
USN

Internal Assessment Test 1 – Sept. 2017
Sub: SERVICE ORIENTED ARCHITECTURE Sub Code: 13MCA545 Branch:

Date: 20 / 09 / 2017 Duration: 90 min’s Max Marks: 50 Sem / Sec: V OBE
Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Define SOA and list down the design principles of SOA [05] CO1 L1

(b) Discuss the common tangible benefits of SOA [05] CO1 L2

2 (a) List all the common characteristics of contemporary SOA and Explain any eight [10] CO1 L1

3 (a) Discuss about the standards organizations and major vendor that contribute to SOA [06] CO1 L2

(b) What are the different types of service models? Explain any two [04] CO1 L1

4 (a) What is an architecture? Explain the different types of architecture [05] CO1 L2

(b) Explain distributed internet architecture and compare with SOA [05] CO1 L2

5 (a) Define WSDL. Explain service descriptions using WSDL [10] CO1 L2

MARKS CO RBT

6 (a) Explain SOAP message frameworks and SOAP nodes [10] CO1 L2

7 (a) Define MEP? Discuss the various types of MEPS with neat diagram [10] CO2 L2

8 (a) Explain elaborately the concept of coordination related to WS with neat diagram [16] CO2 L2

1 | P a g e

Service Oriented Architecture – 13MCA545

Sep 2017 – Internal Test - 1 – Answer Key

1.a) Define SOA and list down the design principles of SOA

 Definition

SOA is a form of technology architecture that adheres to the principles of service-orientation.
When realized through the Web services technology platform, SOA establishes the potential to support and
promote these principles throughout the business process and automation domains of an enterprise.

 Loose coupling Services maintain a relationship that minimizes dependencies and only requires that

they retain an awareness of each other.

 Service contract Services adhere to a communications agreement, as defined collectively by one or

more service descriptions and related documents.

 Autonomy Services have control over the logic they encapsulate.

 Abstraction Beyond what is described in the service contract, services hide logic from the outside
world.

 Reusability Logic is divided into services with the intention of promoting reuse.

 Composability Collections of services can be coordinated and assembled to form composite services.

 Statelessness Services minimize retaining information specific to an activity.

 Discoverability Services are designed to be outwardly descriptive so that they can be found and

assessed via available discovery mechanisms.

1. b) Discuss the common tangible benefits of SOA

Improved integration (and intrinsic interoperability)
 SOA creates solutions that consist of essentially interoperable services.

 A cross-application integration project into less of a custom development effort, and more of a modeling
exercise.

 The bottom line: The cost and effort of cross-application integration is significantly lowered when
applications being integrated are SOA-compliant.

Inherent reuse
 Service-orientation promotes the design of services that are inherently reusable.

 Designing services to support reuse from the get-go opens the door to increased opportunities for leveraging
(force) existing automation logic.

Streamlined architectures and solutions
 The concept of composition is another fundamental part of SOA. .

 These are extensions to the basic Web services framework established by first-generation standards
represented by WSDL(Web Service Description Language), SOAP(Small Object Access Protocol), and UDDI
(Universal Description, Discovery, and Integration)

Leveraging the legacy investment
 Web services technology set has generated a large adapter market, enabling many legacy environments to
participate in service-oriented integration architectures.
 This allows IT departments to work toward a state of federation, where previously isolated environments
now can interoperate without requiring the development of expensive and sometimes fragile point-to-point
integration channels.

 Still riddled with risks relating mostly

2 | P a g e

 to how legacy back-ends must cope with increased usage volumes,

 the ability to use what you already have with service-oriented solutions that you are building now and
in the future is extremely attractive.

Establishing standardized XML data representation
 SOA is built upon and driven by XML. An adoption of SOA leads to the opportunity to fully leverage the XML
data representation platform.

 A standardized data representation format (once fully established) can reduce the complexity of application
environments.

Focused investment on communications infrastructure
 Web services establish a common communications framework,

 SOA can centralize inter-application and intra-application communication as part of standard IT
infrastructure.

 This allows organizations to evolve enterprise-wide infrastructure by investing in a single technology set
responsible for communication.

"Best-of-breed" alternatives
 A key feature of service-oriented enterprise environments is the support of "best-of-breed" technology.

