CMR
INSTITUTE OF USN
TECHNOLOGY

Internal Assesment Test - IT

sub: Analysis and Design of Algorithms Code: 16MCA33
Date: 08 /11/2017 Duration: 0 Max ' Sem pp Branch yca
mins Marks: : :
Answer Any FIVE FULL Questions
OBE
Marks™-5 TreT

1(a) \Write the Horspool's algorithm for Enhancement in string matching. | [10] |CO3
Give all the cases of Horspool algorithm and give its efficiency.
Explain it for matching DEMO in string "THIS IS A DEMO FOR
STRING MATCHING".

Sol: Cases - 4x1 - 4M

Pseudocode - 3M

Example with steps - 3M

Horspool's algorithm is used for string matching and performs better
than the brute force string matching by attempting the largest
possible shift after every mismatch. this however, is done at the cost
of extra storage which is a shift table maintained. While matching a
string with the pattern the following four cases occur

Case 1: If there are no C's in the pattern, shift the pattern by its entire length to right.
€.9:S50Sin S0
A

BARBER
BARBER

Case 2: If there are occurrences of character '¢' in the pattern but the last one, then
shift should align the right most occurrence of ¢ in the pattern

M

BARBE R
BARBER

Case 3: If C happens to be the last character in the pattern then there are ne C's among
its m-1 character, shift same as case 1.

A
LEADE R
LEADER|

L3

Page 1 of 16

Case 4: If C happens to be the last character in the pattern and there are other C's
ameng its first n-1 characters the shift in same as case 2.

S50 i@ Rii S0

/H/H
REORD E R
REO RDER

Input enhahcement makes repetitive comparisons unnecessary. Shift sizes are
precomputed and stored in a table. The shift value is calculated by the formula:

the pattern's length m,
if ¢ is not among the first m-1 characters of the pattern
t(c)= . . s
() the distance from the rightmost ¢ among the 1°" m-1 characters of
the pattern to its last|character, otherwise

Algorithm Shifttable(p[0..m-1])

// Fills the table by Horspool's & Boya-Moore
// Input: pattern p[0..m-1] and an alphabet of possible characters
// Output: Table[0..size-1] indexed by the alphabet's characters and filled with shift
sizes computed using f(¢)
initialize all the elements of Table with m.
for j€0 to n-1 do Table[p[j]] € m-1-j.
return table.

Algorithm HorspoolMatching(P[0..m-1], T[0..n-1])

// Input: Pattern P[0.m-1] and text T[0..n-1]

// Qutput: The index of the left end of the first matching substring or -1 if there a
// no matches

shift table(P[0..m-1]) // generates table of shifts

i€m-1 // position of the pattern’s right end
while itn-1 do
k<0 // number of matched characters
while i<m-1 and P[m-1-k]=T[i-k]
k€ k+1
if k=m

return i-m+1
else i<i+Table[T[i]]
return -1.

To search for the pattern DEMO in the text THIS IS A DEMO FOR
STRING MATCHING, we first find the shift table for DEMO
Here n(length of string)=34 and m=4

Calculating the shift only for the first 3 characters:
Shift forD=m-1-1I=4-1-0=3

Shift for E = 4-1-1=2

Shift for M = 4-1-2=1

For all characters the shift table will have entries 4.

Page 2 of 16

Thus the shift table is

A B C D E M

Iz
+10

4 4 4 3

nN
D
—_

Matching the pattern with text

THIS [I|S| Al DEMO| FIOR| ISTRING MATCHI|
DE MO SHift for {S’ is|4. sd shift by 4 positions
DE MO SHift for { ’(spaae) lis 4, so| shift/ by 4
DE Mlo SHift| for {E | 152,/ sd shift by 2 posifions
DE MO Miatch Found !!

2 (a)

Write an algorithm for counting sort and analyze its performance.
Show how it will perform to sort 12,22,12,34,33,11,22,22,34,12.

