Service Oriented Architecture — 16MCA553

Nov 2018 — Internal Test - 3 — Answer Key

T Microsoft Application Platform

The Microsoft entm.'prise application development platform is a com-
prehensive platform for building connected systems based on the NET
Framework. Microseft Developer Network (MSDN, 2005)

Enterprise applications for the Microsoft application platform are built to
un on the .NET framework that is currently available for the Microsoft Win-
ows family of operating system. The .NET framework makes available APl
or the class libraries that provide several capabilities for enterprise applica--
ons such as the user interface, data access, security, transactions, etc.

' The Microsoft application platform provides the following capabilities that
rm the foundation for a .NET enterprise application:

Windows Server Family: Operating system support for enterprise
application.

Common Language Run-time (CLR): Run-time environment for the
components of the application.

NET Framework Libraries: AP1 for developing the following enter-
prise applications:

* ASP NET and WPF: user interface development;

* ADO .NET: data retrieval;

* WCF, WF: business service and workflow development.

¢ Core Products: Supporting products for enterprise information tier:
* SQL Server: database;

~* BizTalk: process orchestration and integration;
* Share Point Portal: portal infrastructure;
* Host Integration Server: legacy integration.
e 6-5 shows the above-mentioned capabilities as concentric circles.
prise application (shown in the outermost circle) leverages the capa-
3 Of each of the circles (inner).

Appli
@\0‘9"\“ P callo,'.
Pl’Odl.“:'.

FIGURE 6-5 NET Microsoft application platform.

Windows OS :
1|Page

Microsoft family of OS supports the .NET framework and CLR essential for an enterprise application. While in theory

CLR can be ported to other OS only Windows family of OS supports it as of now. The open source Mono project is an
effort to provide the >NET framework and CLR o the Unix family of OS.

Common Language Run-Time (CLR)

r
" fibraries |
(L & Metadata)

|
|
1
|
|
i
i

CLR

% B

FIGURE 6-6 CLR and code.

i Type System (CTS). CTS specifies rules governing type inhel‘.ite_n}ce, virtual
| functions, etc. and the language compiler maps the type definitions of the
[language of the program to CTS. .NET applications, components and controls
& are built on the types defined by .NET framework.

.NET Framework Libraries

The .NET framework provides a number of libraries for enterprise a.pplic_:a—
tion development (MSDN, 2007). Table 6-2 lists the .NET Framework libraries
commonly used in enterprise application development.

. TABLE 6-2 .NET framework libraries

| Library Description
-NET Framework The .NET framework provides several types and
Class Library to accelerate the development process. Several

fundamental types such as integer, float, etc. are
defined in the core library.

ey

2|Page

TABLE 6-2 (Contirnnued)

Library

Description

ASP NET

ADO .NET

Events

Exceptions

Windows Forms

XML Web Services

ASP NET provides an API to create and render
ASP .NET pages that run on web server.
A DO INET is a set of classes that allow insert, update,
retrieve and delete operations on data in data sto

Events in .NET are based on the delegate mode £
The framework provides capability to applics -
tions to raise and consume events.

Unexpected behavior of a program can cause exce
tions to be raised. The NET framework provid
support to handle exceptions in applications.

Rich Client Windows applications may be devel
oped by the use of the Windows forms controls
and associated classes.

NET framework provides XML web services
infrastructure that applications can use to build
web services-based applications.

Core Microsoft Products

Most enterprise applications for the Microsoft platform use one or more of e
products listed in Table 6-3 to meet the requirements.

TABLE 6-3 Core products for Microsoft application platform

Product

SQL Server

BizTalk

SharePoint portal

3|Page

database support for OLTP applications as w
as analysis services for OLAP applications. SOL
Server is scalable as a database based on e
shared-nothing architecture.

BizTalk provides transformation and routing
capabilities in addition to integration services
for enterprise applications. Several adapters are
available for ERP and other packaged enterprise
appli::ations to enable integration.

