marks)
i) not"False" ii) -17%10 iii) (212-32)*5/9 iv) 3.5//1.3.

b. Write a Python program to find average of best two test marks out of three test marks.
(04 Marks)

c. What are the two ways of importing a module? Which one is more beneficial? Explain.
(08 Marks)

4
OR

a. Discuss the importance of docstring in testing the code semi - automatically using doctest.
(08 Marks)

b. Write a Python program to find the roots ofa quadratic equation. (08 Marks)

5
Module-3

a. Consider the list qty = [5,4, 7, 3, 6,2, I] and write the Python code to perform the following
operation without using built-in methods:
i) Insert an element 9 at the beginning of the list ii) Insert an element 8 at the end of
the list iii) Insert an element 8 at the index position 3 of the list iv) Delete an element
at the beginning ofthe list v) Delete an element at the end of the list vi) Delete an
element at the index position 3 vii) Print the list in reverse order (end to start)
viii) Delete all the elements of the list. (08 Marks)

b. Write the Python program to check whether a given number is prime or not, using for - else
statement. (08 Marks)

lof2

CM
RIT

 L
ib

ra
ry



16MCA21

OR
6 a. Give any four differences between a list and a string in Python. (04 Marks)

b. Write a Python program to read a string with punctuations and print the same string without
punctuations. (08 Marks)

c. What is a list of lists? Give an example along with its memory model. (04 Marks)

Module-4
7 a. How can we use 'with' statement while opening a text file? Explain. (04 Marks)

b. Consider the following two sets and write the Python code to perform following operations
on them. (04 Marks)

i) Union
ii) Difference
iii) Symmetric difference
iv) Intersection

c. Write a Python program to read a word and print
percentage of vowels in the word using a dictionary.

Lows = 0,1, 2, 3, 4
Odds= 1,3,5,7,9

the number of letters, vowels and
(08 Marks)

OR
8 a. Store the following data in a list, in a set and in a dictionary. (06 Marks)

b.
c.

(02 Marks)

(08 Marks)

Module-5
9 a. Write short notes on: i) is instance () ii) __ init __ (). (04 Marks)

b. With an example, discuss the different components of a tkinter program. (06 Marks)
c. Write an object oriented Python program to create two time objects: Current _ time and

Bread _ time which contains bread baking time. Include addTime method to display the total
time taken by the bread maker to prepare a bread. (06 Marks)

OR
10 a. What are the steps that Python follows while creating an object? (03 Marks)

b. Explain MVC design with the help oftkinter program. (08 Marks)
c. Write a tkinter program to design a GUI window that has a lable of background color green

and foreground color white. . (05 Marks)

* * * * *

20f2

CM
RIT

 L
ib

ra
ry



1a)How does a computer run a Python program?Explain with a neat diagram. 

Python is an example of a high-level language.Two kinds of programs process high-level 
languages into low-level languages:interpreters and compilers. An interpreter reads a high-
level program and 
executes it, meaning that it does what the program says. It processes the programa little at 
a time, alternately reading lines and performing computations 
 

 
Python is considered an interpreted language because Python programs are executed by an 
interpreter. There are two ways to use the interpreter: commandline mode and script 
mode. In command-line mode, you type Python programsand the interpreter prints the 
result: 
 
By convention, _les that contain Python programs have names that end with .py. 
To execute the program, we have to tell the interpreter the name of the script: 
 

 
b)Memory  model of variables in Python: 
Every location in the computer’s memory has a memory address, much like an address for a 
house on a street, that uniquely identifies that location. 
We  mark our memory addresses with an id prefix (short for identifier) so that they look 
different from integers: id1, id2, id3, and so on. 
Memory model for the floating-point value 26.0 

    
This picture shows the value 26.0 at the memory address id1. We will always show the type 
of the value as well—in this case, float. We will call this box an object: a value at a memory 
address with a type. During execution of a program, every value that Python keeps track of 
is stored inside an object in computer memory. 
In our memory model, a variable contains the memory address of the object to which it 
refers: 