Sol: Algorithm - 4M, Explanation - 1M, Analysis - 2M, Example - 3M

Counting sort algorithm is an example of a situation where using extra
memory results in a efficient sorting tfechnique. The idea is to count
the frequencies of occurrence of each value in an array. Thus if the
set of elements belong to a small range of numbers [l..u] then we can
initially maintain a count of number of times each number occurs in an
array F. Thus F[O] would store the frequency of occurance of | , F[1]
would store the same of I+2 and F[u-l] would store the frequency of u
occurring. The next step is to find the cumulative sum of elements in
F. Thus F[i] would store the number of values in the original array
which are less than the element associated with i, i.e. |+i. The
elements of A whose values are equal to the lowest possible value |
are copied into the first F[Olelements of S, i.e., positions O through
F10]- 1;the elements of value /+ 1 are copied to positions from AO] to
(AI0+ A1]1)- 1. and so on.. The algorithm for the same is given below:

Algorithm DistributionCounting (A[O..n-1])

// Seorts an array
// Input: A[0..n-1] of| integers between | & u (lu)
// Output: 5[0..n-1] of A's elements sorted in increasing order

for j€0 to u-l do D[j]€0 // initialize frequencie
for i€0 to n-1do D[A[i]-I]&D[A[i]-1]+1 // compute frequencies
for j€1 to u-1 do D[j]€D[j-1]+D[j] // reuse for distributic
for i<n-1 down to O do

j € ALl

S[D[jJ-1] <« Ali]

D[j] <« D[j]-1

return s

[10]

CO3

L1

Page 3 of 16

Stepl: Calculating the frequencies
12,22,12,34,33,11,22 22,34 12.

The range is [12..34]

Hence finding the frequency of all elements
11 12 22 33 34
1 3 0 3 0 1 2

Step 2: Now finding cumulative frequency
11 12 22 33 |34
1 4 4 7 7 8 10

Step 3: Starting from the end of the original array and inserting it in proper
position in the sorted array

12 . 23 34
. . . s
— — gt ——

e
) R A T R .
i

3 (a)

Write pseudo code of the bottom-up dynamic programming algorithm
for the knapsack problem and analyse it.

Sol: Pseudocode - 5M, Explanation - 2M, Analysis - 3M

The knapsack problem is as follows: given n items of known weights wl....w n and
values v1,..,v n and a knapsack of capacity M, find the most valuable subset of the
items that fit into the knapsack.

The solution can be built recursively as follows: Let us consider an instance
defined by the first i items, 1<i «n, with weights wl,..wi, values v1,..vi, and
knapsack capacity j, 1¢j <M. Let F(i,j) be the value of an optimal solution to this
instance, i.e., the value of the most valuable subset of the first i items that fit into
the knapsack of capacity j. The subsets of the first I items belong to two
categories- one in which the ith item is present and the others in which the ith

item is not present.
1. Among the subsets that do not include the ith item, the value of an

optimal subset is, by definition, F(i-1,j).

2. Among the subsets that do include the ith item (possible only when j >=
wi),an optimal subset is made up of this item and an optimal subset of
the first i -1 items that fits into the knapsack of capacity j -wi. The
value of such an optimal subset is vi +F(i-1,j-wi).

Thus the recursive solution is:

[10]

CO4,
COo1

L2

Page 4 of 16

Fa. i) max{F{ -1,)),vy+Fi =1, j—w)] il j—w =0,
i Fii -1,) il j—w; <0

If i=0 or j=0 then F(T,j)=0 since it means no objects and no capacity respectively.

The recursive function aboe can be solved in a bottom up manner by solving the

smallest of subprogblems first before solving the bigger ones. The algorithm for
Knapsack is given below:

The recursive function aboe can be solved in a bottom up manner by solving the

smallest of subprogblems first before solving the bigger ones. The algorithm for
Knapsack is given below:

Algorithm Knapsack(nw,c, M)

// n- number of items

// w- array containing weights of items from O.. n-1
// c- array containing costs of items from 0.. n-1
// M - total capacity of knapsack

Create a matrix F[0..n,0.. M]
// initializing the matrix
ForI<-Qton
F[i]J[0]<«- O

Forj<-OtoM
F[Olli]«- ©

Fori<1ton
For j¢1to M
{
Flillj] € FL-LIG):
If j>=wli]and c[i] +F[i-1][j-w[i]] > F[i-1][;]
FLiLi] € cli] +Fli-1][j-wlil]
}

Return F[n][M]

Analysis:
The first two loops in the algorithm take ©(n) and ©(M) respectively. The third

nested loop has the outer loop running n times and the inner loop running M times
for a total of 6(nM) which is the complexity of the algorithm.

