
Page 1 of 10

CMR

INSTITUTE OF

TECHNOLOGY

Internal Assesment Test – II(Answer Key)

Sub: Programming using C#.NET Code: 13MCA53

Branch: MCA Sem: V

 Marks
OBE

CO RBT

1(a) What is namespace? Explain the steps involved in creating a namespace and
illustrate few common namespaces.

 Namespace allows to group different entities such as classes, objects and

 functions under a common name.

 Start -> All Programs ->Microsoft Visual Studio 2010 -> Microsoft Visual Studio

 2010. The visual studio 2010 IDE appears.

 Select File -> New ->projects on the menu bar. The new project dialog box

 appears.

 Select Visual C# -> Windows from the installed templates pane

 Select the Class Library template from the middle pane

 Type the name of the namespace and enter the path where it has to be saved and

 click ok.

 Common Namespace:

1. System

2. System.Collections

3. System.Data.OLEDB

4. System.Dynamic

5. 5. System.Security

[10] CO1 L4

2(a) Define partial class and explain with program.

The partial keyword indicates that other parts of the class, struct, or interface can be

defined in the namespace. All the parts must use the partial keyword. All the parts

must be available at compile time to form the final type. All the parts must have the

same accessibility, such as public, private, and so on.

class Container

{

 partial class Nested

 {

[05] CO2 L2

L5

Page 2 of 10

 void Test() { }

 }

 partial class Nested

 {

 void Test2() { }

 }

}

(b) Define sealed class and explain with program.

The sealed modifier prevents other classes from inheriting from it.

sealed class SealedClass

{

 public int x;

 public int y;

}

class SealedTest2

{

 static void Main()

 {

 SealedClass sc = new SealedClass();

 sc.x = 110;

 sc.y = 150;

 Console.WriteLine("x = {0}, y = {1}", sc.x, sc.y);

 }

}

[05] CO1 L2

L5

3(a) Name and explain the access modifiers for structs in C#

public

The type or member can be accessed by any other code in the same assembly or

another assembly that references it.

private

The type or member can be accessed only by code in the same class or struct.

protected

The type or member can be accessed only by code in the same class or struct, or in

a class that is derived from that class.

 class SampleClass

 {

 public int x; // No access restrictions.

 }

 class Employee

 {

 private int i;

[05] CO1 L5

https://msdn.microsoft.com/en-us/library/yzh058ae.aspx
https://msdn.microsoft.com/en-us/library/st6sy9xe.aspx
https://msdn.microsoft.com/en-us/library/bcd5672a.aspx

Page 3 of 10

 double d; // private access by default

 }

 class A

 {

 protected int x = 123;

 }

 class B : A

 {

 static void Main()

 {

 A a = new A();

 B b = new B();

 b.x = 10;

 }

 }

(b) Explain the types of inheritance in C#

[05] CO1 L5

4(a) What is Polymorphism? Explain in detail Compile Time polymorphism and
Runtime Polymorphism

Static or Compile Time Polymorphism

In static polymorphism, the decision is made at compile time.

 Which method is to be called is decided at compile-time only.

 Method overloading is an example of this.

 Compile time polymorphism is method overloading, where the compiler knows

which overloaded method it is going to call.

 Method overloading is a concept where a class can have more than one method with

the same name and different parameters.

 Compiler checks the type and number of parameters passed on to the method and

decides which method to call at compile time and it will give an error if there are no

methods that match the method signature of the method that is called at compile

time.

Dynamic or Runtime Polymorphism

[10] CO1 L1

L5

Page 4 of 10

Run-time polymorphism is achieved by method overriding.

Method overriding allows us to have methods in the base and derived classes with

the same name and the same parameters.

By runtime polymorphism, we can point to any derived class from the object of the

base class at runtime that shows the ability of runtime binding.

Through the reference variable of a base class, the determination of the method to

be called is based on the object being referred to by reference variable.

Compiler would not be aware whether the method is available for overriding the

functionality or not. So compiler would not give any error at compile time. At

runtime, it will be decided which method to call and if there is no method at

runtime, it will give an error.