 Because SOA establishes a vendor-neutral communications framework, it frees IT departments from being
chained to a single proprietary development and/or middleware platform.

 For any given piece of automation that can expose an adequate service interface, you now have a choice as
to how you want to build the service that implements it.

Organizational agility
 Agility is a quality inherent in just about any aspect of the enterprise.

 All parts contain a measure of agility related to how they are constructed, positioned, and leveraged.

 Regardless of what parts of service-oriented environments are leveraged, the increased agility with which IT
can respond to business process or technology-related changes is significant.

 The bottom line: The cost and effort to respond and adapt to business or technology-related change is
reduced.

2. List all the common characteristics of contemporary SOA and Explain any eight

1. Contemporary SOA is at the core of the service-oriented computing platform.
2. Contemporary SOA increases quality of service.
3. Contemporary SOA is fundamentally autonomous.
4. Contemporary SOA is based on open standards.
5. Contemporary SOA supports vendor diversity.
6. Contemporary SOA fosters intrinsic interoperability.
7. Contemporary SOA promotes discovery.
8. Contemporary SOA promotes federation.
9. Contemporary SOA promotes architectural composability.
10. Contemporary SOA fosters inherent reusability.
11. Contemporary SOA emphasizes extensibility.
12. Contemporary SOA supports a service-oriented business modeling paradigm.
13. Contemporary SOA implements layers of abstraction.
14. Contemporary SOA promotes loose coupling throughout the enterprise.
15. Contemporary SOA promotes organizational agility.
16. Contemporary SOA is a building block.
17. Contemporary SOA is an evolution.
18. Contemporary SOA is still maturing.

3 | P a g e

19. Contemporary SOA is an achievable ideal.

1. Contemporary SOA is at the core of the service-oriented computing platform.

- SOA is used to qualify products, designs, and technologies an application computing platform

consisting of Web services technology and service-orientation principles

- Contemporary SOA represents an architecture that promotes service-orientation through the use

of Web services.

2. Contemporary SOA increases quality of service.

- The ability for tasks to be carried out in a secure manner, protecting the contents of a message, as

well as access to individual services.

- Allowing tasks to be carried out reliably so that message delivery or notification of failed delivery

can be guaranteed.

- Performance requirements to ensure that the overhead imposed by SOAP message and XML

content processing does not inhibit the execution of a task.

- Transactional capabilities to protect the integrity of specific business tasks with a guarantee that

should the task fail, exception logic is executed.

3.Contemporary SOA is fundamentally autonomous.

- The service-orientation principle of autonomy requires that

o individual services be as independent and

o self-contained as possible with respect to the control they maintain over their underlying

logic.

4.Contemporary SOA is based on open standards.

- Significant characteristic of Web services is the fact that

o data exchange is governed by open standards.

o After a message is sent from one Web service to another it travels via a set of protocols

that is globally standardized and accepted.

5.Contemporary SOA supports vendor diversity.

- Organizations continue itsbuilding solutions with existing development tools and server products.

- It is continue to leveraging(maximizing) the skill sets of in-house resources.

- Choice to explore the offerings of new vendors is always possible.

- This option is made possible by the

o open technology provided by the Web services framework

o the standardization and principles introduced by SOA.

4 | P a g e

6.Contemporary SOA promotes discovery.

- SOA supports and encourages the advertisement and discovery of services throughout the

enterprise and beyond.

- A serious SOA will likely rely on some form of service registry or directory to manage service

descriptions

7.Contemporary SOA foster(advance) intrinsic(essential) interoperability.

- To leveraging(maximizing) and supporting the

o required usage of open standards,

o a vendor diverse environment, and

o the availability of a discovery mechanism

is called intrinsic interoperability

- Whether an application actually has immediate integration requirements or not design principles

can be applied to outfit services with characteristics that naturally promote interoperability.

8.Contemporary SOA promotes federation.

- Establishing SOA within an enterprise does not necessarily require that you replace what you already

have.

- SOA has the ability to introduce unity across previously non-federated environments.

- Web services enable federation

- SOA promotes by establishing and standardizing the ability to encapsulate legacy and non-legacy

application logic and by exposing it via a common, open, and standardized communications framework

5 | P a g e

3.a) Discuss about the standards organizations and major vendor that contribute to SOA

Standards organizations that contribute to SOA

 Standards are produced, though, is not always that clear.