4 (a)

The diagram below shows the working of Warshall's on a given graph

Find the transitive closure of the graph given below using
Warshall's algorithm

Sol: Steps (4Matrices) -4 x1.5=6M

[6]

cO2

L3

Page 5 of 16

o}
|

1's reflect the existence of paths
with no intermediate vertices

(R0 is just the adjacency matrix);
boxed row and column are used for getting A1

/
~
2

1

H—f]
G|
[=]
I
oo on
ol u I—a(-)omn.
5 S
-0 0
Y © =|O|Q

D O =&
o

C

b a b ¢ d_ 1'sreflect the existence of paths
a (1] 0 © with intermediate vertices numbered
I [0]0] 0 1]| nothigherthan 1, i.e., just vertex a
el 0O 00 (note a new path from d to b);
gl vl | W] W 0 boxed row and column are used for getting R@
- b ¢ d _ 1's reflect the existence of paths
al 0 1[0] 1 with intermediate vertices numbered
- Bb] 0 0]0] 1 not higher than 2, i.e, aand b
R~ [0 0ol o] (note two new paths);
g™ 1 1) boxed row and column are used for getting R,
: a b o d : 1's reflect the existence of paths
al 0 1 o0 [1] with intermediate vertices numbered
pa_ D 0 0 0|1 not higher than 3, i.e., 3, b,and ¢
"¢l O 0 O|O (no new paths);
a | T 1 1113 boxed row and column are used for getting R4,
: a b ¢ d : 1's reflect the existence of paths
al o 1 o0 [1] with intermediate vertices numbered
a0 0 O 0 |1 not higher than 3, i.e., 3 b,and ¢
el O 010 (no new paths);
ad | | S 7 I boxed row and column are used for getting /A1),
& & o d.
a2l 4 1 %' 1's reflect the existence of paths
== gl ' N W with intermediate vertices numbered
Y=5lo o b o not higher than 4, i.e., 3, b, ¢, and d
al 1 1. 9 2 (note five new paths).

(b)

Explain memory function with respect to knapsack problem.

Sol: Memory function benefits - 2M, Knapsack explanation - 2M
Dynamic programming deals with problems whose solutions satisfy a
recurrence relation with overlapping subproblems. The direct top-
down approach to finding a solution to such a recurrence leads to an
algorithm that solves common subproblems more than once and hence
is very inefficient. The classic dynamic programming approach,on the
other hand , works bottom up: it fills a table with solutions to all
smaller subproblems, but each of them is solved only once.A problem
with this approach is that solutions to some of these smaller
subproblems are often not necessary for getting a solution to the
problem given.Since this drawback is not present in the top-down
approach, it is natural to try to combine the strengths of the top-
down and bottom-up approaches. The goal is to get a method that|
solves only subproblems that are necessary and does so only
once.Such a method can be done using memory functions.

This method solves a given problem in the fop-down manner but, in
addition, maintains a table of the kind that would have been used by
a bottom-up dynamic programming algorithm. Initially, all the table's
entries are initialized with a special®null" symbol to indicate that
they have not yet been calculated. Thereafter, whenever a new
value needs to be calculated, the method checks the corresponding

entry in the table first: if this entry is not "null” it is simply

[4]

CO4

L2

Page 6 of 16

retrieved from the table; otherwise, it is computed by the
recursive call whose result is then recorded in the table.
For the following instance of knapsack problem :

item weight value
1 2 $12
2 1 $10 capacity W =5.
3 3 20
4 2 $15

Only a few entries need to be calculated in the table constructed
using the top down approach as shown below:
capacity j

i 0 1 2 3 4 5
0 0 0 0 0 0 0
w =2, v,=12 1 0 0o 12 12 12 12
wy=1,1,=10 2 0o — 12 2 — 2
wy=3,v3=20 3 0o - — 2 — ®
wy=2,v,=15 4 0o - — — — 37

Except for the base case the entire table is filled with nulls. We
start by trying to calculate F(4,5) which requires F(3,3) and F(3,5).
We store a null in all entries. Whenever an enfry needs fo be
calculated we check if it already has a value. If yes we use the
value, else we recursively compute it.

