CMR

INSTITUTE OF USN
TECHNOLOGY
Internal Assesment Test - |1
Sub: OBJECT ORIENTED MODELING & DESIGN Code: 13MCA51
Date: | 03/11/2016 Duration: 90 mins | Max Marks: |50 Sem: V Branch: MCA
Answer Any FIVE FULL Questions
OBE
Marks -5 TreT
1 Briefly describe the software development stages. [10] CO1, L1
CO4

SDLC is a process followed for a software project, within a software organization. It
consists of a detailed plan describing how to develop, maintain, replace and alter or
enhance specific software. The life cycle defines a methodology for improving the
quality of software and the overall development process.

The following figure is a graphical representation of the various stages of a typical

SDLC.

SDLC

Building

A typical Software Development life cycle consists of the following stages:
Stage 1: Planning and Requirement Analysis

Requirement analysis is the most important and fundamental stage in SDLC. It is
performed by the senior members of the team with inputs from the customer, the
sales department, market surveys and domain experts in the industry. This
information is then used to plan the basic project approach and to conduct product
feasibility study in the economical, operational, and technical areas.

Planning for the quality assurance requirements and identification of the risks
associated with the project is also done in the planning stage. The outcome of the
technical feasibility study is to define the various technical approaches that can be
followed to implement the project successfully with minimum risks.

Page 1 of 18

Stage 2: Defining Requirements

Once the requirement analysis is done the next step is to clearly define and
document the product requirements and get them approved from the customer or
the market analysts. This is done through .SRS. . Software Requirement
Specification document which consists of all the product requirements to be
designed and developed during the project life cycle.

Stage 3: Designing the product architecture

SRS is the reference for product architects to come out with the best architecture
for the product to be developed. Based on the requirements specified in SRS,
usually more than one design approach for the product architecture is proposed
and documented in a DDS - Design Document Specification.

This DDS is reviewed by all the important stakeholders and based on various
parameters as risk assessment, product robustness, design modularity , budget and
time constraints , the best design approach is selected for the product.

A design approach clearly defines all the architectural modules of the product along
with its communication and data flow representation with the external and third
party modules (if any). The internal design of all the modules of the proposed
architecture should be clearly defined with the minutest of the details in DDS.

Stage 4: Building or Developing the Product

In this stage of SDLC the actual development starts and the product is built. The
programming code is generated as per DDS during this stage. If the design is
performed in a detailed and organized manner, code generation can be
accomplished without much hassle.

Developers have to follow the coding guidelines defined by their organization and
programming tools like compilers, interpreters, debuggers etc are used to generate
the code. Different high level programming languages such as C, C++, Pascal, Java,
and PHP are used for coding. The programming language is chosen with respect to
the type of software being developed.

Stage 5: Testing the Product

This stage is usually a subset of all the stages as in the modern SDLC models, the
testing activities are mostly involved in all the stages of SDLC. However this stage
refers to the testing only stage of the product where products defects are reported,
tracked, fixed and retested, until the product reaches the quality standards defined
in the SRS.

Stage 6: Deployment in the Market and Maintenance

Once the product is tested and ready to be deployed it is released formally in the
appropriate market. Sometime product deployment happens in stages as per the
organizations. business strategy. The product may first be released in a limited
segment and tested in the real business environment (UAT- User acceptance
testing).

Then based on the feedback, the product may be released as it is or with suggested
enhancements in the targeting market segment. After the product is released in the

Page 2 of 18

2

market, its maintenance is done for the existing customer base.

Explain why tuning of classes is required? What are the different possibilities
in doing the same?
17.2 Fine-tuning Classes

Sometimes it is helpful to fine-une classes before writing code in order 1o simplify develop-
ment or to improve performance. Keep in mind that the purpose of implementation is to re-
alize the models from analysis and design. Do not alter the design model unless there is a
compelling reason. If there is, consider the following possibilities.

B Partition a class. In Figure 17.1, we can represent home and office information for a
person with a single class or we can split the information into two classes. Both ap-
proaches are correct. If we have much home and office data, it would be better to sepa-
rate them. If we have a modest amount of data, it may be easier to combine them.

