
VTU 4
th
 SEMESTER MCA EXAMINATION JUNE JULY 2018

1. jQuery is just a JavaScript library.What jQuery does
essentially is let you manipulate the DOM.It handles

the browser quirks but doesn’t add any features to the

browser or to JavaScript itself.

2. the jQuery function isn’t a function constructor.It’s
just a function that returns an object,a function that

returns a call to function constructor.

The jQuery JavaScript library has become one

of the most widely utilized open source software (OSS)

tools for web developers since its release in 2006. The

extendable JavaScript library lets developers create a

custom user interaction in websites by simply using less

code. Developers can create dynamic websites with the

client-side scripting of HTML across multiple web

browsers and CSS manipulation. The multi-browser

capabilities allow developers to manipulate Document

Object Model (DOM) elements, add animation and effects

to websites, standalone widgets, and implement many more

innovative techniques. Here at Segue developers deploy

jQuery on government and commercial web applications.

The features are most noticed in the user interface as

site visitor’s click through menu items. One of my

favorite Segue designed sites, utilizes a jQuery photo

gallery to display fan photos as they devour the

company’s perfectly crafted cheeseburgers and delicious

fries.

2.JQuery 1.x and 2.x

3. A page can't be manipulated safely until the document

is "ready." jQuery detects this state of readiness for

you. Code included inside $(document).ready() will only

run once the page Document Object Model (DOM) is ready for

JavaScript code to execute. Code included inside $(window

).on("load", function() { ... }) will run once the entire

page (images or iframes), not just the DOM, is ready. The

ready event occurs when the DOM (document object model)

has been loaded.

http://jquery.com/

Because this event occurs after the document is ready, it

is a good place to have all other jQuery events and

functions. Like in the example above.

The ready() method specifies what happens when a ready

event occurs.

4. The universal selector selects all the elements

available in the document.

 Like any other jQuery selector, this selector also

returns an array filled with the found elements.

$('*') selects all the elements available in the

document.

Following example would select all the elements and will

apply yellow color to their background. Try to understand

that this selector will select every element including

head, body etc.

<html>

 <head>

 <title>The Selecter Example</title>

 <script type = "text/javascript"

 src =

"https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery

.min.js">

 </script>

 <script type = "text/javascript" language =

"javascript">

 $(document).ready(function() {

 /* This would select all the elements */

 $("*").css("background-color", "yellow");

 });

 </script>

 </head>

 <body>

 <div class = "big" id = "div1">

 <p>This is first division of the DOM.</p>

 </div>

 <div class = "medium" id = "div2">

 <p>This is second division of the DOM.</p>

 </div>

 <div class = "small" id = "div3">

 <p>This is third division of the DOM</p>

 </div>

 </body>

</html>

2 a.

Selector Example Selects

* $("*") All elements

#id $("#lastname") The element with

id="lastname"

.class $(".intro") All elements with

class="intro"

.class,.class $(".intro,.demo") All elements with the

class "intro" or "demo"

element $("p") All <p> elements

el1,el2,el3 $("h1,div,p") All <h1>, <div> and <p>

elements

:first $("p:first") The first <p> element

:last $("p:last") The last <p> element

https://www.w3schools.com/jquery/sel_all.asp
https://www.w3schools.com/jquery/sel_id.asp
https://www.w3schools.com/jquery/sel_class.asp
https://www.w3schools.com/jquery/sel_multiple_classes.asp
https://www.w3schools.com/jquery/sel_element.asp
https://www.w3schools.com/jquery/sel_multiple_sel.asp
https://www.w3schools.com/jquery/sel_first.asp
https://www.w3schools.com/jquery/sel_last.asp

:even $("tr:even") All even <tr> elements

:odd $("tr:odd") All odd <tr> elements

:first-child $("p:first-

child")

All <p> elements that are

the first child of their

parent

:first-of-

type

$("p:first-of-

type")

All <p> elements that are

the first <p> element of

their parent

:last-child $("p:last-child") All <p> elements that are

the last child of their

parent

:last-of-type $("p:last-of-

type")

All <p> elements that are

the last <p> element of

their parent

:nth-child(n) $("p:nth-

child(2)")

