

CMR

INSTITUTE OF

TECHNOLOGY

USN 1 C

Internal Assessment Test II – Nov 2017

 Answer any 5 questions. All questions carry equal marks.

 Marks

1. a. Discuss the significance of state diagram and draw the neat state diagram for

telephone line system.
[10]

2. a. Describe the following terms with suitable examples:

i. Multiplicity ii. Aggregation iii. Ordering iv. Bags and Sequence

 v. Association Classes

[5*2=10]

3. a. Draw the use case diagram for library management system using include relation. [6]

 b. Describe the guide lines for use case diagram. [4]

4. a. Write the guidelines for sequence diagram. [2]

 b. Draw the sequence diagram for cash withdrawal process in ATM system [8]

Sub: Object-Oriented Modeling And Design Patterns Code: 13MCA51

Date: 07-11-17 Duration: 90 mins
Max

Marks: 50
Sem: VA&B Branch: MCA

 5. a. Which approach performs the development Life cycle in strict sequence for the

entire system. Explain in detail of that approach
[3]

 b. Explain about the well defined stages of software development stages. [7]

6. a. In the analysis stage, explain the steps to construct the static structure of the domain

model in the real world system.
[10]

7. a. What are the various stages of Object Oriented Methodology? [5]

 b. Describe Object Oriented Themes [5]

8. a. What do you mean by event? Explain the several kinds of events with examples. [6]

 b. Explain link, association and n-ary association with suitable examples.

[4]

1a. Discuss the significance of state diagram and draw the neat state diagram for telephone line

system.

A state diagram, also called a state machine diagram or state chart diagram, is an illustration of the

states an object can attain as well as the transitions between those states in the Unified Modeling
Language (UML). In this context, a state defines a stage in the evolution or behavior of an object,

which is a specific entity in a program or the unit of code representing that entity. State diagrams

are useful in all forms of object-oriented programming (OOP). The concept is more than a decade

old but has been refined as OOP modeling paradigms have evolved. A state diagram resembles a

flowchart in which the initial state is represented by a large black dot and subsequent states are

portrayed as boxes with rounded corners. There may be one or two horizontal lines through a box,

dividing it into stacked sections. In that case, the upper section contains the name of the state, the

middle section (if any) contains the state variables and the lower section contains the actions

performed in that state. If there are no horizontal lines through a box, only the name of the state is

written inside it. External straight lines, each with an arrow at one end, connect various pairs of

boxes. These lines define the transitions between states. The final state is portrayed as a large
black dot with a circle around it.

2. a. Describe the following terms with suitable examples: 5*2=10

i. Multiplicity ii. Aggregation iii. Ordering iv. Bags and Sequence

 v. Association Classes

i) Multiplicity is a definition of cardinality - i.e. number of elements - of some collection of elements by
providing an inclusive interval of non-negative integers to specify the allowable number of instances of

described element. Multiplicity interval has some lower bound and (possibly infinite) upper bound:

multiplicity-range ::= [lower-bound '..'] upper-bound

lower-bound ::= natural-value-specification

upper-bound ::= natural-value-specification | '*'

Lower and upper bounds could be natural constants or constant expressions evaluated to natural (non

negative) number. Upper bound could be also specified as asterisk '*' which denotes unlimited number of

elements. Upper bound should be greater than or equal to the lower bound.

Multiplicity Option Cardinality

0..0 0 Collection must be empty

0..1

No instances or one instance

1..1 1 Exactly one instance

0..* * Zero or more instances

1..*

At least one instance

5..5 5 Exactly 5 instances

m..n

At least m but no more than n instances

ii) Aggregation is a stronger form of association. An association is a link connecting two classes. In UML, a

link is placed between the “whole” and the “parts” classes with a diamond head attached to the “whole”

class to indicate that this association is an aggregation .Let's take an example of Department and teacher. A

single teacher can not belong to multiple departments, but if we delete the department, the teacher object

will not be destroyed. We can think about it as a “has-a” relationship.

iii. Ordering is the objects on a "many" association end have explicit order and is an inherent part of the

association. You can indicate an ordered set of objects by writing" {ordered}" next to the appropriate

association end.

iv. Bags and Sequence : A bag is a collection of elements with duplicates allowed. A sequence is an ordered

collection of elements with duplicates allowed.

v. Association Classes : An association class is an association that is also a class. Like the links of an

association, the instances of an association class derive identity from instances of the constituent classes.

Like a class, an association class can have attributes and operations and participate in associations. You can

find association classes by looking for adverbs in a problem statement or by abstracting known values.

