
 

 

 

 



Solution: 

1. A. 

  

Humans make errors in their thoughts, in their actions, and in the products that might result from their actions.  

 Humans can make errors in an field.  

Ex: observation, in speech, in medical prescription, in surgery, in driving, in sports, in love and similarly even in software development.  

 Example:  

o An instructor administers a test to determine how well the students have understood what the instructor wanted to convey  

o A tennis coach administers a test to determine how well the understudy makes a serve  
 

Errors, Faults and Failures Error: An error occurs in the process of writing a program  

Fault: a fault is a manifestation of one or more errors  

Failure: A failure occurs when a faulty piece of code is executed leading to an incorrect state that propagates to program’s output 

1. B.  



 
Static quality attributes: structured, maintainable, testable code as well as the availability of correct and complete documentation. 

Dynamic quality attributes: software reliability, correctness, completeness, consistency, usability, and performance 

Reliability is a statistical approximation to correctness, in the sense that 100% reliability is indistinguishable from correctness. 

Roughly speaking, reliability is a measure of the likelihood of correct function for some “unit” of behavior, which could be a single 

use or program execution or a period of time.  

Correctness will be established via requirement specification and the program text to prove that software is behaving as expected.  

Though correctness of a program is desirable, it is almost never the objective of testing. To establish correctness via testing would 
imply testing a program on all elements in the input domain. In most cases that are encountered in practice, this is impossible to 

accomplish. Thus correctness is established via mathematical proofs of programs. 

While correctness attempts to establish that the program is error free, testing attempts to find if there are any errors in it. Thus 

completeness of testing does not necessarily demonstrate that a program is error free. 

Completeness refers to the availability of all features listed in the requirements, or in the user manual. Incomplete software is one that 

does not fully implement all features required. 

Consistency refers to adherence to a common set of conventions and assumptions. For example, all buttons in the user interface might 

follow a common color coding convention. An example of inconsistency would be when a database application displays the date of 

birth of a person in the database. 

Usability refers to the ease with which an application can be used. This is an area in itself and there exist techniques for usability 

testing. Psychology plays an important role in the design of techniques for usability testing. 

Performance refers to the time the application takes to perform a requested task. It is considered as a non-functional requirement. It is 
specified in terms such as ``This task must be performed at the rate of X units of activity in one second on a machine running at speed 

Y, having Z gigabytes of memory." 

 

2. A. The six basic principles of software testing are: 

• General engineering principles: 

– Partition: divide and conquer 

– Visibility: making information accessible 

– Feedback: tuning the development process 

• Specific A&T principles:  

– Sensitivity: better to fail every time than sometimes 
– Redundancy: making intentions explicit 

– Restriction: making the problem easier 

Partition: Hardware testing and verification problems can be handled by suitably partitioning the input space 

Visibility: The ability to measure progress or status against goals. X visibility = ability to judge how we are doing on X, e.g., schedule 

visibility = “Are we ahead or behind schedule,” quality visibility = “Does quality meet our objectives?”  

Feedback: The ability to measure progress or status against goals 

X visibility = ability to judge how we are doing on X, e.g., schedule visibility = “Are we ahead or behind schedule,” quality visibility = 

“Does quality meet our objectives?” 

Sensitivity: A test selection criterion works better if every selected test provides the same result, i.e., if the program fails with one of the 

selected tests, it fails with all of them (reliable criteria). Run time deadlock analysis works better if it is machine independent, i.e., if the 

program deadlocks when analyzed on one machine, it deadlocks on every machine 

Redundancy: Redundant checks can increase the capabilities of catching specific faults early or more efficiently. 

e.g, Static type checking is redundant with respect to dynamic type checking, but it can reveal many type mismatches earlier and more 

efficiently. 



Restriction: Suitable restrictions can reduce hard (unsolvable) problems to simpler (solvable) problems  

2. B. Test Generation Strategies 

Are crucial for the success of the test effort and the accuracy of test plan and estimates 

Test generation strategies have the following major tasks: 

- Designing the Tests 

- Evaluating testability of the requirements and system. 

Designing the test environment set-up and identifying any required infrastructure and tools. 

Designing the Tests 

- Transforms a source document into test designs. 

- It involves a set of input values, execution preconditions, expected 

results and execution post conditions, developed for a particular objective or test condition, such as to exercise a particular program path or 

to verify compliance with a specific requirement. 