 
In order to make the picture easier to interpret, we will usually draw arrows from variables 
to their objects. 
Value 26.0 has the memory address id1. 
• The object at the memory address id1 has type float and the value 26.0. 
• Variable degrees_celsius contains the memory address id1. 
• Variable degrees_celsius refers to the value 26.0. 
Whenever Python needs to know which value degree_celsius refers to, it looksat the object 
at the memory address that degree_celsius contains. In this example,that memory address 
is id1, so Python will use the value at the memory address id1, which is 26.0. 
c)Python  string functions: 

 
2)a) Predict the output of the following code and justify your answer: 
 
City=”Bangaluru” 
City[1]=City[8]=”e” 
City[6]=”0” 
Print(City) 
 
OutPut: we get error as strings are immutable in python 
 
b)Trace the function call and explain the memory model of the following code: 
 
def f(x): 
   X=2*x 
   Return x 
X=1 
X=f(x+1) 
 
 



 
c)Discuss the usage of the following with respect to the print() function 
i)sep argument  ii)end argument iii) .format(arguments) 
i) sep argument: 
The separator between the arguments to print() function in Python is space by default 
(softspace feature) , which can be modified and can be made to any character, integer or 
string as per our choice. The ‘sep’ parameter is used to achieve the same, it is found only in 
python 3.x or later. It is also used for formatting the output strings. 
Examples: 
#code for disabling the softspace feature 
print('G','F','G', sep='') 
  
#for formatting a date 
print('09','12','2016', sep='-') 
  
#another example 
print('pratik','gmail.com', sep='@') 
Output: 

 

GFG 

09-12-2016 

pratik@gmail.com 

ii)end 

By default, a newline ("\n") is written after the last value in args. You may use this 
keywoard argument to specify a different line terminator, or no terminator at all. 



The sep parameter when used with end parameter it produces awesome results. Some 
examples by combining the sep and end parameter. 
print('G','F', sep='', end='') 
print('G') 
#n provides new line after printing the year 
print('09','12', sep='-', end='-2016n') 
  
print('prtk','agarwal', sep='', end='@') 
print('geeksforgeeks') 
Output: 

GFG 

09-12-2016 

prtkagarwal@geeksforgeeks 

iii).format(arguments) 

The string format() method formats the given string into a nicer output in Python. 

The format() method returns the formatted string. The format() reads the type of 
arguments passed to it and formats it according to the format codes defined in the string. 

 

Here, Argument 0 is a string "Adam" and Argument 1 is a floating number 230.2346. 

The string "Hello {0}, your balance is {1:9.3f}" is the template string. This contains the 
format codes for formatting. 

The curly braces are just placeholders for the arguments to be placed. In the above 
example, {0} is placeholder for "Adam" and {1:9.3f} is placeholder for 230.2346. 

http://www.geeksforgeeks.org/gfact-50-python-end-parameter-in-print/
http://www.geeksforgeeks.org/gfact-50-python-end-parameter-in-print/


Since the template string references format() arguments as {0} and {1}, the arguments are 
positional arguments. They both can also be referenced without the numbers as {} and 
Python internally converts them to numbers. 

3a)Predict the output: 

i)not  “False”  output:False 

ii)-17%10       output:3 

iii)(212-32)*5/9 output:100 

iv)3.5//1.3  output:2 

b)Python program to find average of best two test marks out of three test marks: 

from array import * 
my_array = list() 
sum=0 
print 'Enter 3 test marks : ' 
for i in range(0,3): 
    n = raw_input("num :") 
    my_array.append(int(n)) 
for i in range(0,3): 
    sum=sum+my_array[i] 
sum=sum-min(my_array[0],my_array[1],my_array[2]) 
avg=sum/2 
print("avg of best two test marks is %d",avg) 

c) Two ways of importing a module: 

Python provides at least three different ways to import modules. You can use 
the import statement, the from statement, or the builtin __import__ function.  

• import X imports the module X, and creates a reference to that module in the 
current namespace. Or in other words, after you’ve run this statement, you can 
use X.name to refer to things defined in module X. 

• from X import * imports the module X, and creates references in the current 
namespace to all public objects defined by that module (that is, everything that 
doesn’t have a name starting with “_”). Or in other words, after you’ve run this 
statement, you can simply use a plain name to refer to things defined in module X. 
But X itself is not defined, so X.namedoesn’t work. And if name was already defined, 
it is replaced by the new version. And if name in X is changed to point to some other 
object, your module won’t notice. 