 Internet standards organizations have existed for some time now, but their respective agendas are not
always distinct and sometimes even overlap.

 Microsoft, IBM, Sun Microsystems, and many others have played ly significant roles in formalizing
Web services specifications, and accelerating the implementation of these specifications as industry
standards.

 Let's first learn more about the three most prominent standards organizations.

 Collectively, they are responsible for seeing through the evolution of XML and Web services
architectures.

The World Wide Web Consortium – (W3C)

 Founded by Tim Berners-Lee in 1994

 W3C has been hugely responsible for furthering the World Wide Web as a global, semantic medium
for information sharing.

 First released HTML, one of the most popular technical languages

 Increased in eBusiness, the W3C responded by producing key foundation standards based on XML,
such as XML Schema and XSLT.

 Four separate working groups made significant contributions to W3C Web Services Activity projects

 They developed of important base standards for Web services.

 First-most are the SOAP and WSDL standards,

 Recently, the W3C has produced the Web Services Choreography Description Language (WS-CDL) -
A specification that governs standardized inter-service exchange patterns.

 Web Services Architecture document - it remains a reference point.

 The W3C is known for its formal and accurate approach to standards development.

 Specifications be subjected to numerous review and revision stages, with each new version being
published to their public Web site.

 Standards can take two to three years to be completed.

Organization for the Advancement of Structured Information Standards (OASIS)

 Established in 1993 as the SGML, 5 years later changed to OASIS (SGML to XML-related standards)

 1000 members from 600 organizations,

 International standards producing organization.

 OASIS a

 WS-BPEL specification

 ebXML (a specification that aims to establish a standardized means of B2B data interchange)

 UDDI specification (Core std for First generation web service)

 XML and Web services security extensions.

6 | P a g e

 Security Assertion Markup Language (SAML)

 Extensible Access Control Markup Language (XACML) provide important features in the areas of
single sign-on and authorization.

 Web Services Security (WSS) technical committee - Security-related project. Further developing and
realizing the important WS-Security framework.

 W3C focuses on establishing core, industry-agnostic standards

 OASIS group's primary interests lie in leveraging these standards to produce additional specifications
that support various vertical industries.

The Web Services Interoperability Organization (WS-I)

 Object of WS-I is open interoperability

 Established in 2002, 200 organizations, including all major SOA vendors.

 Releasing the Basic Profile, a recommendation-based document that contains available standards
collectively used in interoperability architec.

 WSDL, SOAP, UDDI, XML, and XML Schema, the Basic Profile has become an important document
within the IT community.

 Developed the Basic Security Profile. (most important collection of Web services and XML security
technologies.

 It continue releasing Profiles for each major aspect of Web services-related interoperability, reliable
messaging, Web service management, and orchestration.

 Profiles also supplement

 sample implementations and

 best practices on how the standards are to be used together to achieve a quality level of
interoperability.

 Provides a series of testing tools that can be used to ensure compliance with Profiles.

 Validity checkers that use Basic Profile conformance as part of the validation criteria.

 Membership includes significant SOA vendors, no one company has more power than another,
regardless of its size or market share.

 W3C recently rejected an invitation to become an associate member of the WS-I

 Working group members from the WS-I continue to contribute to W3C and OASIS initiatives by directly
participating in their respective working groups.

 The role of these WS-I representatives is to provide continual feedback relating to interoperability
issues.

4.2.3. Major vendors that contribute to SOA

 Standards organizations have their own culture and philosophies around how standards should be
developed, they are all heavily influenced by the commercial market.

 Vendors supply a significant portion of the contributors that actually end up developing the standards.

 Some of the companies that have participated in the standards development processes include
Microsoft, IBM, BEA Systems, Sun Microsystems, Oracle, Tibco, Hewlett-Packard, Canon, Commerce
One, Fujitsu, Software AG, Nortel, Verisign, and WebMethods.

The vendor influence

 IBM has laid out a technology path for increasing support of SOA within its WebSphere platform.

 Microsoft increasing SOA features within the .NET technology framework, and building Web services
technology for Windows

 Web services non-proprietary, a vendor who can help shape a standard might be motivated to do so
with proprietary technology considerations in mind.