Types of Test Generation Strategies 

Analytical Test Generation 

• Requirement Based Test Generation 

• Risk Based Test Generation 
- Code based Test Generation 

• Program Mutation 

• Control Flow Based Test Generation 

Model Based Test Generation 

Mathematical Model for critical system behavior 

• Requirements are modeled using a formal notations Examples: Finite State Machines, State Charts, Pertrinets, Timed I/O Automata, 

Algebraic and predicate logic, Sequence and Activity Diagram in UML 

Quality Profiling Based Test Generation 

Methodical Test Generation 

Check list evolved in the organization over years of time which follow industry standard 

for software quality 

Process or Standard Compliant Based Test Generation 

• Agile methodologies such as Xtreme programming 

• Industry process or standards like IEEE 829 

- Dynamic Test Generation 

• Exploratory Testing 

- Consultative or Directed Test Generation 

• Involving users or developers 

Regression - averse Test Generation 

• Trying to automate all tests of system functionality prior to release of the function 

Selection of any of the strategies depends on risks, skills, objectives, regulations, product,business. 

Test generation 

Any form of test generation uses a source document. 



In the most informal of test methods, the source document resides in the mind of the tester who generates tests based on knowledge of the 

requirements. In most commercial environments, the process is a bit more formal. The tests are generated using a mix of formal and 

informal methods either directly from the requirements document serving as the source. 

In more advanced test processes, requirements serve as a source for the development of formal models. 

Test generation strategies can be summarized as follows: 

Model based: require that a subset of the requirements be modeled using a formal notation (usually graphical). Models: Finite State 

Machines, Timed automata, Petri net, etc. 

Specification based: require that a subset of the requirements be modeled using a formal mathematical notation. 

Code based: generate tests directly from the code 

Test generation strategies (Summary) 

 

3. A.  

NextDate is a function of three variables: month, date, and year. It returns the date of the day after 

the input date. The month, date, and year variables have integer values subject to these conditions 

(the year range ending in 2012 is arbitrary, and is from the first edition): 

c1. 1 ≤ month ≤ 12 

c2. 1 ≤ day ≤ 31 

c3. 1812 ≤ year ≤ 2012 

As we did with the triangle program, we can make our problem statement more specific. This 
entails defining responses for invalid values of the input values for the day, month, and year. We 

can also define responses for invalid combinations of inputs, such as June 31 of any year. If any 

of conditions c1, c2, or c3 fails, NextDate produces an output indicating the corresponding variable 

has an out-of-range value—for example, “Value of month not in the range 1...12.” Because 

numerous invalid day–month–year combinations exist, NextDate collapses these into one message: 

“Invalid Input Date.” 

Two sources of complexity exist in the NextDate function: the complexity of the input domain 

discussed previously, and the rule that determines when a year is a leap year. A year is 365.2422 

days long; therefore, leap years are used for the “extra day” problem. If we declared a leap year 

every fourth year, a slight error would occur. The Gregorian calendar (after Pope Gregory) resolves 
this by adjusting leap years on century years. Thus, a year is a leap year if it is divisible by 4, unless 

it is a century year. Century years are leap years only if they are multiples of 400 (Inglis, 1961); 



thus, 1992, 1996, and 2000 are leap years, while the year 1900 is not a leap year. The NextDate function also illustrates a sidelight of 

software testing. Many times, we find examples of Zipf’s law, 
which states that 80% of the activity occurs in 20% of the space. Notice how much of the source 

code is devoted to leap year considerations. In the second implementation, notice how much code 

is devoted to input value validation. 

Implementation: 

Program NextDate1 ‘Simple version 

Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer 

Dim day,month,year As Integer 

Output (“Enter today’s date in the form MM DD YYYY”) 
Input (month, day, year) 

Case month Of 

Case 1: month Is 1,3,5,7,8, Or 10: ‘31 day months (except Dec.) 

If day < 31 

Then tomorrowDay = day + 1 

Else 

tomorrowDay = 1 

tomorrowMonth = month + 1 

EndIf 

Case 2: month Is 4,6,9, Or 11 ‘30 day months 

If day < 30 

Then tomorrowDay = day + 1 
Else 

tomorrowDay = 1 

tomorrowMonth = month + 1 

EndIf 

Case 3: month Is 12: ‘December 

If day < 31 

Then tomorrowDay = day + 1 

Else 

tomorrowDay = 1 

tomorrowMonth = 1 

If year = 2012 
Then Output (“2012 is over”) 

Else  tomorrow.year = year + 1 

EndIf 

Case 4: month is 2: ‘February 

If day < 28 

Then tomorrowDay = day + 1 

Else 

If day = 28 

Then If ((year is a leap year) 

