
Page 1 of 9

CMR

INSTITUTE OF

TECHNOLOGY

USN 1 C

Internal Assessment Test 1 – September 2017

Note: Answer any 5 questions. All questions carry equal marks. Total marks: 50

Marks

OBE

CO RBT

1. a.
Explain the cross browser way of creating XMLHttpRequest object.

if (window.XMLHttpRequest) {

 var xhttp = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 var xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

[5] CO1 L3

 b. 1. What are the key principles of a good Ajax pattern.

Minimal traffic: Ajax applications should send and receive as little information as

possible to and from the server. In short, Ajax can minimize the amount of traffic

between the client and the server. Making sure that your Ajax application doesn’t

send and receive unnecessary information adds to its robustness.

 No surprises: Ajax applications typically introduce different user interaction

models than traditional web applications. As opposed to the web standard of click-

and-wait, some Ajax applications use other user interface paradigms such as drag-

and-drop or double-clicking. No matter what user interaction model you choose, be

consistent so that the user knows what to do next.

Established conventions: Don’t waste time inventing new user interaction models

that your users will be unfamiliar with. Borrow heavily from traditional web

applications and desktop applications, so there is a minimal learning curve.

No distractions: Avoid unnecessary and distracting page elements such as looping

animations and blinking page sections. Such gimmicks distract the user from what he

or she is trying to accomplish.

Accessibility: Consider who your primary and secondary users will be and how they

most likely will access your Ajax application. Don’t program yourself into a corner

so that an unexpected new audience will be completely locked out. Will your users

be using older browsers or special software? Make sure you know ahead of time and

plan for it.

 Avoid entire page downloads: All server communication after the initial page

download should be managed by the Ajax engine. Don’t ruin the user experience by

downloading small amounts of data in one place but reloading the entire page in

others.

User first: Design the Ajax application with the users in mind before anything else.

Try to make the common use cases easy to accomplish and don’t be caught up with

[5] CO1 L3

Sub: Web 2.0 & Rich Internet Applications Code: 13MCA552

Date: 21-9-2017 Duration: 90 mins
Max

Marks: 50
Sem: V Branch: MCA

Page 2 of 9

how you’re going to fit in advertising or cool effects.

2. a.
With the help of a diagram explain the hidden frame technique.

 The hidden frame technique follows a very specific, four-step pattern. The first

step always begins with the visible frame, where the user is interacting with a web

page. Naturally, the user is unaware that there is a hidden frame (in modern

browsers, it is not rendered) and goes about interacting with the page as one typically

would. At some point, the user performs an action that requires additional data from

the server. When this happens, the first step in the process occurs: a JavaScript

function call is made to the hidden frame. This call can be as simple as redirecting

the hidden frame to another page or as complicated as posting form data. The third

step in the pattern is a response received from the server. Because you are dealing

with frames, this response must be another web page. This web page must contain

the data requested from the server as well as some JavaScript to transfer that data to

the visible frame. Typically, this is done by assigning an onload event handler in the

returned web page that calls a function in the visible frame after it has been fully

loaded (this is the fourth step). With the data now in the visible frame, it is up to that

frame to decide what to do with the data.

[10] CO1 L3

3 a
What is meant by readyState and status property? Explain in detail about each values

There are five possible values for readyState:

0 (Uninitialized): The object has been created but the open() method hasn’t been

called.

1 (Loading): The open() method has been called but the request hasn’t been sent.

2 (Loaded): The request has been sent.

3 (Interactive). A partial response has been received.

4 (Completed): All data has been received and the connection has been closed.

The status property is the property that contains the actual status of the download.

This is actually the normal HTTP status code that you get when you try to download

web pages. For example, if the data you’re looking for wasn’t found, you’ll get a

value of 404 in the status property.

200 : File Found

404 : File not found

403 : Forbidden

500 : Internal Server Error

[4] CO1 L3

Page 3 of 9

 b Create an ajax application to display random numbers (2 digits)

ajaxpage.html

<html>
<script type="text/javascript">
function fun()
 {
 if (window.XMLHttpRequest) {
 var xhttp = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 var xhttp = new ActiveXObject("Microsoft.XMLHTTP");
 }
 xhttp.open("GET", "ajaxpage.php?val="+Math.round(Math.random()*100),true);
 xhttp.send();
 xhttp.onreadystatechange = function()
 {
 if (xhttp.readyState == 4 && xhttp.status == 200)
 {
 var obj = document.getElementById("id1");
 obj.innerHTML = xhttp.responseText;
 }
 }
 }
</script>

<body>
 <p id="id1"></p>
 <input type="button" value="check" onclick="fun()" />
</body>
</html>
ajaxpage.php
<?php
 echo $_GET["val"];
?>

[6] CO1 L3

4 a Give the complete code for displaying header information using Ajax.

ajaxpage.html

<html>
<script type="text/javascript">
function fun()
 {
 if (window.XMLHttpRequest) {
 var xhttp = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 var xhttp = new ActiveXObject("Microsoft.XMLHTTP");
 }
 xhttp.open("HEAD",”info.txt”,true);
 xhttp.send();
 xhttp.onreadystatechange = function()
 {
 if (xhttp.readyState == 4 && xhttp.status == 200)
 {
 var obj = document.getElementById("id1");
 obj.innerHTML = xhttp.getAllResponseHeaders();
 }

[10] CO1 L3

Page 4 of 9

 }
 }
</script>

<body>
 <p id="id1"></p>
 <input type="button" value="check" onclick="fun()" />
</body>
</html>
Info.txt
Hello How are you

5

a. Explain how does Ajax handles whitespace in firefox with an example

 When it comes to whitespace, Firefox by default acts differently than

Internet Explorer. In Firefox, whitespace that you use to indent the elements in your

XML counts as text nodes. So when navigating, we have to take all the whitespace

nodes into account in Firefox, by default. We can strip out indentation whitespace

before Firefox gets its hands on it. To do that, we might write a JavaScript function

named removeWhitespace, which is passed a JavaScript XML document object:

xhttp.onreadystatechange = function()

{

if (xhttp.readyState == 4 && xhttp.status == 200)

{

 var xmlDocument = xhttp.responseXML;

 removeWhitespace(xmlDocument);

}

}

function removeWhitespace(xml)

{

 var loopIndex;

 for (loopIndex = 0; loopIndex < xml.childNodes.length;loopIndex++)

 {

 var currentNode = xml.childNodes[loopIndex];

 if (currentNode.nodeType == 1)

 {

 removeWhitespace(currentNode);

 }

 if (((/^\s+$/.test(currentNode.nodeValue))) && (currentNode.nodeType == 3))

 {

 xml.removeChild(xml.childNodes[loopIndex--]);

 }

 }

}

[10]

CO1 L3

6 a. With a flowchart , explain the concept of submission throttling

[5]

CO1 L3

 Collect data

Page 5 of 9

 No

 Yes

 Yes

 Yes

 No

 b. What is predictive fetch pattern? Explain one suitable situation where predictive fetch

can be used.

In a traditional web solution, the application has no idea what is to come next. A
page is presented with any number of links, each one leading to a different part
of the site. This may be termed “fetch on demand,” where the user, through his
or her actions, tells the server exactly what data should be retrieved. While this
paradigm has defined the Web since its inception, it has the unfortunate side
effect of forcing the start-and-stop model of user interaction upon the user.

 The Predictive Fetch pattern is a relatively simple idea that can be somewhat difficult
to implement: the Ajax application guesses what the user is going to do next and
retrieves the appropriate data. In a perfect world, it would be wonderful to always
know what the user is going to do and make sure that the next data is readily available

[5] CO1 L3

Is the

user

idle

Is it time

to send

data

Send data

Continue

collecting

data

 Done

Page 6 of 9

when needed. In reality, however, determining future user action is just a
guessing game depending on your intentions

There are simple use cases where predicting user actions is somewhat easier.
Suppose that you are reading an online article that is separated into three
pages. It is logical to assume that if you are interested in reading the first page,
you’re also interested in reading the second and third page. So, if the first page
has been loaded for a few seconds (which can easily be determined by using a
timeout), it is probably safe to download the second page in the background.
Likewise, if the second page has been loaded for a few seconds, it is logical to
assume that the reader will continue on to the third page. As this extra data is
being loaded and cached on the client, the reader continues to read and barely
even notices that the next page comes up almost instantaneously after clicking
the Next Page link.
 The Google Maps is another real world example for predictive fetch pattern. It
predicts the nearby places when we search a particular destination.

7 a. Employee.xml
<employee>
 <e1>
 <eid>1AB23</eid>
 <ename>Akash</ename>
 <dept>Marketting</dept>
 </e1>
 <e1>
 <eid>1AB36</eid>
 <ename>Akhil</ename>
 <dept>Sales</dept>
 </e1>
 <e1>
 <eid>1AB39</eid>
 <ename>Arun</ename>
 <dept>Purchase</dept>
 </e1>
Create an ajax application to display the output “The second employee is Akhil ,
employee id 1AB36 from Sales department ”.

Xmlajax.html
function callajax()
 {

 If(window.XMLHTTPRequest)
 var xhttp = new XMLHTTPRequest();
 else
 var xhttp = new ActiveXObject(“Microsoft.XMLHTTP”);
 xhttp.open(“GET”,”student.xml”,true);
 xhttp.send();
 xhttp.overrideMimeType(“text/xml”);
 xhttp.onreadystatechange = function()
 {
 If((xhttp.readyState == 4) && (xhttp.status == 200))
 {

[05] CO1 L3

Page 7 of 9

 var xmldoc = xhttp.responseXML;
 var eid = xmldoc.getElementByTagName(“eid”);
 var ename = xmldoc.getElementByTagName(“ename”);
 var dept = xmldoc.getElementByTagName(“dept”);
 document.getElementById(“id1”).innerHTML = “The second
employee is “+ename[2].nodeValue+” , employee id “+eid[2].nodeValue+” from
“+dept[2].nodeValue +” department ” ;
 }
 }
}

Page.html

<html>
<body onload=”callajax()”><div id=”id1”></div>
</body>
</html>

8 a Explain how does ajax handles multiple XMLHTTPRequest objects in the same page.

Program.html
<html>
<head>
<title>Using Two XMLHttpRequest Objects</title>
<script language = "javascript">
 var XMLHttpRequestObject1 = false;
 if (window.XMLHttpRequest)
 {
 XMLHttpRequestObject1 = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 XMLHttpRequestObject1 = new ActiveXObject("Microsoft.XMLHTTP");
 }
 var XMLHttpRequestObject2 = false;
 if (window.XMLHttpRequest) {
 XMLHttpRequestObject2 = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 XMLHttpRequestObject2 = new ActiveXObject("Microsoft.XMLHTTP");
}
function getData1(dataSource, divID)
{
if(XMLHttpRequestObject1)
 {
 var obj = document.getElementById(divID);
 XMLHttpRequestObject1.open("GET", dataSource);
 XMLHttpRequestObject1.onreadystatechange = function()
 {
 if (XMLHttpRequestObject1.readyState == 4 &&
 XMLHttpRequestObject1.status == 200) {
 obj.innerHTML = XMLHttpRequestObject1.responseText;
 }
}

[10] CO1 L3

Page 8 of 9

XMLHttpRequestObject1.send(null);
}
}
function getData2(dataSource, divID)
{
if(XMLHttpRequestObject2) {
var obj = document.getElementById(divID);
XMLHttpRequestObject2.open("GET", dataSource);
XMLHttpRequestObject2.onreadystatechange = function()
{
if (XMLHttpRequestObject2.readyState == 4 &&
XMLHttpRequestObject2.status == 200) {
obj.innerHTML = XMLHttpRequestObject2.responseText;
}
}
XMLHttpRequestObject2.send(null);
}
}

<body>
<h1>Using Two XMLHttpRequest Objects</h1>
<form>
 <input type = "button" value = "Fetch message 1" onclick =
"getData1('dataresponder.php?data=1', 'targetDiv')">
 <input type = "button" value = "Fetch message 2" onclick =
"getData2('dataresponder.php?data=2', 'targetDiv')">
</form>
<div id="targetDiv">
 <p> </p>
</div>
</body>
</html>

Page 9 of 9

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

CO1:
Define and illustrate rich internet concepts

and applications using ajax
3 1 3 1 - - - 2

CO2:
Analyze the working of development models

in web designing
3 1 3 2 - - - 2

CO3:
Illustrate appropriate components lifecycle

techniques using frameworks
1 1 1 1 - - - 1

CO4:
Evaluate and Implement state based systems

using data models and data binding.
2 2 3 1 - - - 2

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,

experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,

conclude, compare, summarize.

PO1 –Apply knowledge; PO2- Problem analysis; PO3- Design/development of solutions;

PO4 – Team work ; PO5 – Ethics ; PO6 -Communication; PO7- Business Solution; PO8 – Life-long learning ;