The partitioning of a class can be complicated by generalization and association,
For example, if Person was a superclass and we split it into home and office classes, it
would be less convenient for the subclasses to obtain both kinds of information. The
subclasses would have to multiply inherit, or we would have to introduce an association
between the home and office classes. Furthermore, if there were associations to Person,
you would need to decide how to associate to the partitioned classes.

Person PersonHomelnfo | | PersonOfficeinfo
PomeAddress | €—> m OficeAddress
homePhone homePhone officePhone
officeAddress
officePhone

Figure 17.1 Partitioning a class. Sometimes it is helpful to fine-tune a
model by partitioning or merging classes.

W Merge classes. The converse (o partitioning a class is to merge classes. If we had started
with PersonHomelnfo and PersonOfficelnfo in Figure 17.1, we could combine them.
Figure 17.2 shows another example with intervening associations. Neither representa-
tion is inherently superior, because both are mathematically correct. Once again, you
must consider the effects of generalization and association in your decisions.

Line

Py p1 [Point
Line 0.1 1 x1 :real
o1 1| x:real €—> | yi:real
o——7] y: real y’%:‘l’l

Figure 17.2 Merging classes. [t is acceptable to rework your definitions of classes,
but only do so for compelling development or performance reasons.

B Partition / merge attributes. You can also adjust attributes by partitioning and merg-
ing, as Figure 17.3 illustrates.

B Promote an attribute / demote a class. As Figure 17.4 shows, we can represent address
as an attribute, as one class, or as several related classes. The bottom model would be
helpful if we were preloading address data for an application.

ATM example. We may want to split Customer address into several classes if we are pre-

populating address data. For example, we may preload city, stateProvice, and postalCode

Page 3 of 18

[10]

COz2,
CO3

L4

Page 4 of 18

dialect such as American English, British English, or Australian English. All entries in the
application database that must be translated store a rranslationConceprfD. The translator
first tries to find the phrase for a concept in the specified MinorLanguage and then, if that is
not found, looks for the concept in the corresponding MajorLanguage.

TranslationConcept TransiationConcept
1 [
& *
Language — Phrase Language — Phrase
name string €—> | name siring
0.1 »
J [F‘ I parent child
MajorLanguage — MinorLanguage

Figure 17.5 Removing / adding generalization. Sometimes it can simplify
implementation to remove or add a generalization.

For implementation simplicity, we removed the generalization and used the right model.
Since the translation service is separate from the application model, there were no additional
generalizations or associations 1o consider, and it was easy (0 make the simplification,

ATM example. Back in Section 13.1.1 we mentioned ihat the ATM domain class model
encompassed two applications—ATM and eashier. We did not concern ourselves with this
during analysis—the purpose of analysis is to understand business requirements, and the
eventual customer does not care how services are structured. Furthermore, we wanted to
make sure that both applications had similar behavior. However, now that we are implement-
ing, we must separate the applications and limit the scope to what we will actually build, Fig-
ure 17.6 deletes cashier information from the domain class model, leading to a removal of
both generalizations,

Figure 17.6 is the full ATM class model. The top half (Account and above) presents the
domain class model; the bottom half (Userfnterface, Consortiuminterface, and below) pre-
sents the application class model, The operations are representative, but only some are listed.

List how do you eliminate unnecessary and incorrect attributes while
constructing domain class model?

Page 5 of 18

[10]

COz,
CO3

L1

12.2.7 Keeping the Right Attributes
Eliminate unnecessary and incorrect attributes with the following criteria.

Objects. If the independent existence of an element is important, rather than just its val-
ue, then it is an object. For example, boss refers to a class and salary is an attribute. The
distinction often depends on the application. For example, in a mailing list ciry might be
considered as an attribute, while in a census Ciry would be a class with many attributes
and relationships of its own. An element that has features of its own within the given
application is a class.

Qualifiers. If the value of an attribute depends on a particular context, then consider re-
stating the attribute as a qualifier. For example, employveeNumber is not a unigue prop-
erty of a person with two jobs; it qualifies the association Company employs person.

