
Service Oriented Architecture - 13MCA545

Internal Assessment Test II – November 2016 – Answer Key

1. Explain in detail about Choreography in SOA (10)

Choreography

The Web Services Choreography Description Language (WS-CDL) is one of several specifications that

attempts to organize information exchange between multiple organizations (or even multiple applications

within organizations), with an emphasis on public collaboration

Figure 6.37. A choreography enables collaboration between its participants.

6.7.1. Collaboration

 An important characteristic of choreographies is that they are intended for public message exchanges.

 The goal is to establish a kind of organized collaboration between services representing different

service entities, only no one entity (organization) necessarily controls the collaboration logic.

 Choreographies therefore provide the potential for establishing universal interoperability patterns for

common inter-organization business tasks.

6.7.2. Roles and participants

 Within any given choreography, a Web service assumes one of a number of predefined roles.

 This establishes what the service does and what the service can do within the context of a particular

business task.

 Roles can be bound to WSDL definitions, and those related are grouped accordingly, categorized as

participants (services).

6.7.3. Relationships and channels

 Every action that is mapped out within a choreography can be broken down into a series of message

exchanges between two services.

 Each potential exchange between two roles in a choreography is therefore defined individually as a

relationship.

 Every relationship consequently consists of exactly two roles.

 Channels provides the means of establishing the nature of the conversation, by defining the

characteristics of the message exchange between two specific roles.

 WS-CDL specification, as it fosters dynamic discovery and increases the number of potential

participants within large-scale collaborative tasks.

6.7.4. Interactions and work units

 The actual logic behind a message exchange is encapsulated within an interaction.

 Interactions are the fundamental building blocks of choreographies because the completion of an

interaction represents actual progress within a choreography.

 Related to interactions are work units.

 These impose rules and constraints that must be adhered to for an interaction to successfully complete

6.7.5. Reusability, composability, and modularity

 Each choreography can be designed in a reusable manner, allowing it to be applied to different

business tasks comprised of the same fundamental actions.

 A choreography can be assembled from independent modules.

 These modules can represent distinct sub-tasks and can be reused by numerous different parent

choreographies

Figure 6.38. A choreography composed of two smaller choreographies.

6.7.6. Orchestrations and choreographies

 Both Orchestrations and choreographies represent complex message interchange patterns

 Both include multi-organization participants.

 An orchestration expresses organization-specific business workflow. This means that an organization

owns and controls the logic behind an orchestration, even if that logic involves interaction with

external business partners.

 A choreography, on the other hand, is not necessarily owned by a single entity. It acts as a community

interchange pattern used for collaborative purposes by services from different provider entities

Figure 6.39. A choreography enabling collaboration between two different orchestrations

2. a) Discuss about the anatomy of service oriented architecture (5)

 Each Web service contains one or more operations.

Logical components of automation logic

The Web services framework provides us not only with a technology base for enabling connectivity, it

also establishes a modularized perspective of how automation logic, as a whole, can be comprised of

independent units. To illustrate the inherent modularity of Web services, let‘s abstract the following

fundamental parts of the framework:

• SOAP messages

• Web service operations

• Web services

• activities

8.2.3 Components of an SOA

Each of the previously defined components establishes a level of enterprise logic abstraction, as follows:

• A message represents the data required to complete some or all parts of a unit of work.

• An operation represents the logic required to process messages in order to complete a unit of work

(Figure 8.9).

The scope of an operation within a process.

• A service represents a logically grouped set of operations capable of performing related units of work.

• A process contains the business rules that determine which service operations are used to complete a unit

of automation. In other words, a process represents a large piece of work that requires the completion of

smaller units of work (Figure 8.10).

Figure 8.10

Operations belonging to different services representing various parts of process logic.

2. b) Explain about WS-Notification Framework (5)

7.7.3. The WS-Notification Framework

 WS-BaseNotification : Establishes the standardized interfaces used by services involved on either

end of a notification exchange.

 WS-Topics : Governs the structuring and categorization of topics.

 WS-BrokeredNotification : Standardizes the broker intermediary used to send and receive

messages on behalf of publishers and Subscribers

Situations, notification messages, and topics

 The notification process is tied to an event that is reported on by the publisher. This event is

referred to as a situation. Situations can result in the generation of one or more notification

messages.