Then tomorrowDay = 29 ‘leap year 

Else ‘not a leap year 

tomorrowDay = 1 
tomorrowMonth = 3 

EndIf 

Else If day = 29 

Then If ((year is a leap year) 

Then tomorrowDay = 1tomorrowMonth = 3 

Else ‘not a leap year 

Output(“Cannot have Feb.”, day) 

EndIf 

EndIf 

EndIf 

EndIf 
EndCase 

Output (“Tomorrow’s date is”, tomorrowMonth, tomorrowDay, tomorrowYear) 

End NextDate 

 

 

Program NextDate2 Improved version 



‘ 

Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer 
Dim day,month,year As Integer 

Dim c1, c2, c3 As Boolean 

‘ 

Do 

Output (“Enter today’s date in the form MM DD YYYY”) 

Input (month, day, year) 

c1 = (1 ≤ day) AND (day ≤ 31) 

c2 = (1 ≤ month) AND (month ≤ 12) 

c3 = (1812 ≤ year) AND (year ≤ 2012) 

If NOT(c1) 

Then Output(“Value of day not in the range 1..31”) 

EndIf 
If NOT(c2) 

Then Output(“Value of month not in the range 1..12”) 

EndIf 

If NOT(c3) 

Then Output(“Value of year not in the range 1812..2012”) 

EndIf 

Until c1 AND c2 AND c2 

Case month Of 

Case 1: month Is 1,3,5,7,8, Or 10: ‘31 day months (except Dec.) 

If day < 31 

Then tomorrowDay = day + 1 
Else 

tomorrowDay = 1 

tomorrowMonth = month + 1 

EndIf 

Case 2: month Is 4,6,9, Or 11 ‘30 day months 

If day < 30 

Then tomorrowDay = day + 1 

Else 

If day = 30 

Then tomorrowDay = 1 

tomorrowMonth = month + 1 

Else Output(“Invalid Input Date”) 
EndIf 

EndIf 

Case 3: month Is 12: ‘December 

If day < 31 

Then tomorrowDay = day + 1 

Else 

tomorrowDay = 1 

tomorrowMonth = 1 

If year = 2012 

Then Output (“Invalid Input Date”) 

Else tomorrow.year = year + 1 
EndIf 

EndIf 

Case 4: month is 2: ‘February 

If day < 28 

Then tomorrowDay = day + 1 

Else 

If day = 28 

Then 

If (year is a leap year) 

Then tomorrowDay = 29 ‘leap day 

Else ‘not a leap year 

tomorrowDay = 1 
tomorrowMonth = 3 

EndIf 

Else 

If day = 29 



Then 

If (year is a leap year) 
Then tomorrowDay = 1 

tomorrowMonth = 3 

Else 

If day > 29 

Then Output(“Invalid Input Date”) 

EndIf 

EndIf 

EndIf 

EndIf 

EndIf 

EndCase 

Output (“Tomorrow’s date is”, tomorrowMonth, tomorrowDay, tomorrowYear) 
‘ 

End NextDate2 

 

 

3. B 

.  

Levels of testing echo the levels of abstraction found in the waterfall model of the software development life cycle. Although this model 

has its drawbacks, it is useful for testing as a means of identifying distinct levels of testing and for clarifying the objectives that pertain to 

each level. A diagrammatic variation of the waterfall model, known as the V-Model in ISTQB parlance, is given in Figure 1.8; this 

variation emphasizes the correspondence between testing and design levels. Notice that, especially in terms of specification-based testing, 

the three levels of definition (specification, preliminary design, and detailed design) correspond directly to three levels of testing— system, 

integration, and unit testing. A practical relationship exists between levels of testing versus specification-based and code based testing. 

Most practitioners agree that code-based testing is most appropriate at the unit level, whereas specification-based testing is most 

appropriate at the system level. This is generally true; however, it is also a likely consequence of the base information produced during the 

requirements 

specification, preliminary design, and detailed design phases. The constructs defined for code-based testing make the most sense at the unit 

level, and similar constructs are only now becoming available for the integration and system levels of testing. We develop such structures 

in Chapters 11 through 17 to support code-based testing at the integration and system levels for both traditional and object-oriented 

software. 