Enterprise portals can be developed using Share-
Point portal product. Integration of Microsoft

— T — T

TABLE 6-3 (Continued)

Product Description

Office with SharePoint services (MOSS) has
resulted in more sophisticated Microsoft Office
front-ends for SharePoint server.

Host Integration Server Host Integration server provides integration of
NET enterprise applications with mainframe
systems.

Reference Model 2 B S

' The logical organization of a .NET enterprise application in presentation, busi-

ness and data access layers is shown in Figure 6-7. It represents a reference
model for a layered web-based .NET application that addresses the concerns
of each layer based on the concept of design patterns applicable to .NET plat-
form. As with any reference model, the objective is to provide a template for
architecture rather than be comprehensive in coverage of possible scenarios.

Several design patterns have been identified for NET platform (Trowbridge
et al., 2003). Table 6-4 lists some of the key patterns that form the basis for a
reference model shown in Figure 6-7.

The presentation layer shown in the reference model includes the MVC pat-
tern to address the user interface concerns of the enterprise application. Other

TABLE 6-4 Key patterns for .NET reference model

Pattern | Description

Model-view—controller Pattern suitable for providing multiple views of
data. Separates three types of objects — models that
_ - maintains data, views that displays all or a portion
of the data, and controller that handles events that
affect the model or view.

Service interface Pattern to decouple presentation layer from busi-
ness layer while exposing functionality of business
layer as services. The service interface supports
and encapsulates network protocol used for com-
munication between service consumer and the
service provider.

Broker Pattern to communicate with remote objecfs. The
broker pattern hides the implementation details

B O L) L P I L P o o

Browser

Imamet / intranet (HTTE)

Presentation ; Integration
Layer Controlier Layer

\ Business
X Layer Service Interface External
S¢stems
l Broker
Business Business AE:;T&?::
Componant Woaorkflow {Packaged/
Legacy)
Data A -
Layer Data Access Component
, Persistence Objects
|
. Database

FIGURE 6-7 Reference model of NET enterprise application.

patterns such as model-view-presenter and page controller can also be applied to
address the concerns of presentation layer. ASP .NET, with the concept of code
behind, provides most of the support needed for handling HTTP requests from
users and implementing the MVC pattern. -

The service interface pattern encapsulates the fungtionality provided by the
business layer. It supports multiple transports such as Web Services, MSMQ
and .NET Remoting and hence the same functionality can be exposed to dif-
ferent types of clients by the use of service interface pattern. Windows Commu-
nication Foundation (WCF) can provide the capability required to implement
the service interface pattern. Business components and workflows implement
the business functionality of the enterprise application. BizTalk and Windows
Foundation (WF) are two options to implement workflows required in an
enterprise application.

The data access components encapsulate access to the databases. ADO .NET
model provides support for different operations on databases and can be used
by data access components for efficient access of data.

5|Page

ical Architecture

he reference model in Figure 6-7 may be implemented by ?:he appropriate
boice of software elements provided by .NET Platform. This rem‘Jlts in the
eorence technical architecture for .NET platform shown in Figure 64.3:
technical architecture shown, as in the case of]av'a_ FE platform, is
t to be indicative rather than covering all the pf)ssibxhtngs for the .NET
tform. For a given enterprise application, technical archlt:_ecture can bs
ived by using the reference technical archxtec.turc as a starting point an 1
ing changes and enhancements by taking into account the functiona

and non-functional requirements.

3

Browser

tmecne / Intranct [HTTP)

integration
Layer
ASF Page Hapar Class
(New) (Moaal
3
[=] e
Businass WCE | Extarral
Layer {Servioe Intnriece) r Systems
BixTok TS
(Brokss| Enterpdse
NET fi;:piuﬁion'
Corgonem :Pm'.knge‘o
|Bsness Wi (Business l Legacy)
Componant} Workfow)
| 1
- *
Data A
Layer NET Obgect
{Duta Accoss Componant]
ADO.NET
{Parssiencs Objects)

-

S0L Sorvwr
(Database)

' FIGURE 6-8 Technical architecture (indicative) of NET enterprise application.

The technical architecture shows the different layers built using ASP .NET,
ADO NET, WCF and WE. While these layers can be developed ground up
with the API mentioned, there are many benefits in using libraries and soft-
ware factories such as Enterprise Library and Web Client Software Factory
provided by Microsoft Patterns and Practices Group.

As with other WS-* frameworks, what is represented by WS-Notification is a family of related extensions that have been
designed with composability in mind.

» WS-BaseNotification—Establishes the standardized interfaces used by services involved on either end of a notification
exchange.

* WS-Topics—Governs the structuring and categorization of topics.

» WS-BrokeredNotification—Standardizes the broker intermediary used to send and receive messages on behalf of
publishers and subscribers.

6|Page

Situations, notification messages, and topics

e The notification process typically is tied to an event that is reported on by the publisher.

e This event is referred to as a situation. Situations can result in the generation of one or more notification
messages. These messages contain information about (or relating to) the situation, and are categorized according
to an available set of topics.

e Through this categorization, notification messages can be delivered to services that have subscribed to
e corresponding topics.

Notification producers and publishers

e The term publisher represents the part of the solution that responds to situations and is responsible for generating
notification messages. However, a publisher is not necessarily required to distribute these messages. Distribution
of notification messages is the task of the notification producer.

e This service keeps track of subscriptions and corresponds directly with subscribers. It ensures that notification
messages are organized by topic and delivered accordingly.

Notification consumers and subscribers

e Assubscriber is the part of the application that submits the subscribe request message to the notification producer.
This means that the subscriber is not necessarily the recipient of the notification messages transmitted by the
notification producer.

e The recipient is the notification consumer, the service to which the notification messages are delivered

subscription L subscriber

reguest

meassage

/ FESponse
L massage

situation ry i i
——————— > publisher oAl—»t | metification

CONsSUmer

notification
massage

(acts as
notification
producear)

Figure 7.38
A basic notification architecture.

Notification broker, publisher registration manager, and subscription manager

e The notification broker—A Web service that acts on behalf of the publisher to perform the role of the
notification producer. This isolates the publisher from any contact with subscribers. Note that when a notification

7|Page

broker receives notification messages from the publisher, it temporarily assumes the role of notification
consumer.

e The publisher registration manager—A Web service that provides an interface for subscribers to search through
and locate items available for registration. This role may be assumed by the notification broker, or it may be
implemented as a separate service to establish a further layer of abstraction.

e The subscription manager—A Web service that allows notification producers to access and retrieve required
subscriber information for a given notification message broadcast. This role also can be assumed by either the
notification producer or a dedicated service.

Figure 7.39
subscription
reguest
massage
publisher @
regisiration subscriber
manager
&

fesponse
? ‘ message
nafification
message

situation et
notification notification
T-——-- > publisher —E '—b Bt M e

nalification \
message n

(acts as .
nalification
producer)

\
notification®,
message -

“

5
B

" alhar
nolification
CONSUMErs

subscriber
manager

Figure 7.39
A notification architecture including a middle tier.

3.a Explain the Application service layer
Provide reusable functions related to processing data within legacy or new application environments
Characteristics
they expose functionality within a specific processing context
they draw upon available resources within a given platform
they are solution-agnostic
they are generic and reusable
they can be used to achieve point-to-point integration with other application services
they are often inconsistent in terms of the interface granularity they expose
they may consist of a mixture of custom-developed services and third-party services that have been
purchased or leased

Utility service
When a separate business service layer exists, then turn all application services into generic utility services

8|Page

Wrapper service

Wrapper services most often are utilized for integration purposes. They consist of services that encapsulate
("wrap”)
some or all parts of a legacy environment to expose legacy functionality to service requestors

Proxy service or auto-generated WSDL

Another variation of the wrapper service model

This simply provides a WSDL definition that mirrors an existing component interface
Hybrid application services/hybrid services

Services that contain both application and business logic can be referred to as hybrid application services
or just hybrid services. This service model is commonly found within traditional distributed architectures

Application integration services /Integration services

Application services that exist solely to enable integration between systems often are referred to as
application integration services or simply
integration services. Integration services often are implemented as controllers

While application services are responsible for representing technology and application logic, the
business service layer introduces a service concerned solely with representing business logic, called
the business service

Business service layer abstraction leads to the creation of two further business service models:
Task-centric business service A service that encapsulates business logic specific to a task or business
process. This type of service generally is required when business process logic is not centralized as
part of an orchestration layer. Task-centric business services have limited reuse potential.
Entity-centric business service A service that encapsulates a specific business entity (such as an
invoice or timesheet). Entity-centric services are useful for creating highly reusable and business
process-agnostic services that are composed by an orchestration layer or by a service layer consisting
of task-centric business services (or both).

9|Page

e A technology framework is a collection of things.
e It can include one or more architectures, technologies, concepts, models, and even sub-
frameworks.

Framework is characterized by:

e an abstract (vendor-neutral) existence defined by standards organizations and implemented
by (proprietary) technology platforms

e core building blocks that include Web services, service descriptions, and messages

e acommunications agreement centered around service descriptions based on WSDL

e amessaging framework comprised of SOAP technology and concepts

e aservice description registration and discovery architecture sometimes realized through
uDDI

o awell-defined architecture that supports messaging patterns and compositions

e asecond generation of Web services extensions (also known as the WS-* specifications)
continually broadening its underlying feature-set

. Services (as Web services)
e services - how they provide a means of encapsulating various extents of logic.
¢ Manifesting services in real world automation solutions requires the use of a technology
capable of preserving fundamental service-orientation, while implementing real world
business functionality.
e Web services provide the potential of fulfilling these primitive requirements
e Web services framework is flexible and adaptable.
e Web services can be designed to duplicate the behavior and functionality found in proprietary
distributed systems, or they can be designed to be fully SOA-compliant.
e This flexibility has allowed Web services to become part of many existing application
environments
e Fundamentally, every Web service can be associated with:
o atemporary classification based on the roles it assumes during the runtime
processing of a message
o apermanent classification based on the application logic it provides and the roles it
assumes within a solution environment
o We explore both of these design classifications in the following two sections:
o service roles (temporary classifications)
o service models (permanent classifications)

WSDL (Web Services Description Language)

e Service Description provides the key to establishing a consistently loosely coupled form of
communication between services implemented as Web services.
o Description documents are required to accompany any service wanting to act as an ultimate
receiver.
The primary service description document is the WSDL definition

10|Page

complies to complies to
=== message formal —---—-=ce-
defined in

- ——

=

(7

L S
L=,

[ommmmmm———————— e

SOAP (Simple Object Access Protocol)

All communication between services is message-based,
[0 The messaging framework chosen must be standardized so that all services, regardless of origin, use the
same format and transport protocol.

1 Message-centric application design that an increasing amount of business and application logic is
embedded into messages.

[The SOAP specification was chosen to meet all of these requirements

(1 Universally accepted as the standard transport protocol for messages processed by Web services
5.4.1. Messages

Simple Object Access Protocol, the SOAP specification's main purpose is to define a standard message
format.

The structure of this format is quite simple, but its ability to be extended and customized

Envelope, header, and body

Every SOAP message is packaged into a container known as an envelope.

Much like the metaphor this conjures up, the envelope is responsible for housing all parts of the message

UDDI (Universal Description Discovery and Integration)

Private and public registries

solution “I'm looking for this .
kind of service.”
“Here are the
candidates.” i

i Imloolong'o(lhl.
kind of service 4

Figure 5.18
Service o

iption

>ns centralized in a registry.

e UDDI accepted standard for structuring registries that keep track of service descriptions
e These registries can be searched manually and accessed programmatically via a
standardized API.

11|Page

WS-BPEL language basics

WS-BPEL process definition

<process>
<partnerLinks>

</partnerLinks>
<variables>

</variables>
<faultHandlers>

</faultHandlers>

<sequence>
<receive ...>
<invoke ...>
<reply ...>

</sequence>

</process>

Figure 16-1 A common WS-BPEL process definition structure.

A brief history of BPELAWS and WS-BPEL

e The Business Process Execution Language for Web Services (BPEL4AWS) was first conceived in July, 2002 with
the release of the BPEL4WS 1.0 specification, a joint effort by IBM, Microsoft, and BEA.

e This document proposed an orchestration language inspired by previous variations, such as IBM’s Web Services
Flow Language (WSFL) and Microsoft’s XLANG specification.

e Next version of BPELAWS is WS-BPEL Prerequisites

The process element
e BPEL processes are exposed as WSDL services T
o Message exchanges map to WSDL operations

o WSDL can be derived from partner definitions and the role played by the process in interaction with
partners T

o BPEL processes interact with WSDL services exposed by business partners

<process name="TimesheetSubmissionProcess"
targetNamespace="http://www.xmltc.com/tls/process/"
xmins="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmins:bpl="http://www.xmltc.com/tls/process/"

xmins:emp="http://www.xmltc.com/tls/employee/"

12|Page

xmlns:inv="http://www.xmltc.com/tls/invoice/"
xmins:tst="http://www.xmltc.com/tls/timesheet/"
xmlns:not="http://www.xmltc.com/tls/notification/">

<partnerLinks>

</partnerLinks>

<variables>

</variables>

<sequence>

</sequence>

</process>
Example 16-1 A skeleton process definition.
The process construct contains a series of common child elements

The partnerLinks and partnerLink elements

A partnerLink element establishes the port type of the service (partner) that will be participating during the execution of
the business process.

Partner services can act as a client to the process, responsible for invoking the process service.

Alternatively, partner services can be invoked by the process service itself.

The contents of a partnerLink element represent the communication exchange between two partners — the process service
being one partner and another service being the other.

<partnerLinks>
<partnerLink name="client"
partnerLinkType="tns: TimesheetSubmissionType"
myRole="TimesheetSubmissionServiceProvider"/>
<partnerLink name="Invoice"
partnerLinkType="inv:InvoiceType"
partnerRole="InvoiceServiceProvider"/>
<partnerLink name="Timesheet"
partnerLinkType="tst: TimesheetType"
partnerRole=""TimesheetServiceProvider"/>
<partnerLink name="Employee"
partnerLinkType="emp:EmployeeType"
partnerRole="EmployeeServiceProvider"/>
<partnerLink name="Notification"
partnerLinkType="not:NotificationType"

partnerRole="NotificationServiceProvider"/>

13|

</partnerLinks>

Example 16-2 The partnerLinks construct containing one partnerLink element in which the process service is invoked
by an external client partner, and four partnerLink elements that identify partner services invoked by the process
service.

The partnerLinkType element

For each partner service involved in a process, partnerLinkType elements identify the WSDL portType elements
referenced by the partnerLink elements within the process definition.

The partnerLinkType construct contains one role element for each role the service can play

Therefore, a partnerLinkType will have either one or two child role elements.

<definitions name="Employee"
targetNamespace="http://www.xmltc.com/tls/lemployee/wsdIl/"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:plnk=""http://schemas.xmlsoap.org/ws/2003/05/partner-link/*

<plnk:partnerLinkType name="EmployeeServiceType"
xmins="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"'>
<plnk:role name="EmployeeServiceProvider">
<portType name="emp:Employeelnterface"/>
</pInk:role>

</pInk:partnerLinkType>

</definitions>

Example 16-3 A WSDL definitions construct containing a partnerLinkType construct.

Note that multiple partnerLink elements can reference the same partnerLinkType. This is useful for when a process
service has the same relationship with multiple partner services. All of the partner services can therefore use the same
process service portType elements.

Process 1 Process 2

i Partner
B Link Type

N

The variables element
Variables are used to define data containers ,,

e WSDL messages received from or sent to partners ,,
e Messages that are persisted by the process ,,

e XML data defining the process state

e messageType, element, or type.

e The messageType attribute allows for the variable to contain an entire WSDL-defined message,

1l4|Page

e Element attribute simply refers to an XSD element construct.
e The type attribute can be used to just represent an XSD simpleType, such as string or integer.
<variables>

<variable name="ClientSubmission"
messageType="bpl:receiveSubmitMessage"/>

<variable name="EmployeeHoursRequest"
messageType="emp:getWeeklyHoursRequestMessage" />

<variable name="EmployeeHoursResponse"
messageType="emp:getWeeklyHoursResponseMessage"/>

<variable name="EmployeeHistoryRequest"
messageType="emp:updateHistoryRequestMessage"/>

<variable name="EmployeeHistoryResponse"

messageType="emp:updateHistoryResponseMessage"/>

</variables>
Example 16-4 The variables construct hosting only some of the child variable elements used later by the Timesheet
Submission Process.

The getVariableProperty and getVariableData functions

getVariableProperty(variable name, property name)

e accepts the variable and property names as input and returns the requested value.

getVariableData(variable name, part name, location path)

This function is required to provide other parts of the process logic access to this data.

The getVariableData function has a mandatory variable name parameter, and two optional arguments that can be used to
specify a specific part of the variable data.

In our examples we use the getVariableData function a number of times to retrieve message data from variables.
getVariableData(‘InvoiceHoursResponse’, ‘ResponseParameter’)
getVariableData(‘input’,’payload’,*/tns: TimesheetType/Hours/...")

Example 16-5 Two getVariableData functions being used to retrieve specific pieces of data from different variables.

The sequence element

The sequence construct allows you to organize a series of activities so that they are executed in a predefined, sequential
order.
WS-BPEL provides humerous activities that can be used to express the workflow logic within the process definition.

<sequence>

<receive>

</receive>

<assign>

15|Page

</assign>

<invoke>

</invoke>

<reply>

<[reply>
</sequence>
Example 16-6 A skeleton sequence construct containing only some of the many activity elements provided by WS-
BPEL.

The invoke element

The invoke element is equipped with five common attributes which further specify the details of the invocation (Table
16.1).

Attribute Description

partnerLink This element names the partner service via its corresponding
partnerLink.

portType The element used to identify the portType element of the partner
service.

operation The partner service operation to which the process service will need
to send its request.

inputVariable The input message that will be used to communicate with the partner

service operation. Note that it is referred to as a variable because it is
referencing a WS-BPEL variable element with a messageType

attribute.

outputVariable This element is used when communication is based on the request-
response MEP. The return value is stored in a separate variable
element.

Table 16-1 invoke element attributes.

<invoke name="ValidateWeeklyHours"
partnerLink="Employee"
portType="emp:Employeelnterface"
operation="GetWeeklyHoursLimit"
inputVariable="EmployeeHoursRequest"
outputVariable="EmployeeHoursResponse"/>

Example 16-7 The invoke element identifying the target partner service details.

The receive element

The receive element allows us to establish the information a process service expects upon receiving a request from an
external client partner service.

The receive element contains a set of attributes, each of which is assigned a value relating to the expected incoming
communication (Table 16.2).

Attribute Description
partnerLink The client partner service identified in the corresponding partnerLink
construct.
portType The partner service’s portType involved in the message transfer.
operation The partner service’s operation that will be issuing the request to the

16|Page

process service.

variable The process definition variable construct in which the incoming
request message will be stored.
createlnstance When this attribute is set to “yes” the receipt of this particular request

may be responsible for creating a new instance of the process.

Table 16-2 receive element attributes.
Note that this element can also be used to receive callback messages during an asynchronous message exchange.
<receive hame="receivelnput"
partnerLink="client"
portType="tns: TimesheetSubmissionlnterface"
operation="Submit"
variable="ClientSubmission"
createlnstance="yes"/>
Example 16-8 The receive element used in the Timesheet Submission Process definition to indicate the client partner
service responsible for launching the process with the submission of a timesheet document.