• from X import a, b, c imports the module X, and creates references in the current 
namespace to the given objects. Or in other words, you can now use a and b and c in 
your program. 

• Finally, X = __import__(‘X’) works like import X, with the difference that you 1) 
pass the module name as a string, and 2) explicitly assign it to a variable in your 
current namespace. 

• First is the namespace. Importing a function into the global namespace risks name 
collisions. 

• Second isn't that relevant to standard modules, but significant for you own modules, 
especially during development. It's the option to reload() a module. 

• we are importing only the function that is needed rather than import the whole 
module (which contains more useless functions which python will waste time 
importing them) 

• Whether you import a module or import a function from a module, Python will 
parse the whole module. Either way the module is imported. "Importing a function" 
is nothing more than binding the function to a name. In fact import module is less 
work for interpreter than from module import func. 

4a)Importance of docstring in testing the code semi-automatically using doctest. 

Python has a module called doctest that allows us to run the tests that we include in 
docstrings all at once. It reports on whether the function calls return what we expect. When 
a failure occurs, we need to review our code to identify the problem. 
We should also check the expected return value listed in the docstring to make sure that 
the expected value matches both the type contract and the description of the function. 
Python has a useful approach to code documentation called the docstring. This is simply a 
block of quoted text summarizing the purpose and usage of a Python object. By convention, 
they are enclosed in triple double-quotes ("""..."""). For example: 

def add(x, y): 
    """Return the sum of x and y.""" 
    return x + y 

The docstring is the first string literal to appear in an object's definition. Here, the object is 
the add function. An object's docstring shows up when you use the built-in "help" function: 

>>> help(add) 
Help on function add in module __main__: 
 
add(x, y) 
    Return the sum of x and y. 

You can look up any object's docstring via the __doc__ attribute: 

>>> print add.__doc__ 



Return the sum of x and y. 

A module may also have a docstring; again, it's simply the first block of quoted text to 
appear in the module: 

#! /usr/bin/env python 
# opts.py 
 
"""This module provides an interface for defining 
command-line-style options, and for reading and 
storing their values as specified by the user. 
""" 
 
[module code] 

The docstring for a module should be like a mini-manual for using the module. A 
descriptive opening sentence should tell users the purpose of the module, or a summary of 
what it does, followed by a mention of what classes and functions are most significant. 

 

t 

b)Python code to find the roots of a quadratic equation: 
# import complex math module 
import cmath 
 
#a = 1 
#b = 5 
#c = 6 
 
# To take coefficient input from the users 
a = float(input('Enter a: ')) 
b = float(input('Enter b: ')) 
c = float(input('Enter c: ')) 
 
# calculate the discriminant 
d = (b**2) - (4*a*c) 
 
# find two solutions 
sol1 = (-b-cmath.sqrt(d))/(2*a) 
sol2 = (-b+cmath.sqrt(d))/(2*a) 
 
print('The solution are {0} and {1}'.format(sol1,sol2)) 
 
5 



a)l=[5,4,7,3,6,2,1] 
i)Insert  an element 9 at the beginning of the list 
l.insert(0,9) 
[9,5,4,7,3,6,2,1] 
ii) Insert  an element 8 at the end of  the list 
end=len(l) 
l.insert(end,8) 
[5,4,7,3,6,2,1,8] 
iii) Insert  an element 8 at the index position 3 of the list 
l.insert(3,8) 
[5,4,7,8,3,6,2,1] 
iv)Delete  an element  at the beginning of the list 
l.pop([0]) 
[4,7,3,6,2,1] 
v) Delete  an element  at the end of the list 
end=len(l) 
l.pop([end]) 
[5,4,7,3,6,2] 
vi) Delete  an element  at the index  position 3 
l.pop([3]) 
[5,4,7,6,2,1] 
vii)Print the list in reverse order 
def rev(l): 
           r=[] 
           for I in l: 
                   r.insert(0,i) 
           return r 
 