4. A.  

Testing is fundamentally concerned with behavior, and behavior is orthogonal to the code-based view common to software (and system) 

developers. A quick distinction is that the code-based view focuses on what it is and the behavioral view considers what it does. One of the 

continuing sources of difficulty for testers is that the base documents are usually written by and for developers; the emphasis is therefore 

on code-based, instead of behavioral, information. In this section, we develop a simple Venn diagram that clarifies several nagging 
questions about testing. Consider a universe of program behaviors. (Notice that we are forcing attention on the essence of testing.) Given a 

program and its specification, consider the set S of specified behaviors and the set P of programmed behaviors. Figure 1.2 shows the 

relationship between the specified and programmed behaviors. Of all the possible program behaviors, the specified ones are in the circle 



labeled S and all those behaviors actually programmed are in P. With this diagram, we can see more clearly the problems that confront a 

tester. What if certain specified behaviors have not been programmed? In our earlier terminology, these are faults of omission. Similarly, 
what if certain programmed (implemented) behaviors have not been specified? These correspond to faults of commission and to errors that 

occurred after the specification was complete. The intersection of S and P (the football-shaped region) is the “correct” portion, that is, 

behaviors that are both specified and implemented. A very good view of testing is that it is the determination of the extent of program 

behavior that is both specified and implemented. (As an aside, note that “correctness” only has meaning with respect to a specification and 

an implementation. It is a relative term, not an absolute.) 

The new circle in Figure 1.3 is for test cases. Notice the slight discrepancy with our universe of discourse and the set of program behaviors. 

Because a test case causes a program behavior, the mathematicians might forgive us. Now, consider the relationships among sets S, P, and 

T. There may be specified behaviors that are not tested (regions 2 and 5), specified behaviors that are tested (regions 1 and 4), and test 

cases that correspond to unspecified behaviors (regions 3 and 7). Similarly, there may be programmed behaviors that are not tested 

(regions 2 and 6), programmed behaviors that are tested (regions 1 and 3), and test cases that correspond to behaviors that were not 

implemented (regions 4 and 7). Each of these regions is important. If specified behaviors exist for which no test cases are available, the 

testing is necessarily incomplete. If certain test cases correspond to unspecified behaviors, some possibilities arise: either such a test case is 
unwarranted, the specification is deficient, or the tester wishes to determine that specified non-behavior does not occur. (In my experience, 

good testers often postulate test cases of this latter type. This is a fine reason to have good testers participate in specification and design 

reviews.) We are already at a point where we can see some possibilities for testing as a craft: what can a tester do to make the region where 

these sets all intersect (region 1) as large as possible? Another approach is to ask how the test cases in set T are identified. The short 

answer is that test cases are identified by a testing method. 

 

 

4. B. Triangle Problem: 

Dim a, b, c As Integer 

Dim c1, c2, c3, IsATriangle As Boolean 

‘Step 1: Get Input 
Do 

Output(“Enter 3 integers which are sides of a triangle”) 

Input(a, b, c) 

c1 = (1 ≤ a) AND (a ≤ 300) 

c2 = (1 ≤ b) AND (b ≤ 300) 

c3 = (1 ≤ c) AND (c ≤ 300) 

If NOT(c1) 

Then Output(“Value of a is not in the range of permitted values”) 

EndIf 

If NOT(c2) 

Then Output(“Value of b is not in the range of permitted values”) 
EndIf 

If NOT(c3) 



ThenOutput(“Value of c is not in the range of permitted values”) 

EndIf 
Until c1 AND c2 AND c3 

Output(“Side A is”,a) 

Output(“Side B is”,b) 

Output(“Side C is”,c) 

‘Step 2: Is A Triangle? 

If (a < b + c) AND (b < a + c) AND (c < a + b) 

Then IsATriangle = True 

Else IsATriangle = False 

EndIf 

‘Step 3: Determine Triangle Type 
If IsATriangle 

Then If (a = b) AND (b = c) 

Then Output (“Equilateral”) 

Else If (a ≠ b) AND (a ≠ c) AND (b ≠ c) 

Then Output (“Scalene”) 

Else Output (“Isosceles”) 

EndIf 

EndIf 

Else Output(“Not a Triangle”) 

EndIf 

End triangle3 

5. A.  

i. Robustness Testing 

 
 

ii. Worst Case Testing 

 
iii. Robust Worst Case Testing 



 

 

5. B 

.  



 



 

 



 

 

 



6. A.  

 

 

 
 

6. B.  

 



 

7. A.   

 

 



7. B. Figure 8.10 is taken from McCabe (1982). It is a directed graph that we might take to be the program graph (or the DD-path graph) of 

some program. For the convenience of readers who have encountered this example elsewhere (McCabe, 1987; Perry, 1987), the original 
notation for nodes and edges is repeated here. (Notice that this is not a graph derived from a structured program: 

nodes B and C are a loop with two exits, and the edge from B to E is a branch into the if–then statement in nodes D, E, and F.) The 

program does have a single entry (A) and a single exit (G). McCabe based his view of testing on a major result from graph theory, which 

states that the cyclomatic number (see Chapter 4) of a strongly connected graph is the number of linearly independent circuits in the graph. 