All <p> elements that are

the 2nd child of their

parent

https://www.w3schools.com/jquery/sel_even.asp
https://www.w3schools.com/jquery/sel_odd.asp
https://www.w3schools.com/jquery/sel_firstchild.asp
https://www.w3schools.com/jquery/sel_firstoftype.asp
https://www.w3schools.com/jquery/sel_firstoftype.asp
https://www.w3schools.com/jquery/sel_lastchild.asp
https://www.w3schools.com/jquery/sel_lastoftype.asp
https://www.w3schools.com/jquery/sel_nthchild.asp

:nth-last-

child(n)

$("p:nth-last-

child(2)")

All <p> elements that are

the 2nd child of their

parent, counting from the

last child

:nth-of-

type(n)

$("p:nth-of-

type(2)")

All <p> elements that are

the 2nd <p> element of

their parent

:nth-last-of-

type(n)

$("p:nth-last-of-

type(2)")

All <p> elements that are

the 2nd <p> element of

their parent, counting

from the last child

:only-child $("p:only-child") All <p> elements that are

the only child of their

parent

:only-of-type $("p:only-of-

type")

All <p> elements that are

the only child, of its

type, of their parent

parent >

child

$("div > p") All <p> elements that are

a direct child of a <div>

element

https://www.w3schools.com/jquery/sel_nthlastchild.asp
https://www.w3schools.com/jquery/sel_nthlastchild.asp
https://www.w3schools.com/jquery/sel_nthoftype.asp
https://www.w3schools.com/jquery/sel_nthoftype.asp
https://www.w3schools.com/jquery/sel_nthlastoftype.asp
https://www.w3schools.com/jquery/sel_nthlastoftype.asp
https://www.w3schools.com/jquery/sel_onlychild.asp
https://www.w3schools.com/jquery/sel_onlyoftype.asp
https://www.w3schools.com/jquery/sel_parent_child.asp
https://www.w3schools.com/jquery/sel_parent_child.asp

parent

descendant

$("div p") All <p> elements that are

descendants of a <div>

element

element +

next

$("div + p") The <p> element that are

next to each <div>

elements

element ~

siblings

$("div ~ p") All <p> elements that are

siblings of a <div>

element

b.

$(document).ready(function(){

 $(p).click(function(){

 var sd=$(this).text();

 var num = sd.match(/[\d\.]+/g);

 if (num != null){

 var number = num.toString();

 alert(number);

 }

 });

});

Module - 2

3a. PHP lexical structure

Computer languages, like human languages, have a lexical

structure. A source code of a PHP script consists of

tokens. Tokens are atomic code elements. In PHP language,

we have comments, variables, literals, operators,

delimiters, and keywords.

https://www.w3schools.com/jquery/sel_parent_descendant.asp
https://www.w3schools.com/jquery/sel_parent_descendant.asp
https://www.w3schools.com/jquery/sel_previous_next.asp
https://www.w3schools.com/jquery/sel_previous_next.asp
https://www.w3schools.com/jquery/sel_previous_siblings.asp
https://www.w3schools.com/jquery/sel_previous_siblings.asp

PHP comments

Comments are used by humans to clarify the source code.

All comments in PHP follow the #character.

<?php

comments.php

Author Jan Bodnar

ZetCode 2016

echo "This is comments.php script\n";

?>

Everything that follows the # character is ignored by the

PHP interpreter.

// comments.php

// author Jan Bodnar

// ZetCode 2016

/*

 comments.php

 author Jan Bodnar

 ZetCode 2016

*/

PHP also recognizes the comments from the C language.

PHP white space

White space in PHP is used to separate tokens in PHP

source file. It is used to improve the readability of the

source code.

public $isRunning;

White spaces are required in some places; for example

between the access specifier and the variable name. In

other places, it is forbidden. It cannot be present in

variable identifiers.

$a=1;

$b = 2;

$c = 3;

The amount of space put between tokens is irrelevant for

the PHP interpreter. It is based on the preferences and

the style of a programmer.

