
CMR INSTITUTE OF TECHNOLOGY
DEPARTMENT OF MASTER OF COMPUTER APPLICATIONS

INTERNAL ASSESSMENT-1 SOLUTION

1. Explain the below mentioned commands with its usage and examples.
i) cal ii) date iii) echo iv) who v) bc vi) printf

The cal command is a command line utility for displaying a calendar in the
terminal. It can be used to print a single month, many months or an entire year. It
supports starting the week on a Monday or a Sunday, showing Julian dates and
showing calendars for arbitrary dates passed as arguments.
cal

September 2016
Mo Tu We Th Fr Sa Su

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

The date command displays the current date and time. It can also be used to
display or calculate a date in a format you specify.date with no options will
output the system date and time, as in the following output:
Thu Feb 8 16:47:32 MST 2001

to display a line of text/string on standard output or a file.To print string "Hello,
World!" on console

$ echo "Hello, World!"

output:
Hello, World!

Who
The who command prints information about all users who are currently logged
in.

Bc
bc is an arbitrary-precision language for performing math calculations.
Printf
printf prints a formatted string to the standard output. Its roots are in the C
programming language, which uses a function by the same name. It is a handy
way to produce precisely-formatted output from numerical or textual arguments.

printf "Hi, I'm %s.\n" $LOGNAME

2. A. Explain the following looping statements in shell script.
i) if ii)while
The if...else...fi statement is the next form of control statement that allows Shell

https://www.computerhope.com/jargon/c/c.htm
https://www.computerhope.com/jargon/c/c.htm
https://www.computerhope.com/jargon/f/function.htm

to execute statements in a controlled way and make the right choice.

Syntax

if [expression]
then

Statement(s) to be executed if expression is true
else

Statement(s) to be executed if expression is not true
fi
The Shell expression is evaluated in the above syntax. If the resulting value
is true, given statement(s) are executed. If the expression is false, then no
statement will be executed.

#!/bin/sh

a=10

b=20

if [$a == $b]then

echo "a is equal to b"else

echo "a is not equal to b"fi

The while loop enables you to execute a set of commands repeatedly until some
condition occurs. It is usually used when you need to manipulate the value of a
variable repeatedly.

Syntax

while command
do

Statement(s) to be executed if command is true
done
Here the Shell command is evaluated. If the resulting value is true,
given statement(s) are executed. If command is false then no statement will be
executed and the program will jump to the next line after the done statement.

#!/bin/sh

a=0

while [$a -lt 10]do

echo $a

a=`expr $a + 1`done

B. Explain Shell variables : i) $HOME ii) PWD
The name of a user's home directory is by default identical to that of the user.
Thus, for example, a user with a user name of mary would typically have a home

directory named mary. It would have an absolute pathname of /home/mary. An
absolute pathname is the location of a directory or file relative to the root
directory, and it always starts with the root directory (i.e., with a forward slash).
$HOME

 pwd --- tells you where you currently are.

pwd is a shell builtin

Print the name of the working directory. If any of the subdirectories in the path
are symbolic links, and you used the symlink names when changing to the
directory, the symlink names are printed. Example output:

/home/hope/actual_directory_name/actual_subdirectory/mydir

The Unix script command. script is used to take a copy of everything which is
output to the terminal and place it in a log file. It should be followed by the name
of the file to place the log in, and the exit command should be used to stop
logging and close the file.

3. Explain the below mentioned commands with its usage and examples.
i) spell ii) script iii) sleep iv) uname v) passwd

spell is a very minimalistic spell-checking program, based on the
original UNIX spell checker. It reads the contents of file FILE, word for
word, checking them against its dictionary. If a word does not correspond
with any of spell's dictionary words, the word is printed.
If an input FILE is not specified, or is specified as a dash
("-"), spell performs a spell check of standard input.

sleep is a command in Unix, Unix-like and other operating systems that
suspends program execution for a specified time. The sleepinstruction suspends
the calling process for at least the specified number of seconds (the default),
minutes, hours or days.
Uname is a computer program in Unix and Unix-like computer operating
systems that prints the name, version and other details about the current machine
and the operating system running on it. The uname system call and command
appeared for the first time in PWB/UNIX. Both are specified by POSIX.
The passwd command is used to change thepassword of a user account. A
normal user can runpasswd to change their own password, and a system
administrator (the superuser) can usepasswd to change another user's password,
or define how that account's password can be used or changed.
4. A)Briefly explain for loop in shell script with examples.
The for loop operates on lists of items. It repeats a set of commands for every
item in a list.