5 (a

Write and explain the Floyd's algorithm for finding the All pairs
shortest path and analyze its time complexity. Explain it with
example.

Sol: Explanation of Floyd's algorithm-5M. Analysis - 2M, Example -
4M

Sol: Given a weighted connected graph (undirected or directed), the all-pairs
shortest paths
problem asks to find the distances—i.e., the lengths of the shortest paths—
from each vertex to all other vertices. This problem has a wide variety of
applications in communication, transportation etc.
It is convenient to record the lengths of shortest paths inan nx n matrix D called
the distance matrix: the element dij in the ith row and the jth column of this
matrix indicates the length of the shortest path from the ith vertex to the jth
vertex.
Floyd's algorithm computes the distance matrix of a weighted graph with n
vertices through a series of nx n matrices:

[10]

COl,
CO6

L2L

Page 7 of 16

po p*=b pm pin
The element d¥ in the ith row and the jth column of matrix D™ (i,j=1,2,...,n,k
=0,1,...,n)is equal to the length of the shortest path among all paths from the
ith vertex to the jth vertex with each intermediate vertex, if any, numbered not
higher than k.The series starts with D”, which does not allow any intermediate
vertices in its paths; hence, D is simply the weight matrix of the graph. The last
matrix in the series, D™, contains the lengths of the shortest paths among all
paths that can use all n vertices as intermediate and hence is nothing other than
the distance matrix being sought. Let df; be the element in the ith row and the jth

column of matrix D®). We can partition all paths between I and j into two disjoint
subsets : those that do not use the kth vertex v, as intermediate and those that

do. Since the paths of the first subset have their intermediate vertices numbered
not higher than k - 1, the shortest of them is of length df; ™.
i k-1 i ’

O||'|
I e A L N Vv
'\v;{ /\O
— S”
L .

(k 1IL\% j'r k-1
di L di; ~
L f
1 J

Now if we infroduce the kth vertex as an infermediate vertex, then it is possible
that the path from vi to vj through vk may be shorter than the already existing
shortest path. In such a case a new shortest path through k has been discovered
and this may be recorded . However if the new path has a cost higher than an
already existing path, this may be ignored. This can be expressed through the
recursion:

d"* = min{d

iy =

(k—1)
i

(k—1)

_ (k1) °_
+ drl “I"dlxj } f(ll'ﬂ - I tfl = H"."V

Dynamic programming solution for the problem can be expressed as :

ALGORITHM Floyd(W|[l..n, 1..n])

/[Tmplements Floyd’s algorithm for the all-pairs shortest-paths problem

/[Input: The weight matrix W of a graph with no negative-length cycle

//Output: The distance matrix of the shortest paths’ lengths

D < W /lis not necessary if W can be overwritten

fork — 1tondo

fori < 1tondo
for j < 1tondo
D[i, j]| < min{D[i, j], D[i, k] + D[k, j]}

return D
Analysis:
The basic operation in this case is the statement inside the innermost loop.
Writing the number of fimes the basic operation is executed in terms of
summation.

T(n) = 22:12?:12?:11 F Yhar X n=XiognEn=nXnXn= n?