$a = 1;

$b = 2; $c = 3;

$d

 =

 4;

We can put two statements into one line. Or one statement

into three lines. However, source code should be readable

for humans. There are accepted standards of how to lay out

your source code.

PHP semicolon

A semicolon is used to mark the end of a statement in PHP.

It is mandatory.

$a = 34;

$b = $a * 34 - 34;

echo $a;

Here we have three different PHP statements. The first is

an assignment. It puts a value into the $avariable. The

second one is an expression. The expression is evaluated

and the output is given to the $b variable. The third one

is a command. It prints the $a variable.

PHP variables

A variable is an identifier, which holds a value. In

programming we say that we assign a value to a variable.

Technically speaking, a variable is a reference to a

computer memory, where the value is stored. In PHP

language, a variable can hold a string, a number, or

various objects like a function or a class. Variables can

be assigned different values over time.

Variables in PHP consist of the $ character, called a

sigil, and a label. A label can be created from

alphanumeric characters and an underscore _ character. A

variable cannot begin with a number. The PHP interpreter

can then distinguish between a number and a variable more

easily.

$Value

$value2

$company_name

These were valid PHP identifiers.

$12Val

exx

$first-name

These were examples of invalid PHP identifiers.

The variables are case sensitive. This means

that $Price, $price, and $PRICE are three different

identifiers.

case.php

<?php

$number = 10;

$Number = 11;

$NUMBER = 12;

echo $number, $Number, $NUMBER;

echo "\n";

?>

In our script, we assign three numeric values to three

variables and print them. However, for clarity reasons, it

is not recommended to create variables which differ only

in case; it is considered a poor practice.

$ php case.php

101112

This is the output of the script.

PHP constants

A constant is an identifier for a value which cannot

change during the execution of the script. By convention,

constant identifiers are always uppercase.

constants.php

<?php

define("SIZE", 300);

define("EDGE", 100);

#SIZE = 100;

echo SIZE;

echo EDGE;

echo "\n";

?>

In the script, we define two constants.

define("SIZE", 300);

define("EDGE", 100);

Constants are created with the define() function.

#SIZE = 100;

Constants differ from variables; we cannot assign a

different value to an existing constant. The script will

fail if we uncomment the line.

echo SIZE;

echo EDGE;

Constants do not use the dollar sigil character.

$ php constants.php

300100

This is the output of the constants script.

The following is a list of PHP compile time constants.

__CLASS__ __DIR__ __FILE__ __FUNCTION__

__METHOD__ __NAMESPACE__

PHP literal

A literal is any notation for representing a value within

the PHP source code. Technically, a literal is assigned a

value at compile time, while a variable is assigned at

runtime.

$age = 29;

$nationality = "Hungarian";

Here we assign two literals to variables. Number 29 and

string "Hungarian" are literals.

literals.php

<?php

$name1 = "Jane ";

$age1 = 17;

$name2 = "Rose ";

$age2 = 16;

echo "Patrick 34\n";

echo "Luke 22\n";

echo $name1, $age1, "\n";

echo $name2, $age2, "\n";

?>

If we do not assign a literal to a variable, there is no

way how we can work with it—it is dropped.

$ php literals.php

Patrick 34

Luke 22

Jane 17

Rose 16

This is the output of the literals.php script.

PHP operators

An operator is a symbol used to perform an action on some

value.

+ - * / % ++ --

= += -= *= /= .= %=

== != >< > < >= <=

&& || ! xor or

& ^ | ~ . << >>

These are PHP operators. We will talk about operators

later in the tutorial.

PHP delimiters

A delimiter is a sequence of one or more characters used

to specify the boundary between separate, independent

regions in plain text or other data stream.

$a = "PHP";

$b = 'Java';

The single and double characters are used to mark the

beginning and the end of a string.

function setDate($date) {

 $this->date = $data;

}

if ($a > $b) {

 echo "\$a is bigger than \$b";

}

Parentheses are used to mark the function signature. The

signature is the function parameters. Curly brackets are

used to mark the beginning and the end of the function

body. They are also used in flow control.

$a = array(1, 2, 3);

echo $a[1];

The square brackets are used to mark the array index.