 These messages contain information about the situation, and are categorized according to an

available set of topics. Through this categorization, notification messages can be delivered to

services that have subscribed to corresponding topics.

Notification producers and publishers

 The term publisher represents the part of the solution that responds to situations and is

responsible for generating notification messages.

 Distribution of notification messages is the task of the notification producer.

 The notification producer is considered the service provider.

 This service keeps track of subscriptions and corresponds directly with subscribers. It ensures that

notification messages are organized by topic and delivered accordingly.

 A publisher may or may not be a Web service, whereas the notification producer is always a Web

service.

 A single Web service can assume both publisher and notification producer roles.

Notification consumers and subscribers

 A subscriber is the part of the application that submits the subscribe request message to the

notification producer.

 This means that the subscriber is not necessarily the recipient of the notification messages

transmitted by the notification producer. The recipient is the notification consumer, the service to

which the notification messages are delivered

 The subscriber is considered the service requestor.

 A subscriber does not need to exist as a Web service, but the notification consumer is a Web

service.

 Both the subscriber and notification consumer roles can be assumed by a single Web service.

Notification broker, publisher registration manager, and subscription manager

 The notification broker A Web service that acts on behalf of the publisher to perform the role of

the notification producer.

 The publisher registration manager A Web service that provides an interface for subscribers to

search through and locate items

 available for registration.

 The subscription manager A Web service that allows notification producers to access and retrieve

required subscriber information for a given notification message broadcast.

3. Discuss in detail about the common principles of service orientation (10)

 Services are reusable— Regardless of whether immediate reuse opportunities exist, services are

designed to support potential reuse.

 Services share a formal contract— For services to interact, they need not share anything but a

formal contract that describes each service and defines the terms of information exchange.

 Services are loosely coupled— Services must be designed to interact without the need for tight,

cross-service dependencies.

 Services abstract underling logic— The only part of a service that is visible to the outside world

is what is exposed via the service contract. Underlying logic, beyond what is expressed in the

descriptions that comprise the contract, is invisible and irrelevant to service requestors.

 Services are composable— Services may compose other services. This allows logic to be

represented at different levels of granularity and promotes reusability and the creation of

abstraction layers.

 Services are autonomous— The logic governed by a service resides within an explicit boundary.

The service has control within this boundary and is not dependent on other services for it to

execute its governance.

 Services are stateless— Services should not be required to manage state information, as that can

impede their ability to remain loosely coupled. Services should be designed to maximize

statelessness even if that means deferring state management elsewhere.

 Services are discoverable—Services should allow their descriptions to be discovered and

understood by humans and service requestors that may be able to make use of their logic.

8.3.1 Services are reusable

Service-orientation encourages reuse in all services, regardless if immediate requirements for reuse exist.

By applying design standards that make each service potentially reusable, the chances of being able to

accommodate future requirements with less development effort are increased. Inherently reusable services

also reduce the need for creating wrapper services that expose a generic interface over top of less reusable

services.

8.3.2 Services share a formal contract

Service contracts provide a formal definition of:

• the service endpoint

• each service operation

• every input and output message supported by each operation

• rules and characteristics of the service and its operations

Services are loosely coupled :

No one can predict how an IT environment will evolve. How automation solutions grow, integrate, or are

replaced over time can never be accurately planned out because the requirements that drive these changes

are almost always external to the IT environment. Being able to ultimately respond to unforeseen changes

in an efficient manner is

a key goal of applying service-orientation

Services abstract underlying logic

Also referred to as service interface-level abstraction, it is this principle that allows services

to act as black boxes, hiding their details from the outside world. The scope of logic represented

by a service significantly influences the design of its operations and its position

within a process.

Services are composable

A service can represent any range of logic from any types of sources, including other services. The main

reason to implement this principle is to ensure that services are designed so that they can participate as

effective members of other service compositions if ever required. This requirement is irrespective of

whether the service itself composes others to accomplish its work

Services are autonomous

Autonomy requires that the range of logic exposed by a service exist within an explicit boundary. This

allows the service to execute self-governance of all its processing. It also eliminates dependencies on

other services, which frees a service from ties that could inhibit its deployment and evolution (Figure

8.22). Service autonomy is a primary consideration when deciding how application logic should be

divided up into services and which operations should be grouped together within a service context.