3a. Draw the use case diagram for library management system using include relation. [6]

3b. Describe the guide lines for use case diagram. [4]

 relationships.

4a.Write the guidelines for sequence diagram [2]

4b.Draw the sequence diagram for cash withdrawal process in ATM system [8]

5a. Which approach performs the development Life cycle in strict sequence for the entire system. Explain in

detail of that approach [3]

Waterfall Approach

5b.Explain about the well defined stages of software development stages. [7]

6a

.

In the analysis stage, explain the steps to construct the static structure of the domain model in the real

world system. [10M]

Find classes

Prepare a data dictionary

Find associations

Find attributes of objects and links
Organize and simplify classes using inheritance

Verify that access paths exists for likely queries

Iterate and refine the model

Reconsider the level of abstraction

Group classes into packages.

Finding Classes:- Classes often correspond to nouns for example . In the statement “a reservation system

to sell tickets to performances at various theaters tentative classes would be Reservation , System , Ticket

,Performances and Theater

Keeping the right classes:

We need to discard the unnecessary and incorrect classes:

Redundant classes: if two classes express same

Irrelevant classes: It has little or nothing to do with the problem

Vague class: too broad in scope

Attributes: describe individual objects

Operations
Roles

Implementation constructs: CPU, subroutine, process and algorithm

Derived classes: omit class that can be derived from other class

Prepare data dictionary: Information regarding the data is maintained

Finding Associations

Keeping the right associations:

1.Associations between eliminated classes

2.Irrelevant or implementation associations

3.Actions

4.Ternary association
5.Derived Association

6.Misnamed associations

7.Association end names

8.Qualified associations

9.Multiplicity

10.Missing Associations

11.Aggregation

Finding attributes:

Keeping the right attributes:

Refining with inheritance :

1. Bottom-up generalization

2. Top-down generalization

3. Generalization vs enumeration
4. Multiple inheritance

5. Similar associations.

6. Adjusting the inheritance level

Testing Access paths

Iterating a Class Model : Several signs of missing classes

Shifting the level of abstraction

Grouping Classes into packages.

7a. What are the various stages of Object Oriented Methodology? [5M]

• System conception. Software development begins with business analysts or users conceiving

 an application and formulating tentative requirements.

• Analysis. The analyst scrutinizes and rigorously restates the requirements from system conception by
constructing models. The analyst must work with the requestor to understand

the problem, because problem statements are rarely complete or correct. The analysis model is a concise,

precise abstraction of what the desired system must do, not how it will be done. The analysis model

should not contain implementation decisions.

The analysis model has two parts: the domain model, a description of the real-world objects reflected

within the system; and the application model, a description of the parts of the application system itself

that are visible to the user.

Application objects might control the execution of trades and present the results. Application

experts who are not programmers can understand and criticize a good model.

System design. The development team devise a high-level strategy-the system architecture-

for solving the application problem. They also establish policies that will serve as a default for the
subsequent, more detailed portions of design. The system designer must decide what performance

characteristics to optimize, choose a strategy of attacking the problem, and make tentative resource

allocations. For example, the system designer might decide that changes to the workstation screen must

be fast and smooth, even when windows are moved or erased, and choose an appropriate communications

protocol and memory buffering strategy.

• Class design. The class designer adds details to the analysis model in accordance with the system

design strategy. The class designer elaborates both domain and application objects using the same OO

concepts and notation, although they exist on different conceptual planes. The focus of class design is the

data structures and algorithms needed to implement each class. For example, the class designer now

determines data structures and algorithms for each of the operations of the Window class.
• Implementation. Implementers translate the classes and relationships developed during class design

into a particular programming language, database, or hardware. Programming should be straightforward,

because all of the hard decisions should have already been made. During implementation, it is important

to follow good software engineering practice so that traceability to the design is apparent and so that the

system remains flexible and extensible. For example, implementers would code the Window class in a

programming language, using calls to the underlying graphics system on the workstation.

7b.Describe Object Oriented Themes [5]

1 Abstraction

Abstraction focus on essential aspects of an application while ignoring details. This means focusing on

what an object is and does, before deciding how to implement it. Use of abstraction preserves the
freedom to make decisions as long as possible by avoiding premature

commitments to details. Most modem languages provide data abstraction, but inheritance and

polymorphism add power. The ability to abstract is probably the most important skill required for 00

development.

2 Encapsulation

Encapsulation (also information hiding) separates the external aspects of an object, that are

accessible to other objects, from the internal implementation details, that are hidden from

other objects. Encapsulation prevents portions of a program from becoming so interdependent

that a small change has massive ripple effects. You can change an object's implementation without

affecting the applications that use it. You may want to change the
implementation of an object to improve performance, fix a bug, consolidate code, or support

porting. Encapsulation is not unique to 00 languages, but the ability to combine data structure

and behavior in a single entity makes encapsulation cleaner and more powerful things prior languages,

such as Fortran, Cobol, and C.