/*

 Author Jan Bodnar

 January 2016

 ZetCode

*/

/* */ delimiters are used to provide C style comments in

PHP.

<?php

// PHP code

?>

The <?php and ?> delimiters are used to delimit PHP code

in a file.

PHP keywords

A keyword is a reserved word in the PHP programming

language. Keywords are used to perform a specific task in

a computer program; for example, print a value, do

repetitive tasks, or perform logical operations. A

programmer cannot use a keyword as an ordinary variable.

The following is a list of PHP keywords.

abstract and array() as break

case catch class clone const

continue declare default do else

elseif enddeclare endfor endforeach endif

endswitch endwhile extends final for

foreach function global goto if

implements interface instanceof namespace new

or private protected public static

switch throw try use var

while xor

Next we have other language constructs.

die() echo() empty() exit()

eval()

include() include_once() isset() list()

require()

require_once() return() print() unset()

3b. <?php

If($_POST[“textfieldname”]=”value”)

Echo “ correct”;

$unixTime = Time();

print date("m/d/y h:i:s a", $unixTime);

if (isset($gender) && $gender=="male") echo "checked";

if (is_numeric($element)) {

 echo var_export($element, true) . " is numeric", P

HP_EOL;

 }

4a.

Function Description

addcslashes() Returns a string with backslashes in

front of the specified characters

addslashes() Returns a string with backslashes in

front of predefined characters

bin2hex() Converts a string of ASCII characters

to hexadecimal values

chop() Removes whitespace or other

characters from the right end of a

string

chr() Returns a character from a specified

ASCII value

chunk_split() Splits a string into a series of

smaller parts

convert_cyr_string() Converts a string from one Cyrillic

character-set to another

convert_uudecode() Decodes a uuencoded string

https://www.w3schools.com/php/func_string_addcslashes.asp
https://www.w3schools.com/php/func_string_addslashes.asp
https://www.w3schools.com/php/func_string_bin2hex.asp
https://www.w3schools.com/php/func_string_chop.asp
https://www.w3schools.com/php/func_string_chr.asp
https://www.w3schools.com/php/func_string_chunk_split.asp
https://www.w3schools.com/php/func_string_convert_cyr_string.asp
https://www.w3schools.com/php/func_string_convert_uudecode.asp

convert_uuencode() Encodes a string using the uuencode

algorithm

count_chars() Returns information about characters

used in a string

crc32() Calculates a 32-bit CRC for a string

crypt() One-way string hashing

echo() Outputs one or more strings

explode() Breaks a string into an array

4b.

This is a suitable method for tracking users. Web servers

are stateless entities.

Cookies :-

Cookies provide a way for a server to store information

about a user on the user’s machine. This enables to

maintain the user’s visit to the site , so that they can

track their movement through the site , or to store

information such as their user name .

https://www.w3schools.com/php/func_string_convert_uuencode.asp
https://www.w3schools.com/php/func_string_count_chars.asp
https://www.w3schools.com/php/func_string_crc32.asp
https://www.w3schools.com/php/func_string_crypt.asp
https://www.w3schools.com/php/func_string_echo.asp
https://www.w3schools.com/php/func_string_explode.asp

Cookies allow data to be stored in the form of a

name/value pair. Both the name and the value are set at

choice.

It contains the following syntax

Name=value;expires=expiration date gmt; path=url(optional)

To create a cookie

Setcookie(name,value,expires,path);

Cookie name/value pair: The first section of the cookie

defines the name of the cookie and the value assigned to

the cookie. Both the name and value settings can be any

value as per the users choice.

Cookie Expiration time: The optional expires= section

specifies the date on which the associated cookie should

expire. The PHP time() can be used to obtain and

manipulate dates for this purpose

Example:

<?php

Setcookie(‘username’,’abcd’,time()+4800);

Echo “cookie has been set”;

?>

The cookie will expire after 4800 seconds.

 Cookies are sent in the HTTP headers in pages sent by the

browser . Once the cookies has been set they can be

accessed on the next page load with the $_COOKIE array.

This is an associative array where the name of the cookie

provides the index into the array to extract the

corresponding value of the name/value pair.