[1,2,6,3,7,4,5] 
viii)Delete all elements of the list. 
For I in len(l): 
      l.pop([i]) 
empty list 
 
b)# Python program to check if the input number is prime or not 
 
num = 407 
 
# take input from the user 
# num = int(input("Enter a number: ")) 
 
# prime numbers are greater than 1 
if num > 1: 
   # check for factors 
   for i in range(2,num): 
       if (num % i) == 0: 



           print(num,"is not a prime number") 
           print(i,"times",num//i,"is",num) 
           break 
   else: 
       print(num,"is a prime number") 
        
# if input number is less than 
# or equal to 1, it is not prime 
else: 
   print(num,"is not a prime number") 
 
6 a) Differences between a list and a string in Python: 
i) One simple difference between strings and lists is that lists can any type of data i.e. 

integers, characters, strings etc, while strings can only hold a set of characters. 
ii) Though it sounds scary, mutation is actually a very simple concept. What Mutation 

means is that we can change the value of a list after we have created it, but we 
cannot in case of strings, one might question that we can change a value of a string 
by using operators such as concatenation, assignment etc 
 

b) Python program to read a string with punctuations and print the same string 
without punctuations: 
 
# define punctuation 
punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~''' 
 
my_str = "Hello!!!, he said ---and went." 
 
# To take input from the user 
# my_str = input("Enter a string: ") 
 
# remove punctuation from the string 
no_punct = "" 
for char in my_str: 
   if char not in punctuations: 
       no_punct = no_punct + char 
 
# display the unpunctuated string 
print(no_punct) 
c) What is a list of lists. Give an example along with its memory model. 
 
A list whose items are lists is called a nested list. For example, the following nested list 
describes 
life expectancies in different countries: 
 
>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]] 
Here is the memory model that results from execution of that assignment 



 
 
7a) 
How can we use  ‘with’ statement  while opening a text file? 
 
The with Statement 
Because every call on function open should have a corresponding call on method close, 
Python provides a with statement that automatically closes a file when the end of the block 
is reached. Here is the same example using a with statement: 

 
 
The general form of a with statement is as follows: 
 

 
b) Union,Difference ,Symmetric difference and Intersection of lows=[0,1,2,3,4] amd 
odds=[1,3,5,7,9]



c) Python program to read a word and print the number of letters,vowels and 
percentage of vowels in the word using a dictionary: 
 
vowel_count = 0  
count = 0 
total = 0 
space = 0 
vowels='aeiou' 
string = raw_input("Type a sentence and I will count the vowels!").lower() 
 
for char in string: 
 
    total += 1 
 
    if char in 'aeiou': 
 
        vowel_count += 1 
     
    elif char ==' ': 
 
        space += 1 
    else: 
        count += 1 
print vowel_count 
print space 
print count 
print (float)(vowel_count/count)*100 
 
# make a dictionary with each vowel a key and value 0 
count1 = {}.fromkeys(vowels,0) 



 
# count the vowels 
for char in string: 
   if char in count1: 
       count1[char] += 1 
 
print(count1) 
#print('vowel count is {0}.format(vowel_count)') 
#print('letter count is {0}.format(count)') 
 
 
8 a)  
My_set={{‘india’,91},{‘USA’,1},{‘UK’,41},{‘Japan’,81}} 
My_list=[[‘india’,91],[‘USA’,1],[‘UK’,41],[‘Japan’,81]] 
My_dict={‘india’:91,‘USA’:1,‘UK’:41,‘Japan’:81} 
 
b) In what  situations are the sets  more  useful than the lists. 
Sets are significantly faster when it comes to determining if an object is present in the set 
(as in x in s), but are slower than lists when it comes to iterating over their contents. 
When you want to store some values which you'll be iterating over, Python's list constructs 
are slightly faster. However, if you'll be storing (unique) values in order to check for their 
existence, then sets are significantly faster. 