T(n) = 8(n*)

Consider a graph whose adjacency matrix is given below:

Page 8 of 16

60320
0o (D4 e
o203
3w

a nxn matrix with Df = df;

2 a b ¢ e "
N=alo 2 5T % [iaxwdwt acth wt
- blé& © % |2y N Mg veskbie es me,c,{e
eloa o O |H ‘>o; _ymg C%O’YL&DFWW"%
505’190 ™ D 3] 4
4 a: b & e 19
D= 5l 4 alvodead patin we
" ?\2 é ’g mmafe \/&961[16& ol anete
c,\\gxa o O Hrom 4(%@«,\9 @&T&Mu}t pakh
Al g g0 2 wese add atec, a{—og_/
el3 5 ¢ btoe cweWewﬁoc
N R henglh of ohodest path with
g E é i Aé‘ wEmesliote vertices mot meore
12. o & 1 'HA&M 5[u, all y exticer)
2 2 o 3| Paifumw fronn
. & & Bd ffoa ctob , diva and didh)

We start with D initialized to the weight matrix. In general the matrix D* will be

6 (a)

Explain the Dijkstrad's single source shortest path algorithms and
analyze its time complexity.

Sol: Explanation - 3M, Algorithm - 4M, Analysis - 3M
Sol: Dijkstrd's algorithm is an algorithm for solving the single-source
shortest-paths problem: for a given vertex called the source in q
weighted connected graph with non negative edges, find shortest|
paths to all its other vertices. Some of the applications of the

[10]

problem are transportation planning, packet routing in communication

CO3

L1

Page 9 of 16

networks finding shortest paths in social networks, etc. First, it finds
the shortest path from the source. fo a vertex nearest to it, then to
a second nearest, and so on. In general, before its ith iteration
starts, the algorithm has already identified the shortest paths to i —
1 other vertices nearest to the source. These vertices, the source,
and the edges of the shortest paths leading o them from the source
form a subtree Ti of the given graph. The set of vertices adjacent to
the vertices in T called "fringe vertices”; are the candidates from
which Dijkstra's algorithm selects the next vertex nearest to the
source. To identify the ith nearest vertex, the algorithm computes,
for every fringe vertex u, the sum of the distance to the nearest|
tree vertex v and the length dv of the shortest path from the source)
to v and then selects the vertex with the smallest such d value. d
indicates the length of the shortest path from the source to that
vertex ftill that point. We also associate a value p with each vertex
which indicates the name of the next-to-last vertex on such a path, |
After we have identified a vertex u* to be added to the tree, we
need to perform
® Move u* from the fringe to the set of tree vertices.
® For each remaining fringe vertex u that is connected to «* by an edge of
weight w(u*, w) such that d,« + w(u*®, u) < d,, update the labels of u by u*
and d,« + w(u*, u), respectively.
two operations.

The psuedocode for Dijkstra's is as given below:
ALGORITHM Dijkstra(G. s)
//Dijkstra’s algorithm for single-source shortest paths
/Mnput: A weighted connected graph G = (V. E) with nonnegative weights
U and its vertex s
//Output: The length d, of a shortest path from s to v
and its penultimate vertex p, for every vertex vin V
Initialize(Q) /finitialize priority queue to empty
for every vertex vin V
d, < 0o0; p, < null

Insert(Q. v.d,) /linitialize vertex priority in the priority queue
d, < 0; Decrease(Q, s, d,) /lupdate priority of s with d,
Vy « @
<2

fori <0to|V]|—=1do
u* < DeleteMin(Q) //delete the minimum priority element
Vi < VU (u*)
for every vertex u in V — V- that is adjacent to «* do
ifd, +w(u* u) <d,
d, —d,+wu* u), p,—u*
Decrease(Q. u, d,)
Analysis:
The time efficiency of Dijkstra's algorithm depends on the data
structures used for implementing the priority queue and for
representing an input graph itself.
Graph represented by adjacency matrix and priority queue by array:
In loop for initialization takes time |V| since the insertion into the
queue would just involve appending the vertices at the end(since it is

an array implementation). For the second loop, the loop runs |V|

Page 10 of 16

times. Each time the DeleteMin operation would take a maximum of
O(|VI) time since it would involve finding the vertex in the array with
min d value, for a total time of |V|2. The for loop (for iupdating the|
neighbor vetices) would run |V| times again. However the Decrease
would take (1) time because the index of the vertex would be known.
Thus the total time complexity is 6(|V|2).