(A circuit is similar to a chain: no internal loops or decisions occur, but the initial node is the terminal node. A circuit is a set of 3-

connected nodes.) We can always create a strongly connected graph by adding an edge from the (every) sink node to the (every) source 

node. (Notice that, if the single-entry, single-exit precept is violated, we greatly increase the cyclomatic number because we need to add 

edges from each sink node to each source node.) The right side of Figure 8.10 shows the result of doing this; it also contains edge labels 

that are used in the discussion that follows. Some confusion exists in the literature about the correct formula for cyclomatic complexity. 

Some sources give the formula as V(G) = e – n + p, while others use the formula V(G) = e – n + 2p; everyone agrees that e is the number of 

edges, n is the number of nodes, and p is the number of connected regions. The confusion apparently comes from the transformation of an 

arbitrary directed graph (such as the one in Figure 8.10, left side) to a strongly connected, directed graph obtained by adding one edge from 
the sink to the source node (as in Figure 8.10, right side). Adding an edge clearly affects value computed by the formula, but it should not 

affect the number of circuits. Counting or not counting the added edge accounts for the change to the coefficient of p, the number of 

connected regions. Since p is usually 1, adding the extra edge means we move from 2p to p. Here is a way to resolve the apparent 

inconsistency. The number of linearly independent paths from the source node to the sink node of the graph on the left side of Figure 8.10 

is 

 

The number of linearly independent circuits of the graph on the right side of the graph in Figure 8.10 is 

 
The cyclomatic complexity of the strongly connected graph in Figure 8.10 is 5; thus, there are five linearly independent circuits. If we now 

delete the added edge from node G to node A, these five circuits become five linearly independent paths from node A to node G. In small 

graphs, we can visually identify independent paths. Here, we identify paths as sequences of nodes: 

p1: A, B, C, G 

p2: A, B, C, B, C, G 

p3: A, B, E, F, G 

p4: A, D, E, F, G 

p5: A, D, F, G 

Table 8.5 shows the edges traversed by each path, and also the number of times an edge is traversed. We can force this to begin to look 

like a vector space by defining notions of addition and scalar multiplication: path addition is simply one path followed by another path, and 

multiplication corresponds to repetitions of a path. With this formulation, McCabe arrives at a vector space of program paths. His 
illustration of the basis part of this framework is that the path A, B, C, B, E, F, G is the basis sum p2 + p3 – p1, and the path A, B, C, B, C, 

B, C, G is the linear combination 2p2 – p1. It is easier to see this addition with an incidence matrix (see Chapter 4) in which rows 

correspond to paths, and columns correspond to edges, as in Table 8.5. The entries in this table are obtained by following a path and noting 

which edges are traversed. Path p1, for example, traverses edges 1, 4, and 9, while path p2 traverses the following edge sequence: 1, 4, 3, 

4, 9. Because edge 4 is traversed twice by path p2, that is the entry for the edge 4 column. We can check the independence of paths p1 – p5 

by examining the first five rows of this incidence matrix. The bold entries show edges that appear in exactly one path, so paths p2 – p5 

must be independent. Path p1 is independent of all of these, because any attempt to express p1 in terms of the others introduces unwanted 

edges. None can be deleted, and these five paths span the set of all paths from node A to node G. At this point, you might check the linear 

combinations of the two example paths. (The addition and multiplication are performed on the column entries.) McCabe next develops an 

algorithmic procedure (called the baseline method) to determine a set of basis paths. The method begins with the selection of a baseline 

path, which should correspond to some “normal case” program execution. This can be somewhat arbitrary; McCabe advises choosing a 
path with as many decision nodes as possible. Next, the baseline path is retraced, and in turn each decision is “flipped”; that is, when a 

node of outdegree ≥ 2 is reached, a different edge must be taken. Here we follow McCabe’s example, in which he first postulates the path 



through nodes A, B, C, B, E, F, G as the baseline. (This was expressed in terms of paths p1 – p5 earlier.) The first decision node (outdegree 

≥ 2) in this path is node A; thus, for the next basis path, we traverse edge 2 instead of edge 1. We get the path A, D, E, F, G, where we 
retrace nodes E, F, G in path 1 to be as minimally different as possible. For the next path, we can follow the second path, and take the other 

decision outcome of node D, which gives us the path A, D, F, G. Now, only decision nodes B and C have not been flipped; doing so yields 

the last two basis paths, A, B, E, F, G and A, B, C, G. Notice that this set of basis paths is distinct from the one in Table 8.6: this is not 

problematic because a unique basis is not required. 