Example:

<?php

Echo “cookie value is “.$_COOKIE[‘username’];

?>

To delete a cookie

 Cookies are deleted by calling the setcookie()

function with the cookie name , a null for the value and

an expiration date in the past.

<?php

Setcookie(“username”,””,time()-4800);

?>

Sessions

A session is a way to store information (in variables) to

be used across multiple pages. A session creates a file in

a temporary directory on the server where registered

session variables and their values are stored. The data

will be available to all pages on the site during the

visit.

A session like a cookie provides a way to track data for a

user over a series of pages.

The main difference between cookie and session is that

cookie stores the data on the client side in the web

browser whereas the session data is stored on the server.

Sessions are generally more secure, because the data is

not transmitted back and forth between the client and

server repeatedly.

Sessions let you store more information than you can in

cookie.

When session starts, PHP generates a random session id ,

a reference to that particular session and its stored

data.

To start a session

Session_start();

Session variables are set with the PHP global variables

$_SESSION.

<?php

Session_start();

$_SESSION[“username”] = “abc”;

?>

To delete the session variables , we unset $_SESSION array

Unset($_SESSION[“username”]);

Module – 3

5a.

Input

 Gets

gets.to_i

Gets.chomp

Output

Puts

5b.

the_file='/Users/Al/DD/Ruby/GettysburgAddress.txt'

h = Hash.new

f = File.open(the_file, "r")

f.each_line { |line|

 words = line.split

 words.each { |w|

 if h.has_key?(w)

 h[w] = h[w] + 1

 else

 h[w] = 1

 end

 }

}

sort the hash by value, and then print it in this sorted

order

h.sort{|a,b| a[1]<=>b[1]}.each { |elem|

 puts "\"#{elem[0]}\" has #{elem[1]} occurrences"

}

Here's a little more discussion of the program:

1. Create a String to store the file name

2. Create a new Hash

3. Open the file in read-only mode

4. Read each line in the file, one line at a time

5. Split each line into words (words separated by

spaces)

6. Put the word and the word frequency into the Hash

(the word is the key, the frequency is the value)

7. Print the hash, with the results sorted by the hash

value

It may help to understand the program, so I'll show the

last 10 lines of the output here:

"have" has 5 occurrences

"not" has 5 occurrences

"can" has 5 occurrences

"and" has 6 occurrences

"--" has 7 occurrences

"a" has 7 occurrences

"we" has 8 occurrences

"to" has 8 occurrences

"the" has 9 occurrences

"that" has 13 occurrences

5c.

Form

To create a form tag with the specified action, and with

POST request, use the following syntax −

<%= form_tag :action => 'update', :id => @some_object %>

<%= form_tag({ :action => :save, }, { :method => :post })

%>

ext Fields

To create a text field use the following syntax −

<%= text_field :modelname, :attribute_name, options %>

Have a look at the following example −

<%= text_field "person", "name", "size" => 20 %>

This will generate following code −

<input type = "text" id = "person_name" name =

"person[name]"

 size = "20" value = "<%= @person.name %>" />

To create hidden fields, use the following syntax;

<%= hidden_field ... %>

To create password fields, use the following syntax;

<%= password_field ... %>

To create file upload fields, use the following syntax;

<%= file_field ... %>

Text Area

To create a text area, use the following syntax −

<%= text_area ... %>

Have a look at the following example −

<%= text_area "post", "body", "cols" => 20, "rows" => 40%>

This will generate the following code −

<textarea cols = "20" rows = "40" id = "post_body" name ="

post[body]">

 <%={@post.body}%>

</textarea>

Radio Button

To create a Radio Button, use the following syntax −

<%= radio_button :modelname, :attribute, :tag_value,

options %>

Have a look at the following example −

radio_button("post", "category", "rails")

radio_button("post", "category", "java")

This will generate the following code −

<input type = "radio" id = "post_category" name =

"post[category]"

 value = "rails" checked = "checked" />

<input type = "radio" id = "post_category" name =

"post[category]" value = "java" />

Checkbox Button

To create a Checkbox Button use the following syntax −

<%= check_box :modelname,

:attribute,options,on_value,off_value%>

Have a look at the following example −

check_box("post", "validated")