It turns out tuples perform in almost exactly the same way as lists, but they do use less 
memory by removing the ability to modify them after creation (immutable). 

c) Python program to read  the content s of a text file and write into another 
 
 with open("test.txt") as f: 
    with open("out.txt", "w") as f1: 
        for line in f: 
            f1.write(line) 
 
 
9 a) Write short notes on  
i)instance 

 



ii)__init__() 
Method __init__ is called whenever a class object is created. Its purpose is to initialize the 
new object; this method is sometimes called a constructor. Here are the steps that Python 
follows when creating an object: 
1. It creates an object at a particular memory address. 
2. It calls method __init__, passing in the new object into the parameter self. 
3. It produces that object’s memory address. 
 
b) Different components of a tkinter program: 
Here is a small but complete tkinter program: 
import tkinter 
window = tkinter.Tk() 
window.mainloop() 
Tk is a class that represents the root window of a tkinter GUI. This root window’s mainloop 
method handles all the events for the GUI, so it’s important to createonly one instance of 
Tk. 
Here is the resulting GUI: 

 
The call on method mainloop doesn’t exit until the window is destroyed (which happens 
when you click the appropriate widget in the title bar of the window), so any code 
following that call won’t be executed until later 
c)python  program to create time objects current_time and bread_time  and display  
the total time taken by the bread maker to prepare  a bread 
 
import datetime 
 
class Time: 
    def __init__(self, hours, minutes, seconds): 
        self.hours = hours 
        self.minutes = minutes 
        self.seconds = seconds 
 
 
Time curtime,breadtime 



ct = datetime.datetime.now().strftime('%H, %M, %S') 
curtime('9,12,20') 
print ct 
 
Class MyTime: 
 
    def __init__(self, hrs=0, mins=0, secs=0): 
        """ Create a MyTime object initialized to hrs, mins, secs """ 
        self.hours = hrs 
        self.minutes = mins 
        self.seconds = secs 
 
    def __str__(self): 
        timeString = "" 
        if self.hours < 10: 
            timeString += "0" 
        timeString += str(self.hours) + ":" 
        if self.minutes < 10: 
            timeString += "0" 
        timeString += str(self.minutes) + ":" 
        if self.seconds < 10: 
            timeString += "0" 
        timeString += str(self.seconds) 
        return timeString 
 
def add_time(t1, t2): 
    h = t1.hours + t2.hours 
    m = t1.minutes + t2.minutes 
    s = t1.seconds + t2.seconds 
    sumTime = MyTime(h, m, s) 
    return sumTime 
 
currentTime = MyTime(9, 14, 30) 
breadTime = MyTime(3, 35, 0) 
doneTime = add_time(currentTime, breadTime) 
print(doneTime) 
 
10 a) 
Steps that python follows  while creating an object: 
Method __init__ is called whenever a Book object is created. Its purpose is to  initialize the 
new object; this method is sometimes called a constructor. Here are the steps that Python 
follows when creating an object: 
1. It creates an object at a particular memory address. 
2. It calls method __init__, passing in the new object into the parameter self. 
3. It produces that object’s memory address. 
 



 
 
 
b)MVC Design  with the help of tkinter program : 
Models, on the other hand, store data, like a piece of text or the current inclination of a 
telescope. They also don’t do calculations; their job is simply to keep track of the 
application’s current state (and, in some cases, to save that state to a file or database and 
reload it later).Controllers are the pieces that convert user input into calls on functions in 
the model that manipulate the data. The controller is what decides whether 
two gene sequences match well enough to be colored green or whether  someone is 
allowed to overwrite an old results file. Controllers may update an application’s models, 
which in turn can trigger changes to its views. 
import tkinter 
def click(): 
  counter.set(counter.get()+1) 
if __name__=='__main__': 
      window=tkinter.Tk() 
      window.geometry("170x200+30+30") 
      #The model 
      counter=tkinter.IntVar() 
      counter.set(0) 
      #view model 
      frame=tkinter.Frame(window) 
      frame.pack() 
      button=tkinter.Button(frame,text='Click',command=click) 
      button.pack() 
      label=tkinter.Label(frame,textvariable=counter) 
      label.pack() 
      window.mainloop() 
 
 
 
c) Write   a Tkinter program to design a GUI window that has  a label of background 
color green and foreground color white: 
 
import tkinter 
window=tkinter.Tk() 
 
window.geometry("170x200+30+30") 
button=tkinter.Label(window,text='Hello',bg='green',fg='white') 
button.pack() 
window.mainloop() 
 

 


