
Page 1 of 16

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - II

Sub:
Analysis and Design of Algorithms Code: 16MCA33

Date: 08 / 11 / 2017 Duration:
90

mins

Max

Marks:
50

Sem

:
III

Branch

:
MCA

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1 (a) Write the Horspool’s algorithm for Enhancement in string matching.

Give all the cases of Horspool algorithm and give its efficiency.

Explain it for matching DEMO in string “THIS IS A DEMO FOR

STRING MATCHING”.

Sol: Cases - 4x1 - 4M

Pseudocode - 3M

Example with steps - 3M

Horspool's algorithm is used for string matching and performs better

than the brute force string matching by attempting the largest

possible shift after every mismatch. this however, is done at the cost

of extra storage which is a shift table maintained. While matching a

string with the pattern the following four cases occur

[10] CO3 L3

Page 2 of 16

To search for the pattern DEMO in the text THIS IS A DEMO FOR

STRING MATCHING, we first find the shift table for DEMO

Here n(length of string)=34 and m=4

Calculating the shift only for the first 3 characters:

Shift for D = m – 1 – I = 4-1-0=3

Shift for E = 4-1-1=2

Shift for M = 4-1-2=1

For all characters the shift table will have entries 4.

Page 3 of 16

Thus the shift table is

A B C D E … M N O …

4 4 4 3 2 4 1 4 4 4

Matching the pattern with text

T H I S I S A D E M O F O R S T R I N G M A T C H I N G

D E M O

 D E M O

 D E M O

 D E M O

2 (a) Write an algorithm for counting sort and analyze its performance.

Show how it will perform to sort 12,22,12,34,33,11,22,22,34,12.

Sol: Algorithm - 4M, Explanation - 1M, Analysis - 2M, Example - 3M

Counting sort algorithm is an example of a situation where using extra

memory results in a efficient sorting technique. The idea is to count

the frequencies of occurrence of each value in an array. Thus if the

set of elements belong to a small range of numbers [l..u] then we can

initially maintain a count of number of times each number occurs in an

array F. Thus F[0] would store the frequency of occurance of l , F[1]

would store the same of l+2 and F[u-l] would store the frequency of u

occurring. The next step is to find the cumulative sum of elements in

F. Thus F[i] would store the number of values in the original array

which are less than the element associated with i, i.e. l+i. The

elements of A whose values are equal to the lowest possible value l
are copied into the first F[0]elements of S, i.e., positions 0 through

F[0]− 1;the elements of value l + 1 are copied to positions from F[0] to

(F[0]+ F[1]) − 1; and so on.. The algorithm for the same is given below:

[10] CO3 L1

Shift for ‘S’ is 4, so shift by 4 positions

Shift for ‘E is 2, so shift by 2 positions
Shift for ‘ ’(space) is 4, so shift by 4

positions

Match Found !!

Page 4 of 16

3 (a) Write pseudo code of the bottom-up dynamic programming algorithm

for the knapsack problem and analyse it.

Sol: Pseudocode - 5M, Explanation - 2M, Analysis - 3M

[10] CO4,

CO1

L2

Page 5 of 16

4 (a) Find the transitive closure of the graph given below using

Warshall's algorithm

Sol: Steps (4Matrices) - 4 x1.5 = 6M

The diagram below shows the working of Warshall’s on a given graph

[6] CO2 L3

Page 6 of 16

 (b) Explain memory function with respect to knapsack problem.

Sol: Memory function benefits - 2M, Knapsack explanation - 2M

Dynamic programming deals with problems whose solutions satisfy a

recurrence relation with overlapping subproblems. The direct top-

down approach to finding a solution to such a recurrence leads to an

algorithm that solves common subproblems more than once and hence

is very inefficient. The classic dynamic programming approach,on the

other hand , works bottom up: it fills a table with solutions to all

smaller subproblems, but each of them is solved only once.A problem

with this approach is that solutions to some of these smaller

subproblems are often not necessary for getting a solution to the

problem given.Since this drawback is not present in the top-down

approach, it is natural to try to combine the strengths of the top-

down and bottom-up approaches. The goal is to get a method that

solves only subproblems that are necessary and does so only

once.Such a method can be done using memory functions.

This method solves a given problem in the top-down manner but, in

addition, maintains a table of the kind that would have been used by

a bottom-up dynamic programming algorithm. Initially, all the table’s

entries are initialized with a special“null” symbol to indicate that

they have not yet been calculated. Thereafter, whenever a new

value needs to be calculated, the method checks the corresponding

entry in the table first: if this entry is not “null,” it is simply

[4] CO4 L2

Page 7 of 16

retrieved from the table; otherwise, it is computed by the

recursive call whose result is then recorded in the table.

For the following instance of knapsack problem :

Only a few entries need to be calculated in the table constructed

using the top down approach as shown below:

Except for the base case the entire table is filled with nulls. We

start by trying to calculate F(4,5) which requires F(3,3) and F(3,5).

We store a null in all entries. Whenever an entry needs to be

calculated we check if it already has a value. If yes we use the

value, else we recursively compute it.
5 (a) Write and explain the Floyd’s algorithm for finding the All pairs

shortest path and analyze its time complexity. Explain it with

example.

Sol: Explanation of Floyd's algorithm-5M. Analysis - 2M, Example -

4M

[10] CO1,

CO6

L2,L

4

Page 8 of 16

Consider a graph whose adjacency matrix is given below:

Page 9 of 16

6 (a) Explain the Dijkstra’s single source shortest path algorithms and

analyze its time complexity.

Sol: Explanation - 3M, Algorithm - 4M, Analysis - 3M

Sol: Dijkstra’s algorithm is an algorithm for solving the single-source

shortest-paths problem: for a given vertex called the source in a

weighted connected graph with non negative edges, find shortest

paths to all its other vertices. Some of the applications of the

problem are transportation planning, packet routing in communication

[10] CO3 L1

Page 10 of 16

networks finding shortest paths in social networks, etc. First, it finds

the shortest path from the source. to a vertex nearest to it, then to

a second nearest, and so on. In general, before its ith iteration

starts, the algorithm has already identified the shortest paths to i −

1 other vertices nearest to the source. These vertices, the source,

and the edges of the shortest paths leading to them from the source

form a subtree Ti of the given graph. The set of vertices adjacent to

the vertices in T called “fringe vertices”; are the candidates from

which Dijkstra’s algorithm selects the next vertex nearest to the

source. To identify the ith nearest vertex, the algorithm computes,

for every fringe vertex u, the sum of the distance to the nearest

tree vertex v and the length dv of the shortest path from the source

to v and then selects the vertex with the smallest such d value. d

indicates the length of the shortest path from the source to that

vertex till that point. We also associate a value p with each vertex

which indicates the name of the next-to-last vertex on such a path, .

After we have identified a vertex u* to be added to the tree, we

need to perform

two operations.

The psuedocode for Dijkstra’s is as given below:

Analysis:

The time efficiency of Dijkstra’s algorithm depends on the data

structures used for implementing the priority queue and for

representing an input graph itself.

Graph represented by adjacency matrix and priority queue by array:

In loop for initialization takes time |V| since the insertion into the

queue would just involve appending the vertices at the end(since it is

an array implementation). For the second loop, the loop runs |V|

Page 11 of 16

times. Each time the DeleteMin operation would take a maximum of

θ(|V|) time since it would involve finding the vertex in the array with

min d value, for a total time of |V|2. The for loop (for iupdating the

neighbor vetices) would run |V| times again. However the Decrease

would take θ(1) time because the index of the vertex would be known.

Thus the total time complexity is θ(|V|2).

Graph represented by adjacency list and priority queue by binary

heap:

All heap operations take θ(lg|V|) time. Thus the first loop runs |V|

times and each time the Insert would take θ(lg|V|) time. The second

loop runs |V| times and the DeleteMin would again take lg|V| time.

Thus the total number of time DecreaseMin would run across all

iterations is θ(Vlg|V|). In the second loop the basic operation is

Decrease(Q,u,du) whoch is run the maximum number of times. Across

all iterations using adjacency list, since for each vertex Decrease is

called for a maximum of all its adjacent vertices, the number of

times Decrease is invoked |E|

times. For each time it is onvoked , it takes O(lg|V|) time to execute.

Thus the total time complexity is θ((|E|+|V|)lg|V|).

Graph represented by adjacency list and priority queue by fibonacci

heap:

The time taken in this case θ(|E|+|V|lg|V|).
7 (a) Outline Prim’s algorithm for finding the minimal spanning tree of a

graph. Analyze its time complexity.

Sol: Explanation - 3M, Algorithm - 4M, Analysis - 3M

Prim’s algorithm is used for solving the minimal spanning tree problem.

Spanning tree of an undirected connected graph is its connected

acyclic subgraph(tree) that contains all the vertices of the graph. If

such a graph has weights assigned to its edges, a minimum spanning
tree is its spanning tree of the smallest weight, where the weight of

a tree is defined as the sum of the weights on all its edges. The

minimum spanning tree problem is the problem of finding a minimum

spanning tree for a given weighted connected graph.

Prim’s algorithm constructs a minimum spanning tree through a

sequence of expanding subtrees. The initial subtree in such a

sequence consists of a single vertex selected arbitrarily from the set

V of the graph’s vertices. On each iteration, the algorithm expands

the current tree in the greedy manner by simply attaching to it the

nearest vertex(i.e. connected using the min weight) not in that tree.

The algorithm stops after all the graph’s vertices have been included

in the tree being constructed. Since the algorithm expands a tree by

exactly one vertex on each of its iterations, the total number of such

iterations is n − 1, where n is the number of vertices in the graph.

[10] CO2 L2,L

3

Page 12 of 16

The pseudocode of this algorithm is as follows.

To implement Prim’s algorithm we attach two labels to a vertex: the

name of the nearest tree vertex and the length (the weight) of the

corresponding edge. Vertices that are not adjacent to any of the

tree vertices can be given the ∞ label indicating their “infinite”

distance to the tree vertices and a null label for the name of the

nearest tree vertex. With such labels,

finding the next vertex to be added to the current tree T =(VT,ET)

becomes a simple task of finding a vertex with the smallest distance

label in the set V – VT. Afterwehave identified a vertex u* to be

added to the tree, we need to perform two operations:

Analysis:

Graph is represented by its weight matrix and the priority queue is

implemented as an unordered array:

The algorithm’s running time will be in _(|V |2). Indeed, on each of

the |V| − 1

iterations, the array implementing the priority queue is traversed to

find and delete the minimum and then to update, if necessary, the

priorities of the remaining vertices

Graph is represented by its adjacency lists and the priority queue is

implemented

as a min-heap,

the running time of the algorithm is in O(|E| log |V |).
This is because the algorithm performs |V| − 1 deletions of the

smallest element and makes |E| verifications and, possibly, changes

of an element’s priority in a min-heap of size not exceeding |V |. Each

of these operations, as noted earlier, is a O(log |V |) operation.

Hence, the running time of this implementation of Prim’s algorithm is

in (|V| − 1+ |E|)O(log |V |) = O(|E| log |V |) because, in a connected

graph, |V| − 1≤ |E|.

8 (a) Explain Kruskal's method to find the minimal spanning tree. How is it

different from Prim's?

Sol: Method - 3M, Difference (2 atleast) - 2M

Kruskal’s algorithm is used for solving the minimal spanning tree

problem. Spanning tree of an undirected connected graph is its

[5] CO6 L4

Page 13 of 16

connected acyclic subgraph(tree) that contains all the vertices of the

graph. If such a graph has weights assigned to its edges, a minimum
spanning tree is its spanning tree of the smallest weight, where the

weight of a tree is defined as the sum of the weights on all its edges.

The minimum spanning tree problem is the problem of finding a

minimum spanning tree for a given weighted connected graph.

Kruskal’s algorithm looks at a minimum spanning tree of a weighted

connected graph G = (V, E) as an acyclic subgraph with |V| − 1 edges

for which the sum of the edge weights is the smallest. Consequently,

the algorithm constructs a minimum spanning tree as an expanding

sequence of subgraphs that are always acyclic but are not necessarily

connected on the intermediate stages

of the algorithm. The algorithm begins by sorting the graph’s edges in

nondecreasing order of their weights. Then, starting with the empty

subgraph, it scans this sorted list, adding the next edge on the list to

the current subgraph if such an inclusion does

not create a cycle and simply skipping the edge otherwise.

The differences between Prim;s and Kruskal's is:

 During intermediate stages of tree construction the partial

structure in csae of Prim's is always a tree whereas in

Kruskal's it may be a forest.

 Prim's algorithm is more appropriate when the |E| >> |V| else

Kruskal's is more suitable.

 In Prim's the next edge chosen is the minimum edge connecting

a tree vertex with a vertex which is not in the tree whereas in

Kruskal's the next chosen is the one with the minimum cost

which does not cause a cycle.

(b) Apply Kruskal’s algorithm to find minimum cost spanning tree for the

graph.

Sol: Steps - 4M, Final Solution - 1M

[5] CO3 L3

Page 14 of 16

Page 15 of 16

Page 16 of 16

Course Outcomes

PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

CO1:

Categorize problems based on

their characteristics and practical

importance.

4 2 1 0 0 2 2 0

CO2:

Understand the basic asymptotic

notations and various efficiency

classes.

4 3 4 0 0 0 3 0

CO3:

Compute the efficiency of

algorithms in terms of asymptotic

notations

2 4 1 0 0 0 1 0

CO4:

Design algorithm using an

appropriate design paradigm for

solving a given problem

4 3 4 0 0 0 3 0

CO5:
Classify problems as P, NP or NP

Complete
2 4 1 0 0 2 1 0

CO6:

Implement algorithms using various

design strategies and determine

their order of growth.

3 3 4 0 0 1 2 0

Cognitive level KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change,

classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

PO1 – Apply knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;

PO4 – team work ; PO5 – Ethics ; PO6 -Communication; PO7- Business Solution; PO8 – Life-long learning