This will generate the following code −

<input type = "checkbox" id = "post_validate" name =

"post[validated]"

 value = "1" checked = "checked" />

<input name = "post[validated]" type = "hidden" value =

"0" />

Let's check another example −

check_box("puppy", "gooddog", {}, "yes", "no")

This will generate following code −

<input type = "checkbox" id = "puppy_gooddog" name =

"puppy[gooddog]" value = "yes" />

<input name = "puppy[gooddog]" type = "hidden" value =

"no" />

Options

To create a dropdopwn list, use the following syntax −

<%= select

:variable,:attribute,choices,options,html_options%>

Have a look at the following example −

select("post", "person_id", Person.find(:all).collect {|p|

[p.name, p.id] })

This could generate the following code. It depends on what

value is available in your database. −

<select name = "post[person_id]">

 <option value = "1">David</option>

 <option value = "2">Sam</option>

 <option value = "3">Tobias</option>

</select>

Date Time

Following is the syntax to use data and time −

<%= date_select :variable, :attribute, options %>

<%= datetime_select :variable, :attribute, options %>

Following are examples of usage −

<%=date_select "post", "written_on"%>

<%=date_select "user", "birthday", :start_year => 1910%>

<%=date_select "user", "cc_date", :start_year => 2005,

 :use_month_numbers => true, :discard_day => true,

:order => [:year, :month]%>

<%=datetime_select "post", "written_on"%>

End Form Tag

Use following syntax to create </form> tag −

<%= end_form_tag %>

6a.

Array Built-in Methods

We need to have an instance of Array object to call an

Array method. As we have seen, following is the way to

create an instance of Array object −

Array.[](...) [or] Array[...] [or] [...]

This will return a new array populated with the given

objects. Now, using the created object, we can call any

available instance methods.

#!/usr/bin/ruby

digits = Array(0..9)

num = digits.at(6)

puts "#{num}"

This will produce the following result −

6

Hash Built-in Methods

We need to have an instance of Hash object to call a Hash

method. As we have seen, following is the way to create an

instance of Hash object −

Hash[[key =>|, value]*] or

Hash.new [or] Hash.new(obj) [or]

Hash.new { |hash, key| block }

This will return a new hash populated with the given

objects. Now using the created object, we can call any

available instance methods.

Module 4

7a. Rich User Experience

Traditional web are built with HTML and CSS、CGI and had

been offered as a static page . On the other hand Web 2.0

uses Ajax（Asynchronous JavaScript + XML) presenting

dynamic , rich user experience to users .

For example, Google Provided Google Maps and Google

Suggest

7b. JSON syntax is basically considered as a subset of

JavaScript syntax; it includes the following:

':'(colon), the name/value pairs are separated by ,

(comma).

,(comma)

{

"book": [

{

"id":"01",

"language": "Java",

"edition": "third",

"author": "Herbert Schildt"

},

{

"id":"07",

"language": "C++",

"edition": "second"

"author": "E.Balagurusamy"

}]

}

JSON supports the following two data structures:

Collection of name/value pairs: This Data Structure is

supported by different programming languages.

Ordered list of values: It includes array, list, vector

or sequence etc.

8a. Web 2.0 describes World Wide Web sites that

emphasize user-generated content, usability,

and interoperability. A Web 2.0 site may allow users to

interact and collaborate with each other in a social

media dialogue as creators of user-generated content in

a virtual community, in contrast to Web sites where people

are limited to the passive viewing of content. Examples of

Web 2.0 include social networking

sites, blogs, wikis, folksonomies, video

sharing sites, hosted services, Web applications,

https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/User-generated_content
https://en.wikipedia.org/wiki/Usability
https://en.wikipedia.org/wiki/Web_API
https://en.wikipedia.org/wiki/Social_media
https://en.wikipedia.org/wiki/Social_media
https://en.wikipedia.org/wiki/User-generated_content
https://en.wikipedia.org/wiki/Virtual_community
https://en.wikipedia.org/wiki/Content_(media_and_publishing)
https://en.wikipedia.org/wiki/Social_networking_site
https://en.wikipedia.org/wiki/Social_networking_site
https://en.wikipedia.org/wiki/Blog
https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Folksonomy
https://en.wikipedia.org/wiki/Video_sharing
https://en.wikipedia.org/wiki/Video_sharing
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Web_application

and mashups.