Services are stateless

Services should minimize the amount of state information they manage and the duration for which they

hold it. State information is data-specific to a current activity. While a service is processing a message, for

example, it is temporarily stateful (Figure 8.24). If a service is responsible for retaining state for longer

periods of time, its ability to remain available to other requestors will be impeded

Services are discoverable

Discovery helps avoid the accidental creation of redundant services or services that implement redundant

logic. Because each operation provides a potentially reusable piece of processing logic, metadata attached

to a service needs to sufficiently describe not only the service‘s overall purpose, but also the functionality

offered by its operations.

4. Write a short not about the following

 a) Service layer abstraction (5)

The three layers of abstraction we identified for SOA are:

 the application service layer

 the business service layer

 the orchestration service layer

 b) Business Layer abstraction (5)

While application services are responsible for representing technology and application logic, the business

service layer introduces a service concerned solely with representing business logic, called the business

service

Business service layer abstraction leads to the creation of two further business service models:

1. Task-centric business service A service that encapsulates business logic specific to a task or business

process. This type of service generally is required when business process logic is not centralized as part of

an orchestration layer. Task-centric business services have limited reuse potential.

2. Entity-centric business service A service that encapsulates a specific business entity (such as an invoice or

timesheet). Entity-centric services are useful for creating highly reusable and business process-agnostic

services that are composed by an orchestration layer or by a service layer consisting of task-centric

business services (or both).

5. Compare the service orientation principles and object orientation principles (10)

6. Explain the basics of WS-BPEL Language (10)

16.1.1 The process element

 BPEL processes are exposed as WSDL services †

o Message exchanges map to WSDL operations †

o WSDL can be derived from partner definitions and the role played by the process in

interaction with partners †

o BPEL processes interact with WSDL services exposed by business partners

<process name="TimesheetSubmissionProcess"

 targetNamespace="http://www.xmltc.com/tls/process/"

 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 xmlns:bpl="http://www.xmltc.com/tls/process/"

 <partnerLinks>

 ...

 </partnerLinks>

 <variables>

 ...

 </variables>

 <sequence>

 ...

 </sequence>

 ...

</process>

Example 16-1 A skeleton process definition.

16.1.2 The partnerLinks and partnerLink elements

A partnerLink element establishes the port type of the service (partner) that will be participating during

the execution of the business process. Partner services can act as a client to the process, responsible for

invoking the process service. Alternatively, partner services can be invoked by the process service itself.

The contents of a partnerLink element represent the communication exchange between two partners – the

process service being one partner and another service being the other.

<partnerLinks>

 <partnerLink name="client"

 partnerLinkType="tns:TimesheetSubmissionType"

 myRole="TimesheetSubmissionServiceProvider"/>

</partnerLinks>

Example 16-2 The partnerLinks construct containing one partnerLink element in which the process

service is invoked by an external client partner, and four partnerLink elements that identify partner

services invoked by the process service.

16.1.3 The partnerLinkType element

For each partner service involved in a process, partnerLinkType elements identify the WSDL portType

elements referenced by the partnerLink elements within the process definition. The partnerLinkType

construct contains one role element for each role the service can play Therefore, a partnerLinkType will

have either one or two child role elements.

<definitions name="Employee"

 targetNamespace="http://www.xmltc.com/tls/employee/wsdl/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

 ...

>

 ...

 <plnk:partnerLinkType name="EmployeeServiceType"

 xmlns="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

 <plnk:role name="EmployeeServiceProvider">

 <portType name="emp:EmployeeInterface"/>

 </plnk:role>

 </plnk:partnerLinkType>

 ...

</definitions>

Example 16-3 A WSDL definitions construct containing a partnerLinkType construct.

Note that multiple partnerLink elements can reference the same partnerLinkType. This is useful for when

a process service has the same relationship with multiple partner services. All of the partner services can

therefore use the same process service portType elements.