 

 

 

8. A.  

Fundamental limitations of specification-based testing is that it is impossible to know either the extent of 

redundancy or the possibility of gaps corresponding to the way a set of functional test cases exercises a program. 

Test coverage metrics are a device to measure the extent to which a set of test cases covers (or exercises) a 

program. 

Program Graph–Based Coverage Metrics: Given a set of test cases for a program, they constitute node coverage 

if, when executed on the program, every node in the program graph is traversed. Denote this level of coverage as 

Gnode, where the G stands for program graph. Since nodes correspond to statement fragments, this guarantees that 

every statement fragment is executed by some test case. If we are careful about defining statement fragment nodes, 

this also guarantees that statement fragments that are outcomes of a decision-making statement are executed. 

E.F. Miller’s Coverage Metrics: Having an organized view of the extent to which a program is tested makes it 

possible to sensibly manage the testing process. Most quality organizations now expect the C1 metric (DD-path 

coverage) as the minimum acceptable level of test coverage. These coverage metrics form a lattice in which some 

are equivalent and some are implied by others. The importance of the lattice is that there are always fault types that 

can be revealed at one level and can escape detection by inferior levels of testing. Miller (1991) observes that when 

DD-path coverage is attained by a set of test cases, roughly 85% of all faults are revealed. The test coverage metrics 

tell us what to test but not how to test it. In this section, we take a closer look at techniques that exercise source 

code. We must keep an important distinction in mind: Miller’s test coverage metrics are based on program graphs 

in which nodes are full statements, whereas our formulation allows statement fragments (which can be entire 

statements) to be nodes. 



 
 

8. B. . Waterfall Spin Off 

 Development in stages 

o Level use of staff across all types 

o Testing now entails both 

 Regression 

 Progression 

 Main variations involve constructing a sequence of systems 

o Incremental 

o Evolutionary 

o Spiral 

 Waterfall model is applied to each build 

o Smaller problem than original 

o System functionality does not change 

 Incremental 

o Have high-level design at the beginning 

o Low-level design results in a series of builds 

 Incremental testing is useful 

o System testing is not affected 

o Level off staffing problems 

 Evolutionary 

o First build is defined 

o Priorities and customer define next build 

o Difficult to have initial high-level design 

 Incremental testing is difficult 

 System testing is not affected 

 Spiral 

o Combination of incremental and evolutionary 

o After each build assess benefits and risks 

 Use to decide go/no-go and direction 

o Difficult to have initial high-level design 

 Incremental testing is difficult 

 System testing is not affected 

 Advantage of spiral models 

o Earlier synthesis and deliverables 

o More customer feedback 



o Risk/benefit analysis is rigorous 

 

Specification Based Life Cycle Models 

When systems are not fully understood (by either the customer or the developer), functional decomposition is 

perilous at best. Barry Boehm jokes when he describes the customer who says “I don’t know what I want, but I’ll 

recognize it when I see it.” The rapid prototyping life cycle deals with this by providing the “look and feel” of a 

system. Thus, in a sense, customers can recognize what they “see.” In turn, this drastically reduces the pecification-

to-customer feedback loop by producing very early synthesis. Rather than build a final system, a “quick and dirty” 

prototype is built and then used to elicit customer feedback. Depending on the feedback, more prototyping cycles 

may occur. Once the developer and the customer agree that a prototype represents the desired system, the developer 

goes ahead and builds to a correct specification. At this point, any of the waterfall spin-offs might also be used. The 

agile life cycles are the extreme of this pattern. Rapid prototyping has no new implications for integration testing; 

however, it has very interesting implications for system testing. Where are the requirements? Is the last prototype 

the specification? How are system test cases traced back to the prototype? One good answer to questions such as 

these is to use the prototyping cycles as information-gathering activities and then produce a requirements 

specification in a more traditional manner. Another possibility is to capture what the customer does with the 

prototypes, define these as scenarios that are important to the customer, and then use these as system test cases. 