Names. Names are often better modeled as qualifiers rather than attributes. Test: Does the
name select unigue objects from a set? Can an object in the set have more than one name?
If so, the name qualifies a qualified association. If a name appears to be unique in the
world, you may have missed the class that is being qualified. For example, department-
Name may be unigue within a company, but eventually the program may need to deal with
more than one company. It is better to use a qualified association immediately.

A name is an attribute when its use does not depend on context, especially when it
need not be unique within some set. Names of persons, unlike names of companies, may
be duplicated and are therefore attributes.

Identifiers. OO languages incorporate the notion of an object identifier for unambigu-
ously referencing an object. Do not include an attribute whose only purpose is to iden-
tify an object, as object identifiers are implicit in class models, Only list attributes that
exist in the application domain. For example, accountCade is a genuine attribute; Banks
assign accountCodes and customers see them. In contrast, you should not list an internal
transaction!D as an attribute, although it may be convenient to generate one during im-
plementation.

Attributes on associations. If a value requires the presence of a link, then the property
is an attribute of the association and not of a related class. Attributes are usually obvious
on many-to-many associations; they cannot be attached to either class because of their

multiplicity. For example, in an association between Person and Club the attribute mem-
bershipDate belongs to the association, because a person can belong to many clubs and
a club can have many members. Attributes are more subtle on one-to-many associations
because they could be attached to the “many” class without losing information. Resist
the urge to attach them to classes, as they would be invalid if multiplicity changed. At-
tributes are also subtle on one-to-one associations.

Internal values. If an attribute describes the internal state of an object that is invisible
outside the object, then eliminate it from the analysis.

Fine detail. Omit minor attributes that are unlikely to affect most operations.

Discordant attributes. An attribute that seems completely different from and unrelated
to all other attributes may indicate a class that should be split into two distinct classes.
A class should be simple and coherent. Mixing together distinct classes is one of the ma-
jor causes of troublesome models. Unfocused classes frequently result from premature
consideration of implementation decisions during analysis.

Boolean attributes. Reconsider all boolean attributes. Often you can broaden a boolean
attribute and restate it as an enumeration [Coad-95).

ATM example. We apply these criteria to obtain attributes for each class (Figure 12.10).
Some tentative attributes are actually qualifiers on associations. We consider several aspects
of the model.

BankCode and cardCode are present on the card. Their format is an implementation de-
tail, but we must add a new association Bank issues CashCard. CardCode is a qualifier
on this association; bankCode is the qualifier of Bank with respect to Consortium.

The computers do not have state relevant to this problem. Whether the machine is up or
down is a transient attribute that is part of implementation.

Avoid the temptation to omit Consortium, even though it is currently unique. It provides
the context for the bankCode qualifier and may be useful for future expansion.

Keep in mind that the ATM problem is just an example. Real applications, when fleshed out,
tend to have many more attributes per class than Figure 12.10 shows.

Page 6 of 18

4

Explain forwarder receiver design pattern with its class structure. [10] CO5
Forwarder - Receiver Design Pattern

Intent:

The Forwarder-Receiver design pattern provides transparent inter-process
communication for software systems with a peer -to-peer interaction

model. It introduces forwarders and receivers to decouple peers from the
underlying communication mechanisms.

Structure:

Forwarder Receiver
+rershall) —_— +receivel() _
| +deiver() Fiimerparens: | [
r_.,-'-" +2endMeg() +receneMsg) \
|
T |
sendMsg l \
! | | =
Peerl | \
+Service() - - 11 1:1
-
| |
receiveMsg ! 2
|
| |
mq_H_H Receiver Forwarder —
+receive() +marshal()
+unmarshal(} +deliver()
+recehrebMsgl() +sendMsg()
Participant Classes:

Peer components are responsible for application tasks. To carry out their
tasks peers need to communicate with other peers.

Forwarder components are responsible for forwarding all these messages
to remote network agents without introducing any dependencies on the
underlying [IPC mechanisms.

Receiver components are responsible for receiving messages. A receiver
offers a general interface that is an abstraction of a particular IPC

mechanism. It includes functionality for receiving and unmarshaling
messages.

Example: A simple peer-to-peer message exchange scenario; Underlying
communication protocol is TCP/IP

Page 7 of 18

LS

Use Case Diagram:

Sweshem
X Sending the Message —
Peerl
Sequence Diagram:
~Peerl -~ ReceivaThread : Forwearder : Recsiver
1: execute()
3 runi)
g vl
5 sendMsgi)
.|:] 6 : recevel)
7 ireceijet=g o
_,..-F'é
8 deliver

11: recei

M

12 deliver

rlﬂ:remive() 9. send

eMs=qg

Page 8 of 18

Collaboration Diagram:

9 sendv=g))
\\\\ -,
‘;r\eceiueo E——-___
\A 1B.; receivel] ________ﬂ——'
——— | iRegeiwer [—

12 : deliver 7t receiveisg

Activity Diagram:

®

Marshall Mess age

Deliver Message

Receive Delivery

Lnmar shall Message

Page 9 of 18

5

Class Diagram:

Receiver
-ara: ServerSockat Forw
-5 Socket
iChpe 1 =51 Socket
i InputStrean < L -o%r: Outputstrean
.mm-;rshahi;anarray: biyte): String | +Receiver ST T ———
Lﬁ:ﬂéﬂﬁ:ﬂ ~deiveritheDest; String, p
receiveMsqf): Sing +sendisaltheDest: Sting
!
+Recelver| | L
+Forwarder
Peerl
«f: Forwarder = new Forwarder()
~esult: String ="'
+execute()
L || #mainaas: Sing)
ReceiveThread | 1. * Pe
+resuk; String +EBE&'\“BMESSEEJE 1 |~F:Forwarder =
+portiink L., ~tesult: String =
+name; String et
+: Thread +HeceivieMessage :_;E:L:E(:. i
+un(); void —

What do you mean by Domain State Model? Explain the steps performed in
constructing the domain state model.

12.3 Domain State Model

Some domain objects pass through qualitatively distinct states during their lifetime. There
may be different constraints on attribute values, different associations or multiplicities in the
various states, different operations that may be invoked, different behavior of the operations,
and so on. It is often useful to construct a state diagram of such a domain class. The state
diagram describes the various states the object can assume, the properties and constraints of
the object in various states, and the events that take an object from one state to another.

Most domain classes do not require state diagrams and can be adequately described by
a list of operations. For the minority of classes that do exhibit distinct states, however, a state
model can help in understanding their behavior.

Page 10 of 18

[10]

CO3

L1

First identify the domain classes with significant states and note the states of each class.
Then determine the events that take an object from one state 1o another. Given the states and
the events, you can build state diagrams for the affected objects. Finally, evaluate the state
diagrams to make sure they are complete and comect.

The following steps are performed in constructing a domain state model,
Identify domain classes with states, [12.3.1])

Find states. [12.3.2]

Find events. [12.3.3]

Build state diagrams. [12.3.4]

Evaluate state diagrams. [12.3.5)

12.3.1 Identifying Classes with States

Examine the list of domain classes for those that have a distinet life cycle. Look for classes
that can be characterized by a progressive history or that exhibit cyclic behavior. Identify the
significant states in the life cycle of an object. For example, a scientific paper for a journal
goes from Being written o Under consideration to Accepted or Rejected. There can be some
cycles, for example, if the reviewers ask for revisions, but basically the life of this object 15
progressive. On the other hand, an airplane owned by an airline cycles through the states of
Maintenance, Loading, Flying, and Unloading. Not every state occurs in every cycle, and
there are probably other states, but the life of this object is cyclic. There are also classes
whose life cyele i1s chaotic, but most classes with states are either progressive or cyclic,

ATM example. Account is an important business concepd, and the appropriate behavior
for an ATM depends on the state of an Account. The life cycle for Account is a mix of pro-
gressive and cycling to and from problem states. No other ATM classes have a significant
domain state model.

12.3.2 Finding States

List the states for each class. Characterize the objects in each class—ithe attribute values that
an object may have, the associations that it may participate in and their multiplicities, at-
tributes and associations that are meaningful only in certain states, and so on. Give each state
a meaningful name. Avoid names that indicate how the state came about: try to directly de-
scribe the state.

Don't focus on fine distinctions among states, panticularly quantitative differences, such
as small, medium, or large. States should be based on qualitative differences in behavior, at-
tributes, or associations.

It is unnecessary to determine all the states before examining events. By looking at
events and considering transitions among states, missing states will become clear,

ATM example. Here are some states for an Account: Nermal (ready for normal access),
Closed (closed by the customer but still on file in the bank records), Overdrawn (customer
withdrawals exceed the balance in the account), and Suspended (access to the account is
blocked for some reason),

Page 11 of 18

Page 12 of 18

6

Discuss what you understand of Application class model. Explain the steps to
construct the application class model.

13.2 Application Class Model

Application classes define the application itself, rather than the real-world objects th
plication acts on. Most application classes are computer-oriented and define the way |
perceive the application. You can construct an application class model with the follow

Page 13 of 18

[10]

CO3| L2

i

\

ATM
lnmau session
N

«include» lndude |

WQ e

\ /

Figure 13.6 Organizing use cases. Once the basic use cases are identified,
you can organize them with relationships.

Specify user interfaces. [13.2.1]

Define boundary classes. [13.2.2]

Determine controllers. [13.2.3]

Check against the interaction model. [13.2.4]

13.2.1 Specifying User Interfaces

Most interactions can be separated into two parts: application logic and the user interface, A
user interface is an object or group of objects that provides the user of a system with a co-
herent way to access its domain objects, commands, and application options. During analysis
the emphasis is on the information flow and control, rather than the presentation format. The
same program logic can accept input from command lines, files, mouse buttons, touch pan-
els, physical push buttons, or remote links, if the surface details are carefully isolated.

During analysis treat the user interface at a coarse level of detail. Don’t worry about how
to input individual picces of data. Instead, try to determine the commands that the user can
perform—a command is a large-scale request for a service. For example, “make a flight res-
ervation” and “find matches for a phrase in a database” would be commands. The format of
inputting the information for the commands and invoking them is relatively easy to change,
so work on defining the commands first.

Nevertheless, it is acceptable to sketch out a sample interface to help you visualize the
operation of an application and see if anything important has been forgotten. You may also

Page 14 of 18

want to mock up the interface so that users can try it. Dummy procedures can simulate ap-
plication logic. Decoupling application logic from the user interface lets you evaluate the
“look and feel” of the user interface while the application is under development.

ATM example. Figure 13.7 shows a possible ATM layout. Its exact details are not im-
portant at this point. The important thing is the information exchanged.

Messages 1o user
l 2 3 CLEAR
5 5 6 CANCEL
7 8 9 ENTER
0
L TrE] | . J
receipts cash slot

Figure 13.7 Format of ATM interface. Sometimes a sample interface
can help you visualize the operation of an application.

13.2.2 Defining Boundary Classes
A system must be able to operate with and accept information from external sources, but it
should not have its internal structure dictated by them, It is often helpful to define boundary
classes to isolate the inside of a system from the external world. A boundary class is a class
that provides a staging area for communications between a system and an external source. A
boundary class understands the format of one or more external sources and converts infor-
mation for transmission to and from the internal system.

ATM example. It would be helpful to define boundary classes (CashCardBoundary,
AccountBoundary) to encapsulate the communication between the ATM and the consortium,
This interface will increase flexibility and make it easier to support additional consortiums.

13.2.3 Determining Controllers

A controller is an active object that manages control within an application. It receives signals
from the outside world or from objects within the system, reacts to them, invokes operations

Page 15 of 18

7

8

on the objects in the system, and sends signals 1w the outside world, A controller is a piece
of reified behavior captured in the form of an object—behavior that can be manipulated and
transformed more easily than plain code. At the heart of most applications are one of more
controllers that sequence the behavior of the application.

Most of the work in designing a controller is in modeling its state diagram. In the appli-
cation class model, however, you should capture the existence of the controllers in a system,
the control information that each one maintains, and the associations from the controllers o
other ohjects in the system.

ATM example. It is apparent from the scenarios in Figure 13.2 that the ATM has two
major control loops. The outer loop verifies customers and accounts. The inner loop services
transactions, Each of these loops could most naturally be handled with a controller,

13.2.4 Checking Against the Interaction Model

As you build the application class model. go over the use cases and think about how they
would work. For example, if a user sends a command to the application, the parameters of
the command must come from some user-interface object. The requesting of the command
itself must come from some controller object. When the domain and application class models
are in place, you should be able 1o simulate a use case with the classes. Think in terms of
navigation of the models, as we discussed in Chapier 3. This manweal simulation helps to es-
tablish that all the pieces are in place.

ATM example. Figure 13.8 shows a preliminary application class model and the do-
main classes with which it interacts, There are two interfaces—one for users and the other
for communicating with the consortium. The application model just has stubs for these class-
es, because it is not clear how 1o elaborate them at this time.

Mote that the boundary classes “flatten” the data structure and combine information
from multiple domain classes, For simplicity, it is desirable to minimize the number of
boundary classes and their relationships.

The TransacrionController handles boih queries on accounts and the processing of
transactions. The SessionController manages ATMsessions, each of which services a cus-
tomer. Each ATMsexsion may or may not have a valid CashCand and Accounr. The Session-
Contraller has a status of ready, impaired (such as oul of paper or cash but sull able 10
operate for some functions), or dews (such as a communications failure). There is a log of
ControllerProblems and the specific problem type (bad card reader. out of paper, out of eash,
communication lines down, etc.).

What is reverse engineering? Differentiate between reverse engineering and

forward engineering.

Forward engineering

Reverse engineering

Given requirements, develop an applica-
tion.

Given an application, deduce tentative re-
guirameants.

More certain. The developer has require-
ments and must deliver an application that
implements them.

Less certain. An implementation can yield dif-
ferent requirements, depending on the re-
verse engineer's interpretation.

Prescriptive. Developers are told how to
work.

Adaptive. The reverse engineer must find out
what the developer actually did.

More mature. Skilled staff readily available.

Less mature. Skilled staff sparse.

Time consuming (months to years of
work).

Can be performed 10 to 100 times faster than
forward engineering (days to weeks of work).

The model must be correct and complete
or the application will fail.

The model can be imperfect. Salvaging par-
tial information is still useful.

What is pattern? What are the contents of pattern description template?

Page 16 of 18

[10]

[10]

CO1,| L5
CO4
COS5| L1

A Pattern in software architecture describes a particular recurring design
problem that arises in specific design context, and presents a well-proven
generic scheme for its solution. The solution scheme is specified by
describing its constituent components, their responsibilities and
relationships, and the way in which they collaborate

Pattern Description template

Name Meaningful name and short summary
Example Demonstrate existence of the problem &
need for the pattem.
Context Situation in which the pattern may apply
Problem Problem addressed & forces associated
Solution Solution principle underlying the pattern
Structure Specification of the structural aspect]

Dynamics Run-time behaviour
Implementation Guideline for implementation
Variants Description of vanants
Known Uses Examples of the use of the pattem
Consequences Benefits and potential liabilities

See Also Reference to patterns that solve
similar problems

Page 17 of 18

Course Outcomes S 8 83 8 8 &5 8
[a [a [a [a [a [a [a [a
Acquire knowledge of
o Basic UML Concepts and
coL: terminologies : 11 11 .))) 5

o Life Cycle of Object oriented

Development

o Modeling Concepts

Identify the basic principles of
CO2: Software modeling and apply them 3 2 1 - - - - -
in real world applications
Produce conceptual models for
solving operational problems in
software and IT environment using
UML
Analyze the development of Object
Oriented Software models in terms
co4. | of 1 3 - - - - - -
o Static behaviour
o Dynamic behaviour
Evaluate and implement various

CO3:

CO5: . 2 1 3 - - - - -
Design patterns
Cognitive level KEYWORDS
L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,
experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,
conclude, compare, summarize.

L3

LS

PO1 — Apply knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 — team work ; PO5 — Ethics
; PO6 -Communication; PO7- Business Solution; PO8 — Life-long learning

Page 18 of 18