 Challenge - getting all vendors to agree on how one standard should be designed.

7 | P a g e

Vendor alliances

 Battle between most established vendor leads distrust.

 Collaborate on specifications (interoperability) between vendor platforms turn into obstacles.

 Forming an alliance allows vendors to join forces in order to attain common goals.

 Lifespan of an alliance is based on d the development cycle of a specification.

 Most noticeable team of repeat-collaborators (IBM, Microsoft,

 and BEA)

 Persisted their working relationship to push forward a series of WS-* extensions.

 One of the more talked about examples of alliances playing a significant role in standards
development is the creation of the

Choosing a standards organization

 Choice of standards organization can have implications.

 Standards development arena is directly related to market demand.

 Vendors have market-driven goals fueled by pressures to deliver product releases that meet customer
demands and match

 Given that the W3C relies on a longer standards development process, it is tempting for vendors to
submit their standards to OASIS instead.

 Organizations develop similar specifications may seem redundant; one always seems to rise to the
top.

 And despite the fact that opposing motives may seem counter-productive to fostering a collection of
platform-neutral technology standards, the quality of what's been delivered so far has been adequate
for furthering the cause of SOA.

3.b) What are the different types of service models? Explain any two

The services are classified

 The manner in which services are being utilized in the real world

 Nature of the application logic they provide

 Their business-related roles within the overall solution.

These classifications are known as service models.

Business service model

 Most fundamental building block.

 It encapsulates a distinct set of business logic within a well-defined functional boundary

 Business services are used within SOAs as follows:
o as fundamental building blocks for the representation of business logic
o to represent a corporate entity or information set
o to represent business process logic
o as service composition members

 when building an SOA around layers of abstraction, the business service model can correspond to the
business service layer

 the business service would act as a controller, composing utility application services.

8 | P a g e

Utility service model

 Any generic Web service or service agent designed for potential reuse can be classified as a utility
service.

 The key to achieving this classification is that the reusable functionality be completely generic and
non-application specific in nature.

 Utility services are used within SOAs as follows:
o as services that enable the characteristic of reuse within SOA
o as solution-agnostic intermediary services
o as services that promote the intrinsic interoperability characteristic of SOA
o as the services with the highest degree of autonomy

 When working with the service abstraction layers described in, a utility service is most commonly
associated with the application service layer.

 A utility service can be referred to as a utility application service.

4.a) What is an architecture? Explain the different types of architecture
Application Architecture

• With the rise of multi-tier applications, the variations with which applications could be delivered began
to increase

• A definition of a baseline definition application becomes important
• The definition is

– abstract in nature,
– but specifically explained the technology,
– boundaries,
– rules,
– limitations, and
– design characteristics that apply to all solutions - application architecture.

• An application architecture is a blueprint
• Different levels can be specified, depending on the organization Some keep it

– high-level,

9 | P a g e

– providing abstract physical and logical representations of the technical blueprint.
• Some more detail, such as

– common data models,
– communication flow diagrams,
– application-wide security requirements, and
– aspects of infrastructure.

• An organization that houses both .NET and J2EE solutions
• Having separate application architecture specifications for each.
• Key part - it should reflect immediate solution requirements, as well as long-term, strategic IT goals.

Enterprise Architecture

• In larger IT, Different application architectures co-exist and even integrate, the demands on the
underlying hosting platforms can be complex.

• Master specification to be created, providing a high-level overview of all forms of heterogeneity that
exist within an enterprise, as well as a definition of the supporting infrastructure.

• Enterprise architecture specification - what an urban plan is to a city.
• Relationship between an urban plan and the blueprint of a building are comparable to that of

enterprise and application architecture specifications.
• Changes to enterprise architectures directly affect application architectures
• Architecture specifications often are maintained by the same group of individuals.
• EA contains a long-term vision of how the organization plans to evolve its technology and

environments.
• For example, the goal of phasing out an outdated technology platform may be established in this

specification.

Service Oriented Architecture
• Service-oriented architecture extents both enterprise and application architecture domains.
• The benefit offered by SOA can be realized when applied across multiple solution environments.
• Building reusable and interoperable services based on a vendor-neutral communications platform can

fully be leveraged.
• This does not mean that the entire enterprise must become service-oriented. SOA belongs in those

areas that have the most to gain from the features and characteristics it introduces.
• "SOA" does not imply a particular architectural scope.
• SOA refer to an application architecture or the approach used to standardize technical architecture

across the enterprise.
• Because of the composable nature of SOA, it is absolutely possible for an organization to have more

than one SOA.
• Web services platform offers one of a number of available forms of implementation for SOA.