These could be precursors to the user stories of the agile life cycles. The main contribution of rapid prototyping is 

that it brings the operational (or behavioral) viewpoint to the requirements specification phase. Usually, 

requirements specification techniques emphasize the structure of a system, not its behavior. This is unfortunate 

because most customers do not care about the structure, and they do care about the behavior. Executable 

specifications are an extension of the rapid prototyping concept. With this approach, the requirements are specified 

in an executable format (such as finite state machines, StateCharts, or Petri nets). The customer then executes the 

specification to observe the intended system behavior and provides feedback as in the rapid prototyping model. The 

executable models are, or can be, quite complex. This is an understatement for the full-blown version of 

StateCharts. Building an executable model requires expertise, and executing it requires an engine. Executable 

specification is best applied to event-driven systems, articularly when the events can arrive in different orders. 

David Harel, the creator of StateCharts, refers to such systems as “reactive” (Harel, 1988) because they react to 

external events. As with rapid prototyping, the purpose of an executable specification is to let the customer 

experience scenarios of intended behavior. Another similarity is that executable models might have to be revised on 

the basis of customer feedback. One side benefit is that a good engine for an executable model will support the 

capture of “interesting” system transactions, and it is often a nearly mechanical process to convert these into true 

system test cases. If this is done carefully, system testing can be traced directly back to the requirements. Once 

again, this life cycle has no implications for integration testing. One big difference is that the requirements 

specification document is explicit, as opposed to a prototype. More important, it is often a mechanical process to 

derive system test cases from an executable specification. Although more work is required to develop an executable 

specification, this is partially offset by the reduced effort to generate system test cases. Here is another important 

distinction: when system testing is based on an executable specification, we have an interesting form of structural 

testing at the system level. Finally, as we saw with rapid prototyping, the executable specification step can be 

combined with any of the iterative life cycle models. 
 

 



9. A.   

SCAFFOLDING  
 Code developed to facilitate testing is called scaffolding, by analogy to the temporary structures erected around a 

building during construction or maintenance.  

 Scaffoldings may include  
 
Test drivers (substituting for a main or calling population) Test harness (substituting for parts of the deployment 
environment) Stubs (substituting for functionally called or used by the software under test)  

 The purpose of scaffolding is to provide controllability to execute test cases and observability to judge the outcome 
of test execution.  

 Sometimes scaffolding is required to simply make module executable, but even in incremental development with 
immediate integration of each module, scaffolding for controllability and observability may be required because the 
external interfaces of the system may not provide sufficient control to drive the module under test through test cases, 
or sufficient observability of the effect.  

 Example: consider an interactive program that is normally driven through a GUI. Assume that each night the person 
goes through a fully automate and unattended cycle of integration compilation, and test execution.  

 It is necessary to perform some testing through the interactive interface, but it is neither necessary nor efficient to 
execute all test cases that way. Small driver programs, independent of GUI can drive each module through large test 
suites in a short time.  
 

GENERIC VERSUS SPECIFIC SCAFFOLDING  
How general should scaffolding be? To answer  

 We could build a driver and stubs for each test case or at least factor out some common code of the driver and test 
management (e.g., JUnit)  

 ... or further factor out some common support code, to drive a large number of test cases from data... or further, 
generate the data automatically from a more abstract model (e.g., network traffic model)  

 Fully generic scaffolding may suffice for small numbers of hand-written test cases  

 The simplest form of scaffolding is a driver program that runs a single, specific test case.  

 It is worthwhile to write more generic test drivers that essentially interpret test case specifications.  

 A large suite of automatically generated test cases and a smaller set of handwritten test cases can share the same 
underlying generic test scaffolding  

 Scaffolding to replace portions of the system is somewhat more demanding and again both generic and application-
specific approaches are possible  

 A simplest stub – mock – can be generated automatically by analysis of the source code  

 The balance of quality, scope and cost for a substantial piece of scaffolding software can be used in several projects  

 The balance is altered in favour of simplicity and quick construction for the many small pieces of scaffolding that are 
typically produced during development to support unit and small-scale integration testing  

 A question of costs and re-use – Just as for other kinds of software  
 
9. B. What are Planning and Monitoring? 

• Planning: 

– Scheduling activities (what steps? in what order?) 

– Allocating resources (who will do it?) 

– Devising unambiguous milestones for monitoring 

• Monitoring: Judging progress against the plan 

– How are we doing? 

• A good plan must have visibility : 

– Ability to monitor each step, and to make objective judgments of progress 

– Counter wishful thinking and denial 

Quality process: Set of activities and responsibilities 

– focused primarily on ensuring adequate dependability 

– concerned with project schedule or with product usability 



• A framework for 

– selecting and arranging activities 

– considering interactions and trade-offs 

• Follows the overall software process in which it is embedded 

– Example: waterfall software process ––> “V model”: unit testing starts with implementation and finishes before 

integration 

– Example: XP and agile methods ––> emphasis on unit testing and rapid iteration for acceptance testing by 

customers 

Key principle of quality planning 

– the cost of detecting and repairing a fault increases as a function of time between committing an error and 

detecting the resultant faults 

• therefore ... 

– an efficient quality plan includes matched sets of intermediate validation and verification activities that detect 

most faults within a short time of their introduction 

• and ... 

– V&V steps depend on the intermediate work products and on their anticipated defects 

 

10. A.  

TEST ORACLES  
 In practice, the pass/fail criterion is usually imperfect.  

 A test oracle may apply a pass/fail criterion that reflects only a part of the actual program specification, or is an 
approximation, and therefore passes some program executions it ought to fail  

 Several partial test oracles may be more cost-effective than one that is more comprehensive  

 A test oracle may also give false alarms, failing an execution that is ought to pass.  

 False alarms in test execution are highly undesirable.  

 The best oracle we can obtain is an oracle that detects deviations from expectation that may or may not be actual 
failure.  

 
Two types  
Comparison based oracle  
 

o With a comparison based oracle , we need predicted output for each input  

o Oracle compares actual to predicted output, and reports failure if they differ.  

o It is best suited for small number of hand generated test cases example: for handwritten Junit test cases.  

o They are used mainly for small, simple test cases  

o Expected outputs can also be produced for complex test cases and large test suites  

o Capture-replay testing, a special case in which the predicted output or behavior is preserved from an earlier 
execution  
o Often possible to judge output or behavior without predicting it  
 
Partial oracle  
o Oracles that check results without references to predicted output are often partial, in the sense that they can detect 
some violations of the actual specification but not others.  
o They check necessary but not sufficient conditions for correctness.  



o A cheap partial oracle that can be used for a large number of test cases is often combined with a more expensive 
comparison-based oracle that can be used with a smaller set of test cases for which predicted output has been obtained  
o Specifications are often incomplete  

o Automatic derivations of test oracles are impossible  

SELF-CHECKS AS ORACLES  
 An oracle can also be written as self checks  

 
-Often possible to judge correctness without predicting results.  

 Typically these self checks are in the form of assertions, but designed to be checked during execution.  

 It is generally considered good design practice to make assertions and self checks to be free of side effects on 
program state.  

 Self checks in the form of assertions embedded in program code are useful primarily for checking module and 
subsystem-level specification rather than all program behaviour.  

 Devising the program assertions that correspond in a natural way to specifications poses two main challenges:  
Bridging the gap between concrete execution values and abstractions used in specification  

Dealing in a reasonable way with quantification over collection of values  



Structural invariants are good candidates for self checks implemented as assertions  

 They pertain directly to the concrete data structure implementation  

 It is sometimes straight-forward to translate quantification in a specification statement into iteration in a program 
assertion  

 A run time assertion system must manage ghost variables  

 They must retain “before” values  

 They must ensure that they have no side effects outside assertion checking  

 Advantages:  
-Usable with large, automatically generated test suites.  

 Limits:  
 
-often it is only a partial check. -recognizes many or most failures, but not all. 

 
 

10. B. What is Mutation Testing? 

Mutation testing is a structural testing technique, which uses the structure of the code to guide the testing process. 

On a very high level, it is the process of rewriting the source code in small ways in order to remove the 

redundancies in the source code 

These ambiguities might cause failures in the software if not fixed and can easily pass through testing phase 

undetected. 

Mutation Testing Benefits: 

Following benefits are experienced, if mutation testing is adopted: 



 It brings a whole new kind of errors to the developer's attention. 

 It is the most powerful method to detect hidden defects, which might be impossible to identify using the 

conventional testing techniques. 

 Tools such as Insure++ help us to find defects in the code using the state-of-the-art. 

 Increased customer satisfaction index as the product would be less buggy. 

 Debugging and Maintaining the product would be more easier than ever. 

Mutation Testing Types: 

 Value Mutations: An attempt to change the values to detect errors in the programs. We usually change one 

value to a much larger value or one value to a much smaller value. The most common strategy is to change 

the constants. 

 Decision Mutations: The decisions/conditions are changed to check for the design errors. Typically, one 

changes the arithmetic operators to locate the defects and also we can consider mutating all relational 

operators and logical operators (AND, OR , NOT) 

 Statement Mutations: Changes done to the statements by deleting or duplicating the line which might 

arise when a developer is copy pasting the code from somewhere else. 

 


	10. B. What is Mutation Testing?
	Mutation Testing Benefits:
	Mutation Testing Types:

