

Answer Key –III Internal

Subject Code- 13MCA33 Subject Name: Software Engineering

Q1(a): Explain the concept of risk assessment and mention the techniques for managing them.

Ans: A risk is a probabilistic event—it may or may not occur. The goal of risk assessment is to

prioritize the risks so that attention and resources can be focused on the more risky items.

 Risk identification is the first step in risk assessment, which identifies all the different risks for a

particular project. Methods that can aid risk identification include checklists of possible risks,

surveys, meetings and brainstorming, and reviews of plans, processes, and work products.

Checklists of frequently occurring risks are probably the most common tool for risk identification.

Such a list can form the starting point for identifying risks for the current project.

One approach for prioritization the risk is through the concept of risk exposure (RE) , which is

sometimes called risk impact.

RE = Prob(UO) Loss(UO),

Where Prob(UO) is the probability of the risk materializing (i.e., undesirable outcome) and Loss(UO)

is the total loss incurred due to the unsatisfactory outcome. The RE is the expected value of the loss

due to a particular risk. The higher the RE, the higher the priority of the risk item.

The top-ranked risk item is personnel shortfalls. This involves just having fewer people than

necessary or not having people with specific skills that a project might require. To manage this risk

are to get the top talent possible and to match the needs of the project with the skills of the

available personnel. Adequate training, along with having some key personnel for critical areas of

the project, will also reduce this risk.

The second item, unrealistic schedules and budgets, happens very frequently due to business and other
reasons. It is very common that high-level management imposes a schedule for a software project that
is not based on the characteristics of the project and is unrealistic. Underestimation may also happen
due to inexperience or optimism. Detailed cost and schedule estimation, Design to cost, Incremental
development, Software reuse, Requirements scrubbing are few techniques to deal with these kind of
risk.
Projects run the risk of developing the wrong software if the requirements analysis is not done properly
and if development begins too early. Organization analysis, Machine analysis, User surveys, Prototyping,
Early user’s manuals are few techniques to deal with these kind of risk.

Similarly, often improper user interface may be developed. This requires extensive rework of the user
interface later. Prototyping, Scenarios, Task analysis, User characterization are few techniques to deal
with these kind of risk.

Gold plating refers to adding features in the software that are only marginally useful. This adds
unnecessary risk to the project because gold plating consumes resources and time with little return.
Requirements scrubbing, Prototyping, Cost benefit analysis, Design to cost are few techniques to deal
with these kind of risk.

Q2(a) : What is Project Monitoring plan?

Ans: A project management plan is merely a document that can be used to guide the execution of

a project. Even a good plan is useless unless it is properly executed. And execution cannot be

properly driven by the plan unless it is monitored carefully and the actual performance is tracked

against the plan. Monitoring requires measurements to be made to assess the situation of a project.

 If measurements are to be taken during project execution, we must plan carefully regarding what to

measure, when to measure, and how to measure. Hence, measurement planning is a key element in

project planning. For monitoring the state of a project, size, effort, schedule, and defects are the

basic measurements that are needed. Schedule is one of the most important metrics because most

projects are driven by schedules and deadlines. It is easy to measure because calendar time is

usually used in all plans.

Effort is the main resource consumed in a software project. Some type of timesheet system is

needed where each person working on the project enters the amount of time spent on the project.

The effort spent on various tasks should be logged separately. Effort is recorded through some on-

line system which allows a person to record the amount of time spent against a particular activity in

a project. At any point, total effort on an activity can be aggregated.

Q2(b) : Explain the Risk management planning approach.

Ans: Following are the steps involved in Risk Management and Planning Approach:

1. For each risk, rate the probability of its happening as low, medium, or high.

2. For each risk, assess its impact on the project as low, medium, or high.

3. Rank the risks based on the probability and effects on the project; for example, a high-

probability, high-impact item will have higher rank than a risk item with a medium probability

and high impact. In case of conflict,use judgment.

4. Select the top few risk items for mitigation and tracking.

Q3(a) Explain why there are fundamental ideas of software engineering that apply to all types of

software systems. What are the challenges facing software engineering?

Ans: Software engineering is an engineering discipline that is concerned with all aspects of

software production from the early stages of system specification through to maintaining the

system after it has gone into use. It is important for two reasons:

 More and more, individuals and society rely on advanced software systems. We need to

be able to produce reliable and trustworthy systems economically and quickly.

 It is usually cheaper, in the long run, to use software engineering methods and techniques

for software systems rather than just write the programs as if it was a personal

programming project. For most types of system, the majority of costs are the costs of

changing the software after it has gone into use.

Challenges facing software engineering:

 Heterogeneity

 Increasingly, systems are required to operate as distributed systems across

networks that include different types of computer and mobile devices.

 Business and social change

 Business and society are changing incredibly quickly as emerging economies

develop and new technologies become available. They need to be able to change

their existing software and to rapidly develop new software.

 Security and trust

 As software is intertwined with all aspects of our lives, it is essential that we can

trust that software.

Q3(b) : What are the attributes of good software?

Ans: Attributes of good Software: Good software should deliver the required functionality

and performance to the user and should be maintainable, dependable and usable.

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to

meet the changing needs of customers. This is a critical attribute

because software change is an inevitable requirement of a changing

business environment.

Dependability and

security

Software dependability includes a range of characteristics including

reliability, security and safety. Dependable software should not cause

physical or economic damage in the event of system failure.

Malicious users should not be able to access or damage the system.

Efficiency Software should not make wasteful use of system resources such as

memory and processor cycles. Efficiency therefore includes

responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is

designed. This means that it must be understandable, usable and

compatible with other systems that they use.

Q4(a) : Explain the Professional & Ethical responsibilities of a software engineer.

 Ans: Ans: Software engineering involves wider responsibilities than simply the

application of technical skills. Software engineers must behave in an honest and

ethically responsible way if they are to be respected as professionals. Ethical behaviour

is more than simply upholding the law but involves following a set of principles that are

morally correct.

 Confidentiality

 Engineers should normally respect the confidentiality of their employers or

clients irrespective of whether or not a formal confidentiality agreement has been

signed.

 Competence

 Engineers should not misrepresent their level of competence. They should not

knowingly accept work which is outwith their competence.

 Intellectual property rights

 Engineers should be aware of local laws governing the use of intellectual

property such as patents, copyright, etc. They should be careful to ensure that the

intellectual property of employers and clients is protected.

 Computer misuse

 Software engineers should not use their technical skills to misuse other people’s

computers. Computer misuse ranges from relatively trivial (game playing on an

employer’s machine, say) to extremely serious (dissemination of viruses).

The professional societies in the US have cooperated to produce a code of ethical practice. The

Code contains eight Principles related to the behaviour of and decisions made by professional

software engineers, including practitioners, educators, managers, supervisors and policy

makers, as well as trainees and students of the profession.

 PUBLIC - Software engineers shall act consistently with the public interest.

 2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.

 3. PRODUCT - Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.

 4. JUDGMENT - Software engineers shall maintain integrity and independence in their

professional judgment.

 5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and

maintenance.

 6. PROFESSION - Software engineers shall advance the integrity and reputation of the

profession consistent with the public interest.

 7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

 8. SELF - Software engineers shall participate in lifelong learning regarding the practice

of their profession and shall promote an ethical approach to the practice of the

profession.

Q5(a) : Discuss Boehm’s spiral model with a neat diagram.

Ans: Boehm’s spiral model

 Process is represented as a spiral rather than as a sequence of activities with backtracking.

 Each loop in the spiral represents a phase in the process.

 No fixed phases such as specification or design - loops in the spiral are chosen depending

on what is required.

 Risks are explicitly assessed and resolved throughout the process.

Spiral model sectors:

 Objective setting

 Specific objectives for the phase are identified.

 Risk assessment and reduction

 Risks are assessed and activities put in place to reduce the key risks.

 Development and validation

 A development model for the system is chosen which can be any of the generic

models.

 Planning

 The project is reviewed and the next phase of the spiral is planned.

Spiral model usage

 Spiral model has been very influential in helping people think about iteration in software

processes and introducing the risk-driven approach to development.

 In practice, however, the model is rarely used as published for practical software

development.

Q6(a): Explain types of Requirement.

 Ans: User requirements

 Statements in natural language plus diagrams of the services the system provides

and its operational constraints. Written for customers.

 System requirements

 A structured document setting out detailed descriptions of the system’s functions,

services and operational constraints. Defines what should be implemented so may

be part of a contract between client and contractor.

Requirement can be categorised in following way also:

 Functional requirements

 Statements of services the system should provide, how the system should react to

particular inputs and how the system should behave in particular situations.

 May state what the system should not do.

 Non-functional requirements

 Constraints on the services or functions offered by the system such as timing constraints,

constraints on the development process, standards, etc.

 Often apply to the system as a whole rather than individual features or services.

 Domain requirements

 Constraints on the system from the domain of operation

Q6(b) : Explain the IEEE structure of SRS document.

Ans:

Chapter Description

Preface This should define the expected readership of the document and describe its version

history, including a rationale for the creation of a new version and a summary of the

changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the system’s

functions and explain how it will work with other systems.

Glossary This should define the technical terms used in the document. You should not make

assumptions about the experience or expertise of the reader.

User requirements definition Here, you describe the services provided for the user. The nonfunctional system

requirements should also be described in this section.

System architecture This chapter should present a high-level overview of the anticipated system

architecture, showing the distribution of functions across system modules.

Architectural components that are reused should be highlighted.

Chapter Description

Preface This should define the expected readership of the document and describe its version

history, including a rationale for the creation of a new version and a summary of the

changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the system’s

functions and explain how it will work with other systems.

Glossary This should define the technical terms used in the document. You should not make

assumptions about the experience or expertise of the reader.

User requirements definition Here, you describe the services provided for the user. The nonfunctional system

requirements should also be described in this section.

System architecture This chapter should present a high-level overview of the anticipated system

architecture, showing the distribution of functions across system modules.

Architectural components that are reused should be highlighted.

Q7(a) : Briefly explain types of effort estimation approaches & project scheduling and staffing.

Ans: Types of effort estimation approaches

 Top- Down Estimation Approach

 Bottom-Up Estimation Approach

Top- Down Estimation Approach

a. Consider effort as a function of project size.

b. First determine the nature of the function.

c. Then estimate the size of the function.
Past productivity on similar projects can be used as the estimation function.If productivity is P

KLOC/PM, then

effort estimate = SIZE/P person-months

More general function

EFFORT= a*SIZEb

Where a and b are constant and determined through regression analysis.

Bottom-Up Estimation Approach

a. Project is first divided into tasks

b. And then estimates for the different tasks of the project are obtained.

c. From the estimates of the different tasks, the overall estimate is determined.

d. This type of approach is also called activity-based estimation.

Project scheduling and staffing

For a project with some estimated effort, multiple schedules (or project duration) are indeed

possible. Once the effort is fixed, there is some flexibility in setting the schedule by

appropriately staffing the project, but this flexibility is not unlimited. The overall schedule

can be determined as a function of effort. Such function can be determined from data from

completed projects using statistical techniques like fitting a regression curve

M, in calendar months can also be estimated by M = 4.1E.36.

In COCOMO, the equation for schedule for an organic type of software is M = 2.5E.38

Another method for medium-sized projects is the rule of thumb called the square root check .

The proposed schedule can be around the square root of the total effort in person months.

For example, if the effort estimate is 50 person-months, a schedule of about 7 to 8 months

will be suitable.

Q8(a) : Explain different types of architectural styles for component and connector view.

Ans: Architecture Styles for C&C View
 Pipe and Filter
Pipe-and-filter style of architecture is well suited for systems that primarily do
data transformation whereby some input data is received and the goal of the
system is to produce some output data by suitably transforming the input data.
The pipe-and-filter style has only one component type called the filter. It
also has only one connector type, called the pipe. A filter performs a data
transformation, and sends the transformed data to other filters for further
processing using the pipe connector.

Shared-Data Style
In this style, there are two types of components—data repositories and data
accessors. Components of data repository type are where the system stores
shared data—these could be file systems or databases. These components provide
a reliable and permanent storage, take care of any synchronization needs
for concurrent access, and provide data access support. Components of data
accessors type access data from the repositories, perform computation on the
data obtained, and if they want to share the results with other components, put
the results back in the depository.
There are two variations of this style possible. In the blackboard style, if
some data is posted on the data repository, all the accessor components that
need to know about it are informed
 The other is the repository style, in which the data repository is just

a passive repository which provides permanent storage and related controls for
data accessing. The components access the repository as and when they want.

 Client-Server Style
In this style, there are two component types—clients and servers. A constraint
of this style is that a client can only communicate with the server, and
cannot communicate with other clients. The communication between a client
component and a server component is initiated by the client when the client
sends a request for some service that the server supports. The server receives
the request at its defined port, performs the service, and then returns the results
of the computation to the client who requested the service.
There is one connector type in this style—the request/reply type. A connector
connects a client to a server.

 Some Other Styles
Publish-Subscribe Style
In this style, there are two types of components. One
type of component subscribes to a set of defined events. Other types of components
generate or publish events. In response to these events, the components
that have published their intent to process the event, are invoked. This type
of style is most natural in user interface frameworks, where many events are
defined (like mouse click) and components are assigned to these events. When
that event occurs, the associated component is executed.

Peer-to-peer style, or object-oriented style If we take a client-server style,
and generalize each component to be a client as well as a server, then we have
this style. In this style, components are peers and any component can request
a service from any other component.

Communicating processes style
The components in this model are processes or threads, which
communicate with each other either with message passing or through shared
memory. This style is used in some form in many complex systems which use
multiple threads or processes.