Syntax

for var in word1 word2 ... wordN
do

Statement(s) to be executed for every word.
done
Here var is the name of a variable and word1 to wordN are sequences of
characters separated by spaces (words). Each time the for loop executes, the
value of the variable var is set to the next word in the list of words, word1 to
wordN.

http://www.linfo.org/absolute_pathname.html
https://www.computerhope.com/jargon/u/unix.htm
https://www.computerhope.com/jargon/s/stdin.htm

#!/bin/sh

for var in 0 1 2 3 4 5 6 7 8 9do

echo $vardone

to display all the files starting with .bash and available in your home. We will
execute this script from my root −

#!/bin/sh

for FILE in $HOME/.bash*do

echo $FILEdone

B)Explain case conditions with an example.

The basic syntax of the case...esac statement is to give an expression to evaluate
and to execute several different statements based on the value of the expression.

The interpreter checks each case against the value of the expression until a
match is found. If nothing matches, a default condition will be used.

case word in
pattern1)

Statement(s) to be executed if pattern1 matches
;;

pattern2)
Statement(s) to be executed if pattern2 matches
;;

pattern3)
Statement(s) to be executed if pattern3 matches
;;

*)
Default condition to be executed
;;

esac
Here the string word is compared against every pattern until a match is found.
The statement(s) following the matching pattern executes. If no matches are
found, the case statement exits without performing any action.

There is no maximum number of patterns, but the minimum is one.

When statement(s) part executes, the command ;; indicates that the program
flow should jump to the end of the entire case statement. This is similar to break
in the C programming language.

#!/bin/sh

FRUIT="kiwi"

case "$FRUIT" in

"apple") echo "Apple pie is quite tasty."

;;

"banana") echo "I like banana nut bread."

;;

"kiwi") echo "New Zealand is famous for kiwi."

;;esac

5. A)Briefly explain how to create and delete directory with examples.
Creating directories

To create a new directory, use the mkdir command. The follow example creates
a new directory named ‘directory_name’:

[server]$ mkdir directory_name

Deleting directories

There are actually a few ways to delete directories in the shell. To delete an
empty directory, use the rmdir command:

[server]$ rmdir directory_name

C)With suitable example bring out the difference between absolute and relative
pathnames

While file names are certainly important, there is another important related
concept, and that is the concept of a file specification1 (or file spec for short). A
file spec may simply consist of a file name, or it might also include more
information about a file, such as where is resides in the overall file system. There
are 2 techniques for describing file specifications, absolute and relative.

With absolute file specifications, the file specification always begins from the
root directory, complete and unambiguous. Absolute file specs are sometimes
referred to as fully qualified path names2. Thus, absolute file specs always begin
with /. For example, the following are all absolute file specs from the
diagram above:

/etc/passwd
/bin
/usr/bin
/home/mthomas/bin
/home/mthomas/class_stuff/foo

Note the the first slash indictes the top of the tree (root), but each succeeding
slash in the file spec acts merely as a separator. Also note the files named bin in
the file specifications of /bin, /usr/bin, and /home/mthomas/bin are different bin
files, due to the differing locations in the file system hierarchy.

With relative file specifications, the file specification always is related to the
users current position or location in the file system. Thus, the beginning

http://homepages.uc.edu/~thomam/Intro_Unix_Text/File_System.html
http://homepages.uc.edu/~thomam/Intro_Unix_Text/File_System.html
http://homepages.uc.edu/~thomam/Intro_Unix_Text/File_System.html

(left-most part) of a relative file spec describes either:

 an ordinary file, which implies the file is contained within the current
directory

 a directory, which implies a child of the current directory (i.e. one level
down)

 a reference to the parent of the current directory (i.e. one level up)

6. A)Briefly explain the unix file system.
Unix file system is a logical method of organizing and storing large amounts of
information in a way that makes it easy to manage. A file is a smallest unit in
which the information is stored. Unix file system has several important features.
All data in Unix is organized into files. All files are organized into directories.
These directories are organized into a tree-like structure called the file system.

Files in Unix System are organized into multi-level hierarchy structure known as
a directory tree. At the very top of the file system is a directory called “root”
which is represented by a “/”. All other files are “descendants” of root.