Web 2.0 is the current state of online technology as it

compares to the early days of the Web, characterized by

greater user interactivity and collaboration, more

pervasive network connectivity and enhanced communication

channels. One of the most significant differences between

Web 2.0 and the traditional World Wide Web (WWW,

retroactively referred to as Web 1.0) is greater

collaboration among Internet users, content providers and

enterprises. Originally, data was posted on Web sites, and

users simply viewed or downloaded the content.

Increasingly, users have more input into the nature and

scope of Web content and in some cases exert real-time

control over it. The social nature of Web 2.0 is another

major difference between it and the original, static Web.

Increasingly, websites enable community-based input,

interaction, content-sharing and collaboration. Types

of social media sites and applications

include forums, microblogging, social networking, social

bookmarking, social curation, and wikis.

8

b

.

 Explain REST?

Representational State Transfer (REST) is an

architectural style that specifies constraints, such

as the uniform interface, that if applied to a web

service induce desirable properties, such as

performance, scalability, and modifiability, that

enable services to work best on the Web.

RESTful Web Services are REST architecture based web

services. In REST Architecture everything is a

resource. RESTful web services are light weight,

highly scalable and maintainable and are very

commonly used to create APIs for web based

applications.

In REST architecture, a REST Server simply provides

access to resources and REST client accesses and

https://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
http://searchcrm.techtarget.com/definition/World-Wide-Web
http://whatis.techtarget.com/definition/social-media
http://whatis.techtarget.com/definition/discussion-board-discussion-group-message-board-online-forum
http://searchmobilecomputing.techtarget.com/definition/microblogging
http://whatis.techtarget.com/definition/social-networking
http://whatis.techtarget.com/definition/social-bookmarking
http://whatis.techtarget.com/definition/social-bookmarking
http://whatis.techtarget.com/definition/social-curation
http://searchsoa.techtarget.com/definition/wiki

presents the resources. Here each resource is

identified by URIs/ global IDs. REST uses various

representations to represent a resource like text,

JSON and XML. Now a days JSON is the most popular

format being used in web services.

HTTP Methods

Following well known HTTP methods are commonly used

in REST based architecture.

 GET - Provides a read only access to a resource.

 PUT - Used to create a new resource.

 DELETE - Used to remove a resource.

 POST - Used to update a existing resource or

create a new resource.

Properties of a REST Application

The REST style is characterized by the following

properties:

 Communication takes place on call. The Client is

active and requests a representation from the

passive server and/or modifies a resource.

 A resource can be addressed by an unique URI.

 The client can request the representation of a

resource in form of a document.

 Representations can refer to further resources.

 The server does not monitor the status of its

clients. Each query to the server must contain all

information that are necessary for interpreting

itself.

 Caching is supported. The server can mark its

answers as cacheable or not cacheable.

8c.

SOAP

SOAP is an XML-based protocol for exchanging information

between computers.

 SOAP is a communication protocol.

 SOAP is for communication between applications.

 SOAP is a format for sending messages.

 SOAP is designed to communicate via Internet.

 SOAP is platform independent.

 SOAP is language independent.

 SOAP is simple and extensible.

 SOAP allows you to get around firewalls.

 SOAP will be developed as a W3C standard.

WSDL

WSDL is an XML-based language for describing web services

and how to access them.

 WSDL stands for Web Services Description Language.

 WSDL was developed jointly by Microsoft and IBM.

 WSDL is an XML based protocol for information exchange

in decentralized and distributed environments.

 WSDL is the standard format for describing a web

service.

 WSDL definition describes how to access a web service

and what operations it will perform.

 WSDL is a language for describing how to interface

with XML-based services.

 WSDL is an integral part of UDDI, an XML-based

worldwide business registry.

 WSDL is the language that UDDI uses.

9a. D3 is a JavaScript library The D3 library allows us to

manipulate elements of a web page in the context of a data

set. These elements can be HTML, SVG, or Canvas elements,

and can be introduced, removed, or edited according to the

contents of the data set. So, for example, to create a

scatter graph, we use D3 to arrange SVG circle elements

such that their cx and cy attributes are set to the x- and

y-values of the elements in a data set, scaled to map from

their natural units into pixels. Instead of creating a

traditional visualization toolkit, which typically places

a heavy wrapper between the designer and the web page, D3

is focused on providing helper functions to deal with

mundane tasks, such as creating axes and axis ticks, or

advanced tasks such as laying out graph visualizations or

chord diagrams. This means that, once

over D3’s initial learning curve, the designer is opened

up to a very rich world of modern, interactive and

animated data visualization.

9b. D3.js Select Method

The first part of the JavaScript code that we wrote

is .select("body").

The D3.js Select method uses CSS3 selectors to grab DOM

elements. To learn more about CSS3 selectors please check

this out => CSS3 Selectors

D3 looks at the document and selects the first descendant

DOM element that contains the tag body.

Once an element is selected, D3.js allows you to

apply operators to the element you have selected.

These operators can get or set things like "attributes",

"properties", "styles", "HTML", and "text content".

9c.

<!DOCTYPE html>

<html>

<head>

 <script type = "text/javascript" src =

"d3.min.js"></script>

</head>

<body>

 <script>

 var data = [2,10,12,50]

 var width = 50, barHeight = 20, margin = 1;

 console.log(barHeight * data.length) //120

http://www.w3.org/TR/css3-selectors/#selectors

 var scale = d3.scaleLinear()

 .domain([d3.min(data), d3.max(data)])

 .range([100, 400]);

 var svg = d3.select("body")

 .append("svg")

 .attr("width", width)

 .attr("height", barHeight * data.length);

 var g = svg.selectAll("g")

 .data(data)

 .enter()

 .append("g")

 .attr("transform", function (d, i) {

 //console.log("translate(0," + i * barHeight +

")") //0,0 0,20 0,40 0,60 0,80 0,100

 return "translate(0," + i * barHeight + ")";

 });

 g.append("rect")

 .attr("width", function (d) {

 //console.log(scale(d))

 return scale(d);

 })

 .attr("height", barHeight - margin)

 g.append("text")

 .attr("x", function (d) { return (scale(d)); })

 .attr("y", barHeight / 2)

 .text(function (d) { return d; });

 </script>

 </body>

</html>

10a.

D3 provides the following important scaling methods for

different types of charts. Let us understand then in

detail.

d3.scaleLinear − Constructs a continuous linear scale

where we can input data maps to the specified output

range.

d3.scaleIdentity − Construct a linear scale where the

input data is the same as the output.

d3.scaleTime − Construct a linear scale where the input

data is in the dates and the output in numbers.

d3.scaleLog − Construct a logarithmic scale.

d3.scaleSqrt − Construct a square root scale.

d3.scalePow − Construct an exponential scale.

d3.scaleSequential − Construct a sequential scale where

output range is fixed by interpolator function.

10b.

<body>

<svg width="300" height="200"> </svg>

<script>

 var data = [2, 4, 8, 10];

 var svg = d3.select("svg"),

 width = svg.attr("width"),

 height = svg.attr("height"),

 radius = Math.min(width, height) / 2,

 g = svg.append("g").attr("transform", "translate("

+ width / 2 + "," + height / 2 + ")");

 var color =

d3.scaleOrdinal(['#4daf4a','#377eb8','#ff7f00','#984ea3','

#e41a1c']);

 // Generate the pie

 var pie = d3.pie();

 // Generate the arcs

 var arc = d3.arc()

 .innerRadius(0)

 .outerRadius(radius);

 //Generate groups

 var arcs = g.selectAll("arc")

 .data(pie(data))

 .enter()

 .append("g")

 .attr("class", "arc")

 //Draw arc paths

 arcs.append("path")

 .attr("fill", function(d, i) {

 return color(i);

 })

 .attr("d", arc);

</script>

</body>