16.1.4 The variables element

Variables are used to define data containers „

 WSDL messages received from or sent to partners „

 Messages that are persisted by the process „

 XML data defining the process state

 messageType, element, or type.

 The messageType attribute allows for the variable to contain an entire WSDL-defined message,

 Element attribute simply refers to an XSD element construct.

 The type attribute can be used to just represent an XSD simpleType, such as string or integer.

<variables>

 <variable name="ClientSubmission"

 messageType="bpl:receiveSubmitMessage"/>

</variables>

Example 16-4 The variables construct hosting only some of the child variable elements used later by

the Timesheet Submission Process.

16.1.5 The getVariableProperty and getVariableData functions

getVariableProperty(variable name, property name)

 accepts the variable and property names as input and returns the requested value.

getVariableData(variable name, part name, location path)

This function is required to provide other parts of the process logic access to this data.

The getVariableData function has a mandatory variable name parameter, and two optional arguments that

can be used to specify a specific part of the variable data.

In our examples we use the getVariableData function a number of times to retrieve message data from

variables.

getVariableData(‗InvoiceHoursResponse‘,‗ResponseParameter‘)

getVariableData(‗input‘,‘payload‘,‗/tns:TimesheetType/Hours/...‘)

Example 16-5 Two getVariableData functions being used to retrieve specific pieces of data from

different variables.

16.1.6 The sequence element

The sequence construct allows you to organize a series of activities so that they are executed in a

predefined, sequential order. WS-BPEL provides numerous activities that can be used to express the

workflow logic within the process definition.

<sequence>

 <receive>

 ...

 </receive>

 <assign>

 ...

 </assign>

 <invoke>

 ...

 </invoke>

 <reply>

 ...

 </reply>

</sequence>

Example 16-6 A skeleton sequence construct containing only some of the many activity elements

provided by WS-BPEL.

16.1.7 The invoke element

The invoke element is equipped with five common attributes which further specify the details of the

invocation (Table 16.1).

Attribute Description

partnerLink This element names the partner service via its corresponding

partnerLink.

portType The element used to identify the portType element of the

partner service.

operation The partner service operation to which the process service will

need to send its request.

inputVariable The input message that will be used to communicate with the

partner service operation. Note that it is referred to as a

variable because it is referencing a WS-BPEL variable element

with a messageType attribute.

outputVariable This element is used when communication is based on the

request-response MEP. The return value is stored in a separate

variable element.

Table 16-1 invoke element attributes.

<invoke name="ValidateWeeklyHours"

 partnerLink="Employee"

 portType="emp:EmployeeInterface"

 operation="GetWeeklyHoursLimit"

 inputVariable="EmployeeHoursRequest"

 outputVariable="EmployeeHoursResponse"/>

Example 16-7 The invoke element identifying the target partner service details.

16.1.8 The receive element

The receive element allows us to establish the information a process service expects upon receiving a

request from an external client partner service.

The receive element contains a set of attributes, each of which is assigned a value relating to the expected

incoming communication (Table 16.2).

Attribute Description

partnerLink The client partner service identified in the corresponding

partnerLink construct.

portType The partner service‘s portType involved in the message

transfer.

operation The partner service‘s operation that will be issuing the request

to the process service.

variable The process definition variable construct in which the

incoming request message will be stored.

createInstance When this attribute is set to ―yes‖ the receipt of this particular

request may be responsible for creating a new instance of the

process.

Table 16-2 receive element attributes.

Note that this element can also be used to receive callback messages during an asynchronous message

exchange.

<receive name="receiveInput"

 partnerLink="client"

 portType="tns:TimesheetSubmissionInterface"

 operation="Submit"

 variable="ClientSubmission"

 createInstance="yes"/>

Example 16-8 The receive element used in the Timesheet Submission Process definition to indicate the

client partner service responsible for launching the process with the submission of a timesheet

document.

16.1.9 The reply element

The reply element is responsible for establishing the details of returning a response message to the

requesting client partner service.

Attribute Description

partnerLink The same partnerLink element established in the receive

element.

portType The same portType element displayed in the receive element.

operation The same operation element from the receive element.

variable The process service variable element that holds the message

that is returned to the partner service.

messageExchange It is being proposed that this optional attribute be added by the

WS-BPEL 2.0 specification. It allows for the reply element to

be explicitly associated with a message activity capable of

receiving a message (such as the receive element).