The reply element

The reply element is responsible for establishing the details of returning a response message to the requesting client
partner service.

Attribute Description

partnerLink The same partnerLink element established in the receive element.

portType The same portType element displayed in the receive element.

operation The same operation element from the receive element.

variable The process service variable element that holds the message that is
returned to the partner service.

messageExchange It is being proposed that this optional attribute be added by the WS-
BPEL 2.0 specification. It allows for the reply element to be
explicitly associated with a message activity capable of receiving a
message (such as the receive element).

Table 16-3 reply element attributes.
<reply partnerLink="client"
portType="TimeSubmissionProcessinterface"
operation="SubmitTimesheet"
variable="TimesheetSubmissionResponse"/>

Example 16-9 A potential companion reply element to the previously displayed receive element.

The switch, case, and otherwise elements

The switch element establishes the scope of the conditional logic

multiple case constructs can be nested to check for various conditions using a condition attribute.

condition attribute resolves to “true,” the activities defined within the corresponding case construct are executed.
The otherwise element can be added as a catch all at the end of the switch construct.

Should all preceding case conditions fail, the activities within the otherwise construct are executed.

<switch>

<case condition="getVariableData(‘EmployeeResponseMessage’, ResponseParameter’)=0">

17|Page

</case>

<otherwise>

</otherwise>
</switch>

Example 16-10 A skeleton case element wherein the condition attribute uses the getVariableData function to compare
the content of the EmployeeResponseMessage variable to a zero value.

Note: It has been proposed that the switch, case, and otherwise elements be replaced with if, elseif, and else elements in
WS-BPEL 2.0.

The assign, copy, from, and to elements
This set of elements simply gives us the ability to copy values between process variables

<assign>
<COpy>
<from variable="TimesheetSubmissionFailedMessage"/>
<to variable="EmployeeNotificationMessage"/>
</copy>
<C0py>
<from variable="TimesheetSubmissionFailedMessage"/>
<to variable="ManagerNotificationMessage"/>
</copy>
</assign>

Example 16-11 Within this assign construct, the contents of the TimesheetSubmissionFailedMessage variable are
copied to two different message variables.

Note that the copy construct can process a variety of data transfer functions

from and to elements can contain optional part and query attributes that allow for specific parts or values of the variable to
be referenced.

faultHandlers, catch, and catchAll elements

This construct can contain multiple catch elements, each of which provides activities that perform exception handling for
a specific type of error condition.

Faults can be generated by the receipt of a WSDL-defined fault message, or they can be explicitly triggered through the
use of the throw element.

The faultHandlers construct can consist of (or end with) a catchAll element to house default error handling activities.

<faultHandlers>
<catch faultName="SomethingBadHappened"

faultVariable="TimesheetFault">

</catch>

<catchAll>

</catchAll>
</faultHandlers>
18|

Example 16-12 The faultHandlers construct hosting catch and catchAll child constructs.

Other WS-BPEL elements
Table 16.4 provides brief descriptions of other relevant parts of the WS-BPEL language.

Element Description

compensationHandler A WS-BPEL process definition can define a compensation process
that kicks in a series of activities when certain conditions occur to
justify a compensation. These activities are kept in the
compensationHandler construct. (For more information about
compensations, see the Business activities section in Chapter 6.)

correlationSets WS-BPEL uses this element to implement correlation, primarily to
associate messages with process instances. A message can belong to
multiple correlationSets. Further, message properties can be defined
within WSDL documents.

empty This simple element allows you to state that no activity should occur
for a particular condition.
eventHandlers The eventHandlers element enables a process to respond to events

during the execution of process logic. This construct can contain
onMessage and onAlarm child elements that trigger process activity
upon the arrival of specific types of messages (after a predefined
period of time, or at a specific date and time, respectively).

exit See the terminate element description below.

flow A flow construct allows you to define a series of activities that can
occur concurrently and are required to complete after all have
finished executing. Dependencies between activities within a flow
construct are defined using the child link element.

pick Similar to the eventHandlers element, this construct can also contain
child onMessage and onAlarm elements, but is used more to respond
to external events for which process execution is suspended.

scope Portions of logic within a process definition can be sub-divided into
scopes using this construct. This allows you to define variables,
faultHandlers, correlationSets, compensationHandler, and
eventHandlers elements local to the scope.

terminate This element effectively destroys the process instance. The WS-
BPEL 2.0 specification proposes that this element be renamed to exit.
throw WS-BPEL supports numerous fault conditions. Using the throw

element allows you to explicitly trigger a fault state in response to a
specific condition.

wait The wait element can be set to introduce an intentional delay within
the process. Its value can be a set time or a predefined date.
while This useful element allows you to define a loop. As with the case

element, it contains a condition attribute that, as long as it continues
resolving to “true”, will continue to execute the activities within the
while construct.

Table 16-4 Quick reference table providing short descriptions for additional WS-BPEL elements (listed in alphabetical
order).

6.a) List and compare any three standard organization that contribute SOA

e The World Wide Web Consortium — (W3C)
e Organization for the Advancement of Structured Information Standards (OASIS)
e The Web Services Interoperability Organization (WS-I)

19|Page

Table 4.1. A Comparison of Standards Organizations

wac OQASIS WS-
Established 1994 1993 as the SGML Open, 2002
1998 as OASIS

Approximate membership 400 600 200
Overall goal (as it relates fo To further the evolution of the To promote online trade and To foster standardized
S50A) Web, by providing fundamental | commerce via specialized Web | interoperability using Web

standards that improve online | services standards. services standards.

business and information

sharing.

Prominent deliverables (related | XML, XML Schema, XQuery, UDDI, ebXML, SAML, XACML, | Basic Profile, Basic Security
fo SOA) XML Encryption, XML WS-BPEL, WS-Security Profile

Signature, XPath, XSLT,
WSDL, SOAP, WS-CDL,
WS-Addressing, Web Services
Architecture

e It allows us to directly link process logic to service interaction within our workflow logic

e Orchestration brings the business process into the service layer, positioning it as a master composition
controller.

e The orchestration service layer introduces a parent level of abstraction to ensure that service operations
are executed in a specific sequence.

e This promotes agility and reusability

e Within the orchestration service layer, process services compose other services that provide specific sets
of functions, independent of the business rules and scenario-specific logic required to execute a process
instance.

20|Page

orchestration

\‘R‘ ———— /sﬁ.'f.é?’

-.. e

T

7. Summarize the steps to design service oriented business process

Step 1: Map out interaction scenarios.

By using the following information gathered so far, we can define the message exchange
requirements of our process service:

¢ Available workflow logic produced during the service modeling process in Chapter 12.
e The process service candidate created in Chapter 12.

e The existing service designs created in Chapter 15.

This information is now used to form the basis of an analysis during which all possible interaction
scenarios between process and partner services are mapped out. The result is a series of processing
requirements that will form the basis of the process service design we proceed to in Step 2.

The result of mapping out interaction scenarios establishes that the process service has one
potential client partner service, and four potential partner services from which it may need to invoke
up to five operations (Figure 16.10).

Timesheet
Submission
Process

Submit

Invoice.GetBilledHours

A\

Timesheet.GetAuthorizedHours

Employee.GetW eeklyHoursLimit

A

Employee.UpdateHistory

Notification.SendMessage

21|Page

Figure 16-2 The incoming and outgoing request messages expected to be processed by the
Timesheet Submission Process Service.

Step 2: Design the process service interface.

Now that we understand the message exchange requirements, we can proceed to define a service
definition for the process service. When working with process modeling tools, the process service
WSDL will typically be auto-generated for you. However, you should also be able to edit the source
markup code or even import your own WSDL.

Either way, it is best to review the WSDL being used and revise it as necessary. Here are some
suggestions:

