

Internal Assesment Test - I

Sub:	Sub: COMPUTER ORGANIZATION				Code:	16MCA14			
Date:	03/11/2016	Duration:	90 mins	Max Marks:	50	Sem:	I	Branch:	MCA
	Answer Any FIVE FULL Questions								

This well my 11/21 022 Questions		OE	BE
	Marks	СО	RBT
Perform the following conversions: $ABC_{16} = (?)_{10}$	[10]	CO1, CO3	L3
ABC ₁₆ => $\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$125_{10} = (?)_{2}$ $125_{10} = ?_{2}$ $2 125 1$ $2 15 1$ $2 7 1$ $2 3 1$ $2 3 1$ $2 1 1$ $2 1 1$ $125_{10} = 1111101_{2}$			
$1011010111_{2} = ?_{8}$ $1011010111_{2} = ?_{8}$ $001 011 010 111$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $1 3 2 7$ $1011010111_{2} = 1327_{8}$			
$1F0C_{16} = (?)_8$			

Page 2 of 8

	Input		Outp	ut
Α	В	C	Difference	Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

From the Truth Table The Difference and Borrow will written as

Difference=A'B'C+A'BB'+AB'C'+ABC

Reduce it like adder

Then We got

Difference= $A \oplus B \oplus C$

Borrow=A'B'C+A'BC'+A'BC+ABC

=A'B'C+A'BC'+A'BC+A'BC+ABC -----

> A'BC=A'BC+A'BC+A'BC

=A'C(B'+B)+A'B(C'+C)+BC(A'+A)

Borrow=A'C+A'B+BC

The logic diagram of Full Subtractor is Shown below

Full Subtractor-Logic Diagram www.flintgroups.com

What is DeMorgan's theorem? Find the complement of the following functions applying DeMorgan's theorem:

[10]

CO1 L1

a)
$$F(x,y,z) = x'yz' + x'y'z$$

$$b)F(x,y,z)=x(y'z+yz)$$

De Morgan has suggested two theorems which are extremely useful in Boolean Algebra. The two theorems are discussed below.

Theorem 1

$$\overline{A.B} = \overline{A} + \overline{B}$$

NAND = Bubbled OR

• The left hand side (LHS) of this theorem represents a NAND gate with inputs A and B, whereas the right hand side (RHS) of the theorem

represents an OR gate with inverted inputs.

• This OR gate is called as **Bubbled OR**.

Table showing verification of the De Morgan's first theorem –

Α	В	AB	Ā	B	A+B
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

Theorem 2

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

NOR = Bubbled AND

- The LHS of this theorem represents a NOR gate with inputs A and B, whereas the RHS represents an AND gate with inverted inputs.
- This AND gate is called as **Bubbled AND**.

NOR ≡ Bubbled AND

$$\Rightarrow A \xrightarrow{Y = A \cdot B}$$

Bubbled AND

Table showing verification of the De Morgan's second theorem –

Α	В	A +B	Ā	B	Ā.B
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

(a)
$$F(x,y,z) = x'yz' + x'y'z$$

(b)
$$F(x,y,z) = x(y'z + yz)$$

6

$$= (x'yz' + x'y'z)'$$

$$= (x'yz')'(x'y'z)'$$

$$= (x'' + y' + z'')(x'' + y'' + z')$$

$$= (x + y' + z)(x + y + z')$$

(b)
$$x(y'z + yz)$$

$$= x' + (y'z + yz)'$$

$$= x' + (y'' + z')(y' + z')$$

$$= x' + (y + z')(y' + z')$$

Simplify the following Boolean expression using K-map:

	F=A'B'C'+ABC+A'B'C				
A 000 01 11 10 A	+ 0504 = 87				
0 11					
1 1 1	+disia = 7				
F, = A'B'C'+ A'B'C	F2 = A'B'c' + AB'c'				
= A'B'(e'+c)	= B'c'(A'+A)				
= A / B'	= B'c'				
F3 = ABC					
F = A'B' + B'c' + ABC.					

[10] CO1

L3

Explain with a flowchart the different instruction types of a computer system.

CO2

L5

Figure 5-9 Flowchart for instruction cycle (initial configuration).

Page 7 of 8

Course Outcomes		PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8
CO1:	Understand the Basics of Digital System	1	1	-	-	-	-	-	3
CO2:	Understand the Basics of Computer System Organization	1	1	-	-	-	-	-	3
CO3:	Apply the concepts of the number system in Designing Digital System.	3	2	-	-	-	-	-	-
CO4:	Analyse the need of Logic circuits in digital system	2	3	1	-	-	-	-	-
CO5:	Create logic circuits for real time requirement	1	1	3	-	-	-	-	-

Cognitive level	KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PO1 – Apply knowledge; PO2 - $Problem\ analysis$; PO3 - $Design/development\ of\ solutions$; PO4 – team work ; PO5 – Ethics; PO6 - Communication; PO7- $Business\ Solution$; PO8 – Life-long learning