Graph represented by adjacency list and priority queue by binary|
heap:

All heap operations take 6(lg|V|) time. Thus the first loop runs |V|
times and each time the Insert would take 8(lg|V|) time. The second
loop runs |V| times and the DeleteMin would again take Ig|V| time.
Thus the total number of time DecreaseMin would run across all
iterations is B(VIg|V]). In the second loop the basic operation is
Decrease(Q,u,du) whoch is run the maximum number of times. Across
all iterations using adjacency list, since for each vertex Decrease is
called for a maximum of all its adjacent vertices, the number of|
times Decrease is invoked |E|

times. For each time it is onvoked , it takes O(lg|V|) time to execute|
Thus the total time complexity is O((|E[+|V])Ig|V]).

Graph represented by adjacency list and priority queue by fibonacci
heap:

The time taken in this case 8(|E|[+|V|Ig|V]).

7 (a)

Outline Prim's algorithm for finding the minimal spanning tree of a
graph. Analyze its time complexity.

Sol: Explanation - 3M, Algorithm - 4M, Analysis - 3M

Prim's algorithm is used for solving the minimal spanning tree problem.
Spanning tree of an undirected connected graph is its connected
acyclic subgraph(tree) that contains all the vertices of the graph. If
such a graph has weights assigned to its edges, a minimum spanning
free is its spanning tree of the smallest weight, where the weight of
a free is defined as the sum of the weights on all its edges. The
minimum spanning tree problem is the problem of finding a minimum
spanning tree for a given weighted connected graph.

Prim's algorithm constructs a minimum spanning tree through a
sequence of expanding subtrees. The initial subtree in such d
sequence consists of a single vertex selected arbitrarily from the set|
V of the graph's vertices. On each iteration, the algorithm expands
the current tree in the greedy manner by simply attaching fo it the
nearest vertex(i.e. connected using the min weight) not in that tree.
The algorithm stops after all the graph's vertices have been included
in the tree being constructed. Since the algorithm expands a tree by
exactly one vertex on each of its iterations, the total number of such

iterations is n - 1, where n is the number of vertices in the graph.

[10]

Cco2

L2L

Page 11 of 16

The pseudocode of this algorithm is as follows.
ALGORITHM Prim(G)
/[Prim’s algorithm for constructing a minimum spanning tree
[Mnput: A weighted connected graph G = (V, E)
/[[Output: Ep, the set of edges composing a minimum spanning tree of G

Vp < {vy} //the set of tree vertices can be initialized with any vertex
Er <2
fori < 1to|V|—1do
find a minimum-weight edge ¢* = (v*, «*) among all the edges (v, u)
such that visin Vyandu isin V — Vy
Vi < Vp U {u*)
Ey «— E; U {e*}
return Er

To implement Prim's algorithm we attach two labels fo a vertex: the
name of the nearest tree vertex and the length (the weight) of the)
corresponding edge. Vertices that are not adjacent to any of the
tree vertices can be given the o label indicating their “infinite’
distance to the tree vertices and a null label for the name of the
nearest tree vertex. With such labels,

finding the next vertex to be added to the current tree T =(VTET)
becomes a simple task of finding a vertex with the smallest distance
label in the set V- VT. Afterwehave identified a vertex u* to be
added fo the tree, we need fo perform two operations:

Analysis:

Graph is represented by its weight matrix and the priority queue is
implemented as an unordered array:

The algorithm's running time will be in _(1 V' |2) Indeed, on each of
the | -1

iterations, the array implementing the priority queue is traversed to
find and delete the minimum and then to update, if necessary, the
priorities of the remaining vertices

Graph is represented by its adjacency lists and the priority queue is
implemented

as a min-heap,

the running time of the algorithm is in O£l log | V|).

This is because the algorithm performs || - 1 deletions of the
smallest element and makes |£] verifications and, possibly, changes
of an element’s priority in a min-heap of size not exceeding | V/|. Each
of these operations, as noted earlier, is a Ofog |V |) operation|
Hence, the running time of this implementation of Prim's algorithm is
in AW -1+ |E])Ofog |V |)= O£l log |V |) because, in a connected
graph, | N - 1< | £].

8 (a)

Explain Kruskal's method to find the minimal spanning tree. How is it
different from Prim's?
Sol: Method - 3M, Difference (2 atleast) - 2M

Kruskal's algorithm is used for solving the minimal spanning tree
problem. Spanning tree of an undirected connected graph is its

[5]

CO6

L4

Page 12 of 16

connected acyclic subgraph(tree) that contains all the vertices of the
graph. If such a graph has weights assigned to its edges, a minimum
spanning tree is its spanning free of the smallest weight, where the
weight of a tree is defined as the sum of the weights on all its edges.
The minimum spanning tree problem is the problem of finding a
minimum spanning tree for a given weighted connected graph.
Kruskal's algorithm looks at a minimum spanning tree of a weighted
connected graph &= (V, £) as an acyclic subgraph with | /| - 1 edges
for which the sum of the edge weights is the smallest. Consequently,
the algorithm constructs a minimum spanning tree as an expanding
sequence of subgraphs that are always acyclic but are not necessarily
connected on the intermediate stages

of the algorithm. The algorithm begins by sorting the graph's edges in
nondecreasing order of their weights. Then, starting with the empty
subgraph, it scans this sorted list, adding the next edge on the list to
the current subgraph if such an inclusion does

not create a cycle and simply skipping the edge otherwise.

The differences between Prim;s and Kruskal's is:

e During intermediate stages of tree construction the partial
structure in csae of Prim's is always a tree whereas in
Kruskal's it may be a forest.

e Prim's algorithm is more appropriate when the |E| > |V| else
Kruskal's is more suitable.

e InPrim's the next edge chosen is the minimum edge connecting
a tree vertex with a vertex which is not in the tree whereas in
Kruskal's the next chosen is the one with the minimum cost
which does not cause a cycle.

(b)

Apply Kruskal's algorithm to find minimum cost spanning tree for the
graph.

Sol: Steps - 4M, Final Solution - 1M

[5]

CO3

L3

Page 13 of 16

B 1 ng Y 46 13

Y 27 [()T Tx) '
. S W VA A C? N) \
(5" 1wy i =y

(5)° (6} 7C7J) N\ @\2)

17
| & —— |
[L | 35 24 4 75'(1y 23
€D (7_) 7 (%) ’f‘-l),((5)7 C:)) //C)fzﬁ\\@\

1423 2 (‘ﬂ) (L"to\

\ -
Al
25 g 4¢ 5L 1 Py
) [(07w %L%TC@)@ AW
T A
e g A)
B ok
2
5)
Lz |
(4)
¢ ndR
T T o S omE aui R
e

Hence the edges in the minimal spanning tree using Kruskal's is: 1-2, 2-4, 4-6,3-5 and 1-3, having
cost of 1+2+3+4+4 = 14

Page 14 of 16

Page 15 of 16

Course Outcomes

PO1
PO2
PO3
PO4
PO5
PO6
PO7
PO8

Categorize problems based on

COl: their characteristics and practical 4 2 1 0 0 2 2 O
importance.
Understand the basic asymptotic

CO2: notations and various efficiency 4 3 4 0 0 0 3 0O

classes.
Compute the efficiency of
CO3: algorithms in terms of asymptotic
notations
Design algorithm using an
CO4: appropriate design paradigm for 4 3 4 0 O 0 3 O
solving a given problem
Classify problems as P, NP or NP
Complete
Implement algorithms using various
CO6: design strategies and determine 3 3 4 0 0 1 2 O
their order of growth.

n
N
—
(@]
(@)
(@)
—
(@]

COb:

PO1 - Applyknowledge; PO2 -Problem analysis; PO3 - Design/development of solutions;
PO4 — team work ; PO5 — Ethics ; PO6 -Communication; PO7- Business Solution; PO8 — Life-long learning

Cognitive level KEYWORDS
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

L1 when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,
discuss, extend

L3 Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change,
classify, experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,
infer.

L5 Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

Page 16 of 16