Table 16-3 reply element attributes.

<reply partnerLink="client"

 portType="TimeSubmissionProcessInterface"

 operation="SubmitTimesheet"

 variable="TimesheetSubmissionResponse"/>

Example 16-9 A potential companion reply element to the previously displayed receive element.

The switch, case, and otherwise elements

The switch element establishes the scope of the conditional logic

multiple case constructs can be nested to check for various conditions using a condition attribute.

condition attribute resolves to ―true,‖ the activities defined within the corresponding case construct are

executed.

The otherwise element can be added as a catch all at the end of the switch construct.

Should all preceding case conditions fail, the activities within the otherwise construct are executed.

<switch>

 <case condition="getVariableData(‗EmployeeResponseMessage‘,‗ResponseParameter‘)=0">

 ...

 </case>

 <otherwise>

 ...

 </otherwise>

</switch>

Example 16-10 A skeleton case element wherein the condition attribute uses the getVariableData

function to compare the content of the EmployeeResponseMessage variable to a zero value.

Note: It has been proposed that the switch, case, and otherwise elements be replaced with if, elseif, and

else elements in WS-BPEL 2.0.

16.1.10 The assign, copy, from, and to elements

This set of elements simply gives us the ability to copy values between process variables

<assign>

 <copy>

 <from variable="TimesheetSubmissionFailedMessage"/>

 <to variable="EmployeeNotificationMessage"/>

 </copy>

 <copy>

 <from variable="TimesheetSubmissionFailedMessage"/>

 <to variable="ManagerNotificationMessage"/>

 </copy>

</assign>

Example 16-11 Within this assign construct, the contents of the TimesheetSubmissionFailedMessage

variable are copied to two different message variables.

Note that the copy construct can process a variety of data transfer functions

from and to elements can contain optional part and query attributes that allow for specific parts or values

of the variable to be referenced.

16.1.11 faultHandlers, catch, and catchAll elements

This construct can contain multiple catch elements, each of which provides activities that perform

exception handling for a specific type of error condition.

Faults can be generated by the receipt of a WSDL-defined fault message, or they can be explicitly

triggered through the use of the throw element.

The faultHandlers construct can consist of (or end with) a catchAll element to house default error

handling activities.

<faultHandlers>

 <catch faultName="SomethingBadHappened"

 faultVariable="TimesheetFault">

 ...

 </catch>

 <catchAll>

 ...

 </catchAll>

</faultHandlers>

Example 16-12 The faultHandlers construct hosting catch and catchAll child constructs.

7. Explain how to design service oriented business process (10)

Step 1: Map out interaction scenarios.
Step 2: Design the process service interface.
Step 3: Formalize partner service conversations.
Step 4: Define process logic.
Step 5: Align interaction scenarios and refine process. (Optional)

Step 1: Map out interaction scenarios.

By using the following information gathered so far, we can define the message exchange

requirements of our process service:

 Available workflow logic produced during the service modeling process in Chapter 12.

 The process service candidate created in Chapter 12.

 The existing service designs created in Chapter 15.

This information is now used to form the basis of an analysis during which all possible

interaction scenarios between process and partner services are mapped out. The result is a series

of processing requirements that will form the basis of the process service design we proceed to in

Step 2.

16.1.12 Step 2: Design the process service interface.

 Document the input and output values required for the processing of each operation, and

populate the types section with XSD schema types required to process the operations.

Move the XSD schema information to a separate file, if required.

 Build the WSDL definition by creating the portType (or interface) area, inserting the

identified operation constructs. Then, add the necessary message constructs containing

the part elements which reference the appropriate schema types. Add naming conventions

that are in alignment with those used by your other WSDL definitions.

 Add meta information via the documentation element.

 Apply other design standards within the confines of the modeling tool.

Below is the corresponding WSDL definition.
 <definitions name="TimesheetSubmission"
 targetNamespace="http://www.xmltc.com/tls/process/wsdl/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:ts="http://www.xmltc.com/tls/timesheet/schema/"

 xmlns:tsd="http://www.xmltc.com/tls/timesheetservice/schema/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://www.xmltc.com/tls/timesheet/wsdl/"

 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

<types>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.xmltc.com/tls/timesheetsubmissionserv

ice/schema/">

 <xsd:import

namespace="http://www.xmltc.com/tls/timesheet/schema/"

schemaLocation="Timesheet.xsd"/>

 <xsd:element name="Submit">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="ContextID"

type="xsd:integer"/>

 <xsd:element name="TimesheetDocument"

type="ts:TimesheetType"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

</types>

<message name="receiveSubmitMessage">

 <part name="Payload" element="tsd:TimesheetType"/>

</message>

<portType name="TimesheetSubmissionInterface">

 <documentation>

 Initiates the Timesheet Submission process. </documentation>

 <operation name="Submit">

 <input message="tns:receiveSubmitMessage"/>

 </operation>

</portType>

<plnk:partnerLinkType name="TimesheetSubmissionType">

 <plnk:role name="TimesheetSubmissionService">

 <plnk:portType name="tns:TimesheetSubmissionInterface"/>

 </plnk:role>

</plnk:partnerLinkType>

</definitions>

Example 16-13 The abstract service definition for the Timesheet Submission Process
Service.
Note the bolded plnk:parnterLinkType construct at the end of this WSDL definition.

This is added to every partner service.

16.1.13 Step 3: Formalize partner service conversations.

We now begin our WS-BPEL process definition by establishing details about the services with

which our process service will be interacting.

The following steps are suggested:
1. Define the partner services that will be participating in the process and assign each the role

it will be playing within a given message exchange.

2. Add parterLinkType constructs to the end of the WSDL definitions of each partner

service.

3. Create partnerLink elements for each partner service within the process definition.

4. Define variable elements to represent incoming and outgoing messages exchanged with

partner services.

This information essentially documents the possible conversation flows that can occur within the

course of the process execution. Depending on the process modeling tool used, completing these

steps may simply require interaction with the user-interface provided by the modeling tool.
16.1.14 Step 4: Define process logic.

Finally, everything is in place for us to complete the process definition. This step is a process in

itself, as it requires that all existing workflow intelligence be transposed and implemented via a

WS-BPEL process definition.

16.1.15 Step 5: Align interaction scenarios and refine process. (Optional)

This final, optional step encourages you to perform two specific tasks: revisit the original

interaction scenarios created in Step 1 and review the WS-BPEL process definition to look for

optimization opportunities.

Let‘s start with the first task. Bringing the interaction scenarios in alignment with the process

logic expressed in the WS-BPEL process definition provides a number of benefits, including:

 The service interaction maps (as activity diagrams or in whatever format you created them)
are an important part of the solution documentation, and will be useful for future
maintenance and knowledge transfer requirements.

 The service interaction maps make for great test cases, and can spare testers from having
to perform speculative analysis.

 The implementation of the original workflow logic as a series of WS-BPEL activities may
have introduced new or augmented process logic. Once compared to the existing interaction
scenarios, the need for additional service interactions may arise, leading to the discovery of
new fault or exception conditions that can then be addressed back in the WS-BPEL process
definition.

Secondly, spending some extra time to review your WS-BPEL process definition is well worth

the effort. WS-BPEL is a multi-feature language that provides different approaches for

accomplishing and structuring the same overall activities. By refining your process definition,

you may be able to:

 Consolidate or restructure activities to achieve performance improvements.

 Streamline the markup code to make maintenance easier.

 Discover features that were previously not considered.

Task 1:

Compare

billed

hours

Invoke

Assign

Receive

Task 2:

Get

authoriza-

tion

Invoke

Assign

Task 3:

Compare

weekly

hours

limit

Invoke

Assign

Switch

Reply

SwitchSwitch

Figure 16-1 Sequential, synchronous execution of process activities.

Task 1:

Compare

billed

hours

Invoke

Assign

Task 2:

Get

authoriza-

tion

Invoke

Assign

Task 3:

Compare

weekly

hours

limit

Invoke

Assign

Switch

Reply

SwitchSwitch

Receive

Flow

Figure 16-2 Concurrent execution of process activities using the Flow construct.