Directories or Files and their description –

 / : The slash / character alone denotes the root of the filesystem tree.
 /bin : Stands for “binaries” and contains certain fundamental utilities,

such as ls or cp, which are generally needed by all users.
 /boot : Contains all the files that are required for successful booting

process.
 /dev : Stands for “devices”. Contains file representations of peripheral

devices and pseudo-devices.
 /etc : Contains system-wide configuration files and system databases.

Originally also contained “dangerous maintenance utilities” such as init,but
these have typically been moved to /sbin or elsewhere.

 /home : Contains the home directories for the users.
 /lib : Contains system libraries, and some critical files such as kernel

modules or device drivers.
 /media : Default mount point for removable devices, such as USB sticks,

media players, etc.
 /mnt : Stands for “mount”. Contains filesystem mount points. These are

used, for example, if the system uses multiple hard disks or hard disk
partitions. It is also often used for remote (network) filesystems,
CD-ROM/DVD drives, and so on.

 /proc : procfs virtual filesystem showing information about processes as
files.

 /root : The home directory for the superuser “root” – that is, the system
administrator. This account’s home directory is usually on the initial
filesystem, and hence not in /home (which may be a mount point for
another filesystem) in case specific maintenance needs to be performed,
during which other filesystems are not available. Such a case could occur,
for example, if a hard disk drive suffers physical failures and cannot be
properly mounted.

 /tmp : A place for temporary files. Many systems clear this directory
upon startup; it might have tmpfs mounted atop it, in which case its
contents do not survive a reboot, or it might be explicitly cleared by a
startup script at boot time.

 /usr : Originally the directory holding user home directories,its use has
changed. It now holds executables, libraries, and shared resources that are
not system critical, like the X Window System, KDE, Perl, etc. However,
on some Unix systems, some user accounts may still have a home directory
that is a direct subdirectory of /usr, such as the default as in Minix. (on
modern systems, these user accounts are often related to server or system
use, and not directly used by a person).

 /usr/bin : This directory stores all binary programs distributed with the
operating system not residing in /bin, /sbin or (rarely) /etc.

 /usr/include : Stores the development headers used throughout the
system. Header files are mostly used by the #include directive in C/C++
programming language.

 /usr/lib : Stores the required libraries and data files for programs stored
within /usr or elsewhere.

 /var : A short for “variable.” A place for files that may change often –
especially in size, for example e-mail sent to users on the system, or
process-ID lock files.

 /var/log : Contains system log files.
 /var/mail : The place where all the incoming mails are stored. Users

(other than root) can access their own mail only. Often, this directory is a
symbolic link to /var/spool/mail.

 /var/spool : Spool directory. Contains print jobs, mail spools and other
queued tasks.

 /var/tmp : A place for temporary files which should be preserved
between system reboots.

B)What is a file? Explain the categories of files found in UNIX Operating
System.
From a user perspective in a Unix system, everything is treated as a file. Even
such devices such as printers and disk drives.

How can this be, you ask? Since all data is essentially a stream of bytes, each
device can be viewed logically as a file.

All files in the Unix file system can be loosely categorized into 3 types,
specifically:

1. ordinary files
2. directory files
3. device files 1

While the latter two may not intuitively seem like files, they are considered
"special" files.

The first type of file listed above is an ordinary file, that is, a file with no
"special-ness". Ordinary files are comprised of streams of data (bytes) stored on
some physical device. Examples of ordinary files include simple text files,
application data files, files containing high-level source code, executable text
files, and binary image files. Note that unlike some other OS implementations,
files do not have to be binary Images to be executable (more on this to come).

The second type of file listed above is a special file called a directory (please
don't call it a folder?). Directory files act as a container for other files, of any
category. Thus we can have a directory file contained within a directory file (this
is commonly referred to as a subdirectory). Directory files don't contain data in
the user sense of data, they merely contain references to the files contained
within them.

It is perhaps noteworthy at this point to mention that any "file" that has files
directly below (contained within) it in the hierarchy must be a directory, and any
"file" that does not have files below it in the hierarchy can be an ordinary file, or
a directory, albeit empty.

The third category of file mentioned above is a device file. This is another
special file that is used to describe a physical device, such as a printer or a
portable drive. This file contains no data whatsoever, it merely maps any data
coming its way to the physical device it describes.

1 Device file types typically include: character device files, block device files,
Unix domain sockets, named pipes and symbolic links. However, not all of these
file types may be present across various Unix implementations.