3.Combining Data and Behavior

The caller of an operation need not consider how many implementations exist. Operator polymorphism

shifts the burden of deciding what implementation to use from ilk calling

code to the class hierarchy. For example, non-OO code to display the contents of a window

must distinguish the type of each figure, such as polygon, circle, or text, and call the appropriate

procedure to display it. An 00 program would simply invoke the draw operation on

each figure; each object implicitly decides which procedure to use, based on its class. Maintenance is

easier, because the calling code need not be modified when a new class is added.

4.Sharing

00 techniques promote sharing at different levels. Inheritance of both data structure and behavior lets

subclasses share common code. This sharing via inheritance is one of the main
advantages of 00 languages. More important than the savings in code is the conceptual clarity

from recognizing that different operations are ail really the same thing. This reduces the number of

distinct cases that you must understand and analyze.00 development not only lets you share information

within an application, but also offers the prospect of reusing designs and code on future projects. 00

development provides the tools, such as abstraction, encapsulation, and inheritance, to build libraries of

reusable components. Unfortunately, reuse has been overemphasized as a justification for 00 technology.

5 Emphasis the Essence of an Object

00 technology stresses what an object is, rather than how it is used. The uses of an object depend on the

details of the application and often change during development. As requirements

evolve, the features supplied by an object are much more stable than the ways it is used, hence software

systems built on object structure are more stable in the long run. 00 development places a greater
emphasis on data structure and a lesser emphasis on procedure structure than functional-decomposition

methodologies.

6 Synergy

Identity, classification, polymorphism, and inheritance characterize 00 languages. Each of concepts can

be used in isolation, but together they complement each other. The benefits of an OQ-approach are

greater than they might seem at first. The emphasis on the essential properties of an object forces the

developer to think more carefully deeply about what an object IS and does. The resulting system tends to

be cleaner, more general, and more robust than it would be if the emphasis were only on the use of data

and operations.

8a.What do you mean by event? Explain the several kinds of events with examples. [6]

An event is an occurrence at a point in time, such as user depresses left button of mouse. An event

happens instantaneously with regard to the time scale of an application. Events cause state changes which

is shown in State Diagrams

Signal Event

 a signal event represents a named object that is dispatched (thrown) asynchronously by one object

and then received (caught) by another. Exceptions are an example of internal signal

 a signal event is an asynchronous event

 signal events may have instances, generalization relationships, attributes and operations.
Attributes of a signal serve as its parameters

 A signal event may be sent as the action of a state transition in a state machine or the sending of a

message in an interaction

 signals are modeled as stereotyped classes and the relationship between an operation and the

events by using a dependency relationship, stereotyped as send

Call Event

 a call event represents the dispatch of an operation

 a call event is a synchronous event

https://praveenthomasln.files.wordpress.com/2012/04/figure-2-signals.png

Time and Change Events

 A time event is an event that represents the passage of time.

 modeled by using the keyword ‘after’ followed by some expression that evaluates to a period of
time which can be simple or complex.

 A change event is an event that represents a change in state or the satisfaction of some condition

 modeled by using the keyword ‘when’ followed by some Boolean expression

8b.Explain link, association and n-ary association with suitable examples. [4]

A link is a physical or conceptual connection among objects. For example, Joe Smith Works-

For Simplex company. Most links relate two objects, but some links relate three or more objects we

define a link as a tuple -that is, a list of objects. A link is an instance of an association.

An association is a description of a group of links with common structure and common semantics.

 For example, a person Works For a company. The links of an association connect objects from the same

classes. An association describes a set of potential links in the same way that a class describes a set of

potential objects. Links and associations often appear as verbs in problem statements.

https://praveenthomasln.files.wordpress.com/2012/04/figure-3-call-events.png

N-ary associations (associations among three or more classes.)

You should try to avoid n-ary associations-most of them can be decomposed into binary associations,

with possible qualifiers and attributes. Figure 4.5 shows an association that at first glance might seem to

be an n-ary but can readily be restated as binary associations.

Restating an n-ary association. You can decompose most n-ary associations into binary associations....

This n-ary association is an atomic unit and cannot be subdivided into binary associations without losing

information. A programmer may know a language and work on a project, but might not use the language
on the project. The UML symbol for n-ary associations is a diamond with lines connecting to related

classes. If the association has a name, it is written in italics next to the diamond.

