
Page 1 of 18

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - II

 Sub: OBJECT ORIENTED MODELING & DESIGN Code: 13MCA51

Date: 03/11/2016 Duration: 90 mins Max Marks: 50 Sem: V Branch: MCA

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1 Briefly describe the software development stages. [10] CO1,

CO4

L1

 SDLC is a process followed for a software project, within a software organization. It
consists of a detailed plan describing how to develop, maintain, replace and alter or
enhance specific software. The life cycle defines a methodology for improving the
quality of software and the overall development process.

The following figure is a graphical representation of the various stages of a typical
SDLC.

A typical Software Development life cycle consists of the following stages:

Stage 1: Planning and Requirement Analysis

Requirement analysis is the most important and fundamental stage in SDLC. It is
performed by the senior members of the team with inputs from the customer, the
sales department, market surveys and domain experts in the industry. This
information is then used to plan the basic project approach and to conduct product
feasibility study in the economical, operational, and technical areas.

Planning for the quality assurance requirements and identification of the risks
associated with the project is also done in the planning stage. The outcome of the
technical feasibility study is to define the various technical approaches that can be
followed to implement the project successfully with minimum risks.

Page 2 of 18

Stage 2: Defining Requirements

Once the requirement analysis is done the next step is to clearly define and
document the product requirements and get them approved from the customer or
the market analysts. This is done through .SRS. . Software Requirement
Specification document which consists of all the product requirements to be
designed and developed during the project life cycle.

Stage 3: Designing the product architecture

SRS is the reference for product architects to come out with the best architecture
for the product to be developed. Based on the requirements specified in SRS,
usually more than one design approach for the product architecture is proposed
and documented in a DDS - Design Document Specification.

This DDS is reviewed by all the important stakeholders and based on various
parameters as risk assessment, product robustness, design modularity , budget and
time constraints , the best design approach is selected for the product.

A design approach clearly defines all the architectural modules of the product along
with its communication and data flow representation with the external and third
party modules (if any). The internal design of all the modules of the proposed
architecture should be clearly defined with the minutest of the details in DDS.

Stage 4: Building or Developing the Product

In this stage of SDLC the actual development starts and the product is built. The
programming code is generated as per DDS during this stage. If the design is
performed in a detailed and organized manner, code generation can be
accomplished without much hassle.

Developers have to follow the coding guidelines defined by their organization and
programming tools like compilers, interpreters, debuggers etc are used to generate
the code. Different high level programming languages such as C, C++, Pascal, Java,
and PHP are used for coding. The programming language is chosen with respect to
the type of software being developed.

Stage 5: Testing the Product

This stage is usually a subset of all the stages as in the modern SDLC models, the
testing activities are mostly involved in all the stages of SDLC. However this stage
refers to the testing only stage of the product where products defects are reported,
tracked, fixed and retested, until the product reaches the quality standards defined
in the SRS.

Stage 6: Deployment in the Market and Maintenance

Once the product is tested and ready to be deployed it is released formally in the
appropriate market. Sometime product deployment happens in stages as per the
organizations. business strategy. The product may first be released in a limited
segment and tested in the real business environment (UAT- User acceptance
testing).

Then based on the feedback, the product may be released as it is or with suggested
enhancements in the targeting market segment. After the product is released in the

Page 3 of 18

market, its maintenance is done for the existing customer base.

2 Explain why tuning of classes is required? What are the different possibilities

in doing the same?

[10] CO2,

CO3

L4

Page 4 of 18

Page 5 of 18

3 List how do you eliminate unnecessary and incorrect attributes while

constructing domain class model?

[10] CO2,

CO3

L1

Page 6 of 18

Page 7 of 18

4 Explain forwarder receiver design pattern with its class structure. [10] CO5 L5

 Forwarder – Receiver Design Pattern

Intent:
The Forwarder-Receiver design pattern provides transparent inter-process
communication for software systems with a peer -to-peer interaction
model. It introduces forwarders and receivers to decouple peers from the
underlying communication mechanisms.

Structure:

Participant Classes:
Peer components are responsible for application tasks. To carry out their
tasks peers need to communicate with other peers.
Forwarder components are responsible for forwarding all these messages
to remote network agents without introducing any dependencies on the
underlying IPC mechanisms.
Receiver components are responsible for receiving messages. A receiver
offers a general interface that is an abstraction of a particular IPC
mechanism. It includes functionality for receiving and unmarshaling
messages.
Example: A simple peer-to-peer message exchange scenario; Underlying
communication protocol is TCP/IP

Page 8 of 18

Page 9 of 18

Page 10 of 18

5 What do you mean by Domain State Model? Explain the steps performed in

constructing the domain state model.

[10] CO3 L1

Page 11 of 18

Page 12 of 18

Page 13 of 18

6 Discuss what you understand of Application class model. Explain the steps to

construct the application class model.

[10] CO3 L2

Page 14 of 18

Page 15 of 18

Page 16 of 18

7 What is reverse engineering? Differentiate between reverse engineering and

forward engineering.

[10] CO1,

CO4

L5

8 What is pattern? What are the contents of pattern description template? [10] CO5 L1

Page 17 of 18

 A Pattern in software architecture describes a particular recurring design
problem that arises in specific design context, and presents a well-proven
generic scheme for its solution. The solution scheme is specified by
describing its constituent components, their responsibilities and
relationships, and the way in which they collaborate

Page 18 of 18

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

CO1:

Acquire knowledge of

o Basic UML Concepts and

terminologies

o Life Cycle of Object oriented

Development

o Modeling Concepts

1 1 1 - - - - 2

CO2:

Identify the basic principles of
Software modeling and apply them
in real world applications

3 2 1 - - - - -

CO3:

Produce conceptual models for
solving operational problems in
software and IT environment using
UML

2 1 3 - - - - -

CO4:

Analyze the development of Object
Oriented Software models in terms
of

o Static behaviour

o Dynamic behaviour

1 3 - - - - - -

CO5:
Evaluate and implement various
Design patterns

2 1 3 - - - - -

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,

experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,

conclude, compare, summarize.

PO1 – Apply knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 – team work ; PO5 – Ethics

; PO6 -Communication; PO7- Business Solution; PO8 – Life-long learning