4.b) Explain distributed internet architecture and compare with SOA

 Reduces problem of centralization on server.

 Dedicated servers which shares and manages database connections

10 | P a g e

Brief History

 Share and manage pool of database connections– eliminate the concurrent usage on the DB server

 Component capable of processing multiple and concurrent request – difficult

 Late 90’s – defacto computing platform for custom developed enterprise solutions.

Application Logic

 Application Logic – Server.

 None of the logic – Client

 How application logic is partitioned

 Where partitioned units reside

 How units of logic should interact

 Traditional systems create components that reside on one or more application servers

 Components have varying degrees of functional granularity

 Components on the same server communicate via proprietary APIs.

 RPC protocols are used across servers via proxy stubs

 Actual references to other physical components can be embedded in programming code (tight

coupling)

 Not easily altered.

 SOAs also rely on components

 Services encapsulate components

 Services expose specific sets of functionality

 Functionality can originate from legacy systems or other sources

11 | P a g e

 Functionality is wrapped in services and is exposed via open, standardized interface, irrespective

of technology providing the solution

 Services exchange information via SOAP messages.

 Most applications rely on document-style

 Messages are structured to be self-sufficient and contain meta information, processing

instructions, policy rules

 SOA fosters reuse on a deep level by promoting solution-agnostic services

 Promotes the proprietary protocols like DCOM and CORBA for remote data exchange.

 Relatively efficient and reliable

 It supports creation of stateful and stateless components.

Application Processing

 SOA relies on message based communication, it involves serialization and deserialization of

SOAP messages containing XML document payloads

 provides header in security logic can be stored.

Administration

 Distributed architecture introduces web server and physical environment using HTTP.

 SOA requires additional runtime administration.

 Problems with messaging framework can go undetected than with RPC based data exchange.

5) Define WSDL. Explain service descriptions using WSDL

12 | P a g e

Service Description provides the key to establishing a consistently loosely coupled form of communication
between services implemented as Web services.
Description documents are required to accompany any service wanting to act as an ultimate receiver.
The primary service description document is the WSDL definition

5.3.1. Service endpoints and service descriptions

o A WSDL describes the point of contact for a service provider, also known as the service endpoint or
just endpoint.

o It provides a formal definition of the endpoint interface and also establishes the physical location of the
service.

o A WSDL service description can be separated into two categories:

13 | P a g e

o abstract description
o concrete description

5.3.2. Abstract description
An abstract description establishes the interface characteristics of the Web service without any reference to
the technology used to host or enable a Web service to transmit messages.
portType, operation, and message

o The parent portType section of an abstract description provides a high-level view of the service
interface by sorting the messages a service can process into groups of functions known as operations.

o Each operation represents a specific action performed by the service.
o A service operation is comparable to a public method used by components in traditional distributed

applications.
o Much like component methods, operations also have input and output parameters.
o Web services rely exclusively on messaging-based communication, parameters are represented as

messages.
o An operation consists of a set of input and output messages.

5.3.3. Concrete description

o abstract interface definition to be connected to some real, implemented technology.
o Because the execution of service application logic always involves communication, the abstract Web

service interface needs to be connected to a physical transport protocol.
o This connection is defined in the concrete description portion of the WSDL file, which consists of three

related parts:

binding, port, and service

o A WSDL description's binding describes the requirements for a service to establish physical
connections or for connections to be established with the service.

o SOAP is the most common form of binding, but others also are supported.
o A binding can apply to an entire interface or just a specific operation.
o port, which represents the physical address at which a service can be accessed with a specific

protocol.
o service is used to refer to a group of related endpoints

5.3.4. Metadata and service contracts

o How a service can be interfaced with and what type of data exchange it supports.
o WSDL rely on XSD schemas to formalize the structure of incoming and outgoing messages.

14 | P a g e

o supplemental service description document is a policy.
o Policies can provide rules, preferences, and processing details above and beyond what is expressed

through the WSDL and XSD schema documents.
o Three separate documents that each describe an aspect of a service:

o WSDL definition
o XSD schema
o Policy

 Each of these three service description documents can be classified as service metadata since they
provides information about the service.

 Service description documents called service contracta set of conditions that must be met and
accepted by a potential service requestor to enable successful communication.

 Service contract can refer to additional documents or agreements not expressed by service
descriptions.

 For example, a Service Level Agreement (SLA)

5.3.5. Semantic descriptions

 Technical data alone is not enough to describe the service

 Service's behavioral characteristics also important

 Most challenging part of providing a complete description of a Web service is in communicating its
semantic qualities.

 Examples of service semantics include:
o how a service behaves under certain conditions
o how a service will respond to a specific condition
o what specific tasks the service is most suited for

 service semantics are assessed by humans either verbally by discussing the qualities of a service with
its owner, or by

 reading supplementary documentation published alongside service descriptions.

 Goal is to provide sufficient semantic information in a structured manner so that, in some cases,
service requestors can go to evaluate and choose suitable service providers independently.

 It is importance when dealing with external service providers

15 | P a g e

 But even within organizational boundaries, semantic characteristics tend to take on greater relevance
as the amount of internal Web services grows.

5.3.6. Service description advertisement and discovery

 Amount of services increases within and outside of organizations, mechanisms for advertising and
discovering service descriptions may become necessary.

 Central directories and registries become an option to keep track of the many service descriptions that
become available.

 These repositories allow humans (and even service requestors) to:
o locate the latest versions of known service descriptions
o discover new Web services that meet certain criteria

6) Explain SOAP message frameworks and SOAP nodes

5.4. Messaging (with SOAP)

 All communication between services is message-based,

 The messaging framework chosen must be standardized so that all services, regardless of origin, use
the same format and transport protocol.

 Message-centric application design that an increasing amount of business and application logic is
embedded into messages.

 The SOAP specification was chosen to meet all of these requirements

 Universally accepted as the standard transport protocol for messages processed by Web services

5.4.1. Messages

 Simple Object Access Protocol, the SOAP specification's main purpose is to define a standard message

format.

 The structure of this format is quite simple, but its ability to be extended and customized

 Envelope, header, and body

 Every SOAP message is packaged into a container known as an envelope.

 Much like the metaphor this conjures up, the envelope is responsible for housing all parts of the message

16 | P a g e

 Each message can contain a header, an area dedicated to hosting meta information.

 Service-oriented solutions, this header section important

 The actual message contents consists of XML formatted data.

 The contents of a message body are often referred to as the message payload.

Header blocks

 SOAP communications framework used by SOAs, the creating messages that are intelligence-heavy
and self-sufficient

 Independence that increases the robustness and extensibility

 Message independence is implemented through the use of header blocks

 packets of supplementary meta information stored in the envelope's header area.

 It further reinforces the characteristics of contemporary SOA related to fostering reuse, interoperability,
and composability.

 Examples of the types of features a message can be outfitted with using header blocks include:
o processing instructions that may be executed by service intermediaries or the ultimate receiver
o routing or workflow information associated with the message
o security measures implemented in the message
o reliability rules related to the delivery of the message
o context and transaction management information
o correlation information

Message styles

 The SOAP specification was originally designed to replace proprietary RPC protocols

 Distributed components to be serialized into XML documents, transported, and then deserialized into
the native component format upon arrival.

Two types of Message styles

1. RPC-style message runs contrary to the emphasis SOA places on independent, intelligence-heavy
messages.

2. SOA relies on document-style messages to enable larger payloads, coarser interface operations, and

reduced message transmission volumes between services.

Attachments

 To facilitate requirements for the delivery of data not so easily formatted into an XML document, the
use oSf OAP attachment technologies exist.

 Each provides a different encoding mechanism used to bundle data in its native format with a SOAP
message.

 SOAP attachments are commonly employed to transport binary files, such as images.

Faults

 SOAP messages offer the ability to add exception handling logic by providing an optionafla ult section

 It resides within the body area.

 The typical use for this section is to store a simple message used to deliver error condition information
when an exception occurs.

5.4.2. Nodes

The programs that services use to transmit and receive SOAP messages are referred to as SOAP nodes.

17 | P a g e

 Regardless of how they are implemented, SOAP nodes must conform to the processing standard set

forth in the versions of the SOAP specification they support.

 Vendor-neutral communications framework upon which SOA is based on the SOAP node.

 It is what guarantees that a SOAP message sent by the SOAP node from service A can be received
and processed by a SOAP node from any other service.

Node types

 SOAP nodes are given labels that identify their type, depending on what form of processing they are
involved with in a given message processing scenario.

 Below is a list of type labels associated with SOAP nodes

 The SOAP specification has a different use for the term "role" and instead refers to these SOAP types
or labels as concepts.

o SOAP sendera SOAP node that transmits a message
o SOAP receivera SOAP node that receives a message
o SOAP intermediarya SOAP node that receives and transmits a message, and optionally

processes the message prior to transmission
o initial SOAP senderthe first SOAP node to transmit a message
o ultimate SOAP receiverthe last SOAP node to receive a message

SOAP intermediaries

Service intermediaries transition through service provider and service requestor roles, SOAP intermediary
nodes move through SOAP receiver and SOAP sender types when processing a message

18 | P a g e

SOAP nodes acting as intermediaries can be classified as forwarding or active.
When a SOAP node acts as a forwarding intermediary, it is responsible for relaying the contents of a message
to a subsequent SOAP node. In doing so, the intermediary will often process and alter header block
information relating to the forwarding logic it is executing.

Active intermediary nodes are distinguished by the type of processing they perform above and beyond
forwarding-related functions. An active intermediary is not required to limit its processing logic to the rules and
instructions provided in the header blocks of a message it receives. It can alter existing header blocks, insert
new ones, and execute a variety of supporting actions.

7. Define MEP? Discuss the various types of MEPS with neat diagram

Message exchange patterns
Every task automated by a Web service can differ in both the nature of the application logic being executed
and the role played by the service in the overall execution of the business task. Regardless of how complex a
task is, almost all require the transmission of multiple messages. The challenge lies in coordinating these
messages in a particular sequence so that the individual actions performed by the message are executed
properly and in alignment with the overall business task .
The fundamental characteristic of the fire-and-forget pattern is that a response to a transmitted message is not
expected.

Message exchange patterns (MEPs) represent a set of templates that provide a group of already mapped out
sequences for the exchange of messages. The most common example is a request and response pattern.
Here the MEP states that upon successful delivery of a message from one service to another, the receiving
service responds with a message back to the initial requestor.
Many MEPs have been developed, each addressing a common message exchange requirement. It is useful to
have a basic understanding of some of the more important MEPs, as you will no doubt be finding yourself
applying MEPs to specific communication requirements when designing service-oriented solutions.

Primitive MEPs

Before the arrival of contemporary SOA, messaging frameworks were already well used by various
messaging-oriented middleware products. As a result, a common set of primitive MEPs has been in existence
for some time.

19 | P a g e

Request-response

This is the most popular MEP in use among distributed application environments and the one pattern that
defines synchronous communication (although this pattern also can be applied asynchronously).
The request-response MEP establishes a simple exchange in which a message is first transmitted from a
source (service requestor) to a destination (service provider). Upon receiving the message, the destination
(service provider) then responds with a message back to the source (service requestor).

Fire-and-forget

This simple asynchronous pattern is based on the unidirectional transmission of messages from a source to
one or more destinations .
A number of variations of the fire-and-forget MEP exist, including:
The single-destination pattern, where a source sends a message to one destination only.
The multi-cast pattern, where a source sends messages to a predefined set of destinations.
The broadcast pattern, which is similar to the multi-cast pattern, except that the message is sent out to a
broader range of recipient destinations.

Complex MEPs

Even though a message exchange pattern can facilitate the execution of a simple task, it is really more of a
building block intended for composition into larger patterns. Primitive MEPs can be assembled in various
configurations to create different types of messaging models, sometimes called complex MEPs.

The publish-and-subscribe pattern introduces new roles for the services involved with the message
exchange. They now become publishers and subscribers, and each may be involved in the transmission and
receipt of messages. This asynchronous MEP accommodates a requirement for a publisher to make its
messages available to a number of subscribers interested in receiving them.