7.A)Write significance of the following commands
i) trap ‘rm $$* ; echo “program interrupted” ; exit’ 1 2 15
When the trap command is issued, it removes all the temporary files and prints a
message “echo interrrupted” and exit with any of the interrupt signals 1 2 and 15
ii) date | cut –d” “ –f1

Date command gives the output as Thu Feb 8 16:47:32 MST 2001.The pipe
symbol is used to supply the output of right side to the input of left side.
And so the output of date command is given as input to cut command. The
parameters of cut command are -d as demiliter and the delimiter used is
space and it outputs the first field which is Thu.

B)Explain the parent-child relationship.

To identify where we are, we type and the system returns the following:

$ pwd [Enter]

http://homepages.uc.edu/~thomam/Intro_Unix_Text/File_System.html

/home/mthomas/class_stuff

Thus the parent of this directory is:

/home/mthomas # in absolute form
.. # in relative form

Looking at another example:

$ pwd [Enter]
/home/mthomas

Thus the parent of this directory is:

/home # in absolute form
.. # in relative form

And one (note there could be many) child of the /home/mthomas directory is:

/home/mthomas/bin # in absolute form
bin # in relative form

So you ask "How the heck do we use this?" One uses this to navigate or move
about the file system. Moving about the file system is accomplished by using
the cd command, which allows a user to change directories. In the simplest
usage of this command, entering

$ cd [Enter]
will move the user to their "home" or login directory (as specified by the
$HOME variable 4). If a user wishes to change to another directory, the user
enters

$ cd file_spec [Enter]
and assuming file_spec is a valid directory, the users current working directory
will now be this directory location. Remember, the file specification can always
be a relative or an absolute specification.

As before, we type and the system returns the following:

$ pwd [Enter]
/home/mthomas/class_stuff

If we wish to change directories to the /home/mthomas/bin directory, we can
type

$ cd /home/mthomas/bin [Enter] # absolute, will work
from anywhere

or

$ cd .. [Enter] # relative, move up one directory, i.e. to
the parent

$ cd bin [Enter] # relative, move down to the bin directory

or

$ cd ../bin [Enter] # relative, both steps in one file spec

http://homepages.uc.edu/~thomam/Intro_Unix_Text/File_System.html

7. A)How do you set terminal characteristics? Explain with examples.

stty command is used to manipulate the terminal settings. You can view and
modify the terminal settings using this command as explained below.Display
All Settings

-a option displays all the stty settings in a user friendly readable format as shown
below.

stty -a

speed 38400 baud; rows 59; columns 208; line = 0;

intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = ; eol2 = ; swtch = ; start
= ^Q; stop = ^S; susp = ^Z; rprnt = ^R; werase = ^W; lnext = ^V; flush = ^O;
min = 1; time = 0;

-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts -cdtrdsr

-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff -iuclc
-ixany -imaxbel -iutf8

opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0

isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt ech

B) Explain exit status of a command with examples.
Following the execution of a pipe, a $? gives the exit status of the last
commandexecuted. After a script terminates, a $? from the command-line gives
the exit status of the script, that is, the last command executed in the script,
which is, by convention, 0 on success or an integer in the range 1 - 255 on error.
#!/bin/bash

echo hello
echo $? # Exit status 0 returned because command executed successfully.

lskdf # Unrecognized command.
echo $? # Non-zero exit status returned -- command failed to execute.

echo

exit 113 # Will return 113 to shell.

C)Briefly explain positional parameters with examples

A positional parameter is a variable within a shell program; itsvalue is set from an argument specified
on the command line that invokes the program. Positional parameters are numbered and are referred
to with a preceding ``$'': $1, $2, $3, and so on
$ cat pp
echo The first positional parameter is: $1
echo The second positional parameter is: $2
echo The third positional parameter is: $3

echo The fourth positional parameter is: $4
$

#!/usr/bin/ksh

echo "The total no of args are: $#"

echo "The script name is : $0"

echo "The first argument is : $1"

echo "The second argument is: $2"

echo "The total argument list is: $*"

[root@gpr ~]# ./cmd 1 2 3 4

The total no of args are: 4

The script name is : ./cmd

The first argument is : 1

The second argument is: 2

The total argument list is: 1 2 3 4

[root@gpr ~]#

	Syntax
	Syntax
	Syntax
	Creating directories
	Deleting directories
	stty command is used to manipulate the terminal se