5(a) Explain the characteristics of abstract classes and abstract methods

Characteristics of Abstract class:

1. Restricts instantiation, implying that we cannot create object of an abstract

class

2. Allows us to define abstract as well as non-abstract members in it.

3. Requires atleast one abstract method

4. Restrict the use of Sealed keyword

5. Possess public access specifier

Characteristics of Abstract methods:

1. Restricts its implementation in an abstract class

2. Allows implementation in a non-abstract derived class

3. Requires declaration in an abstract class only

4. Allows us to override a virtual method

5. Restricts declaration with static and virtual keywords

[10] CO1 L4

6(a) Illustrate boxing and unboxing using C# program

Boxing is used to store value types in the garbage-collected heap. Boxing is an

implicit conversion of a value type to the type object or to any interface type

implemented by this value type. Boxing a value type allocates an object instance on

the heap and copies the value into the new object.

Consider the following declaration of a value-type variable: int i = 123;\

Unboxing is an explicit conversion from the type object to a value type or from an
interface type to a value type that implements the interface.

[10] CO1 L3

https://msdn.microsoft.com/en-us/library/s1ax56ch.aspx
https://msdn.microsoft.com/en-us/library/s1ax56ch.aspx

Page 5 of 10

 An unboxing operation consists of:
 Checking the object instance to make sure that it is a boxed value of the given

value type.
 Copying the value from the instance into the value-type variable.

int i = 123; // a value type

object o = i; // boxing

int j = (int)o; // unboxing

7(a)

Explain the following operators: 1. Using?? 2. Using the :: 3. is and as

operator

The ?? operator is called the null-coalescing operator. It returns the left-hand

operand if the operand is not null; otherwise it returns the right hand operand.

class NullCoalesce

{

 static int? GetNullableInt()

 {

 return null;

 }

 static string GetStringValue()

 {

 return null;

 }

 static void Main()

 {

 int? x = null;

 // Set y to the value of x if x is NOT null; otherwise,

 // if x = null, set y to -1.

 int y = x ?? -1;

 // Assign i to return value of the method if the method's

result

 // is NOT null; otherwise, if the result is null, set i to

the

 // default value of int.

 int i = GetNullableInt() ?? default(int);

 string s = GetStringValue();

 // Display the value of s if s is NOT null; otherwise,

 // display the string "Unspecified".

 Console.WriteLine(s ?? "Unspecified");

 }

}

The :: operator is used to execute a parent class method from within a subclass

method.

[10] CO1 L4

Page 6 of 10

namespace NamespaceA{

 int x;

 class ClassA {

 public:

 int x;

 };

}

int main() {

 // A namespace name used to disambiguate

 NamespaceA::x = 1;

 // A class name used to disambiguate

 NamespaceA::ClassA a1;

 a1.x = 2;

}

is and as operator

The is operator in C# is used to check the object type and it returns

a bool value: true if the object is the same type and false if not.

namespace IsAndAsOperators

{
 // Sample Student Class
 class Student

 {

 public int stuNo { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }

 }
 // Sample Employee Class
 class Employee

 {

 public int EmpNo { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }

 public double Salary { get; set; }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Student stuObj = new Student();

 stuObj.stuNo = 1;

 stuObj.Name = "Siva";

 stuObj.Age = 15;

 Employee EMPobj=new Employee();

Page 7 of 10

 EMPobj.EmpNo=20;

 EMPobj.Name="Rajesh";

 EMPobj.Salary=100000;

 EMPobj.Age=25;

 // Is operator

 // Check Employee EMPobj is Student Type

 bool isStudent = (EMPobj is Student);

 System.Console.WriteLine("Empobj is a Student ?: {0}",

isStudent.ToString());

 // Check Student stiObj is Student Typoe
 isStudent = (stuObj is Student);

 System.Console.WriteLine("Stuobj is a Student ?: {0}",

isStudent.ToString());

 stuObj = null;
 // Check null object Type
 isStudent = (stuObj is Student);

 System.Console.WriteLine("Stuobj(null) is a Student ?: {0}",

isStudent.ToString());

 System.Console.ReadLine();

 }

 }
8(a) Explain Checked and unchecked statement

C# statements can execute in either checked or unchecked context. In a checked context,

arithmetic overflow raises an exception. In an unchecked context, arithmetic overflow is

ignored and the result is truncated.

 checked Specify checked context.

 unchecked Specify unchecked context.

If neither checked nor unchecked is specified, the default context depends on external

factors such as compiler options.

The following operations are affected by the overflow checking:

 Expressions using the following predefined operators on integral types:

++ -- - (unary) + - * /

 Explicit numeric conversions between integral types.

The /checked compiler option lets you specify checked or unchecked context for all integer

arithmetic statements that are not explicitly in the scope of

a checked or unchecked keyword.

checked

{

 int i3 = 2147483647 + ten;

 Console.WriteLine(i3);

}

unchecked

{

 int1 = 2147483647 + 10;

[05] CO2 L4

https://msdn.microsoft.com/en-us/library/74b4xzyw.aspx
https://msdn.microsoft.com/en-us/library/a569z7k8.aspx
https://msdn.microsoft.com/en-us/library/h25wtyxf.aspx

Page 8 of 10

}

int1 = unchecked(ConstantMax + 10);

(b) Explain the following statements. 1. try 2. catch 3. Finally

Exceptions provide a way to transfer control from one part of a program to another. C#

exception handling is built upon four keywords: try,catch, finally, and throw. try: A try block

identifies a block of code for which particular exceptions is activated. It is followed by one

or morecatch blocks.

using System;

class Exercise
{
 static void Main()
 {
 double Number1, Number2;
 double Result = 0.00;
 char Operator;

 Console.WriteLine("This program allows you to perform an operation on two
numbers");

 try
 {
 Console.WriteLine("To proceed, enter");

 Console.Write("First Number: ");
 Number1 = double.Parse(Console.ReadLine());

 Console.Write("An Operator (+, -, * or /): ");
 Operator = char.Parse(Console.ReadLine());
 if(Operator != '+' && Operator != '-' &&
 Operator != '*' && Operator != '/')
 throw new Exception(Operator.ToString());

 Console.Write("Second Number: ");
 Number2 = double.Parse(Console.ReadLine());

 if(Operator == '/')
 if(Number2 == 0)
 throw new DivideByZeroException("Division by zero is not
allowed");

 Result = Calculator(Number1, Number2, Operator);
 Console.WriteLine("\n{0} {1} {2} = {3}", Number1, Operator,
Number2, Result);
 }
 catch(FormatException)
 {
 Console.WriteLine("The number you typed is not valid");
 }
 catch(DivideByZeroException ex)

[05] CO2 L4

Page 9 of 10

 {
 Console.WriteLine(ex.Message);
 }
 catch(Exception ex)
 {
 Console.WriteLine("\nOperation Error: {0} is not a valid operator",
ex.Message);
 }
 }

 static double Calculator(double Value1, double Value2, char Symbol)
 {
 double Result = 0.00;

 switch(Symbol)
 {
 case '+':
 Result = Value1 + Value2;
 break;

 case '-':
 Result = Value1 - Value2;
 break;

 case '*':
 Result = Value1 * Value2;
 break;

 case '/':
 Result = Value1 / Value2;
 break;
 }

 return Result;
 }
}

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

CO1:

Understand C# and client-server

concepts using .Net Frame Work

Components.

3 2 1 - - - - 1

CO2:
Apply delegates, event and exception

handling to incorporate with ASP, Win
3 3 3 1 - - 1 2

Page 10 of 10

Form, and ADO.NET.

CO3:
Analyze the use of .Net Components

depending on the problem statement.
1 3 1 - - - - 1

CO4:

Implement & develop a web based and

windows based application with

Database connectivity.

3 3 3 2 - 1 2 2

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,

experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,

conclude, compare, summarize.

PO1 –Apply knowledge; PO2- Problem analysis; PO3- Design/development of solutions;

PO4 – Team work ; PO5 – Ethics ; PO6 -Communication; PO7- Business Solution; PO8 – Life-long learning ;