Step 1 in the publish-and-subscribe MEP could be implemented by a request-response MEP, where the
subscriber's request message, indicating that it wants to subscribe to a topic, is responded to by a message
from the publisher, confirming that the subscription succeeded or failed.

Step 2 then could be supported by one of the fire-and-forget patterns, allowing the publisher to broadcast a
series of unidirectional messages to subscribers

20 | P a g e

8. Explain elaborately the concept of coordination related to WS with neat diagram

 Every activity introduces a level of context into an application runtime environment. Something that is

happening or executing has meaning during its lifetime, and the description of its meaning (and other

characteristics that relate to its existence) can be classified as context information.

 The more complex an activity, the more context information it tends to bring with it. The complexity of an

activity can relate to a number of factors, including:

– the amount of services that participate in the activity

– the duration of the activity

– the frequency with which the nature of the activity changes – whether or not multiple instances of

the activity can concurrently exist

 A framework is required to provide a means for context information in complex activities to be managed,

preserved and/or updated, and distributed to activity participants. Coordination establishes such a

framework.

21 | P a g e

Coordinator composition

WS-Coordination establishes a framework that introduces a generic service based on the
coordinator service model.
This service controls a composition of three other services that each play a specific part in
the management of context data

22 | P a g e

The coordinator composition consists of the following services:

• Activation service Responsible for the creation of a new context and for associating this context to a

particular activity.

• Registration service Allows participating services to use context information received from the

activation service to register for a supported context protocol.

• Protocol-specific services These services represent the protocols supported by the coordinator's

coordination type.

• Coordinator The controller service of this composition, also known as the coordination service.

Coordination types and coordination protocols

• Each coordinator is based on a coordination type, which specifies the nature and underlying logic of an

activity for which context information is being managed.

• Coordination types are specified in separate specifications.

• The WS-Coordination framework is extensible and can be utilized by different coordination types,

including custom variations.

• However, the two coordination types most commonly associated with WSCoordination are

– WS-AtomicTransaction and

– WS-BusinessActivity.

• Coordination type extensions provide a set of coordination protocols, which represent unique

variations of coordination types and consist of a collection of specific behaviors and rules.

• A protocol is best viewed as a set of rules that are imposed on activities and which all registered

participants must follow.

Coordination contexts and coordination participants

• A context created by the activation service is referred to as a coordination context. It contains a

collection of information that represents the activity and various supplementary data.

• Examples of the type of data held within a coordination context include:

– a unique identifier that represents the activity

– an expiration value

– coordination type information

• A service that wants to take part in an activity managed by WSCoordination must request the

coordination context from the activation service. It then can use this context information to register for

one or more coordination protocols.

• A service that has received a context and has completed registration is considered a participant in the

coordinated activity.

The activation and registration process

• The coordination service composition is instantiated when an application service contacts the

activation service as given in the next figure. ia a CreateCoordinationContext request message, it asks

the activation service to generate a set of new context data.

• Once passed back with the ReturnContext message, the application service now can invite other

services to participate in the coordination. This invitation consists of the context information the

application service originally received from the activation service.

23 | P a g e

• Any Web service in possession of this context information may issue a registration request to the

registration service.

• This allows the service to enlist in a coordination based on a specific protocol. (Protocols are provided

by separate specifications and are discussed later on as part of the Atomic transaction and Business

activities sections.)

• Upon a successful registration, a service is officially a participant.

• The registration service passes the service the location of the coordinator service, with which all

participants are required to interact.

• At this time, the coordination service is also sent the address of the new participant.

The completion process

The application service can request that a coordination be completed by issuing a completion request
message to the coordination service.
The coordinator, in turn, then issues its own completion request messages to all coordination participants.

24 | P a g e

Each participant service responds with a completion acknowledgement message

Coordination and SOA

• A coordinator-based context management framework, as provided by WS-Coordination and its

supporting coordination types, introduces a layer of composition control to SOAs.

• It standardizes the management and interchange of context information within a variety of key

business protocols.

• Coordination also alleviates the need for services to retain state.

• Statelessness is a key service-orientation principle applied to services for use within SOAs.

• Coordination reinforces this quality by assuming responsibility for the management of context

information.

	2017 13MCA545 InternalQP - 1 - Mrs. Helen Josephine.pdf
	2017 IAT - 1 QP Answer Key - Mrs. Helen Josephine.pdf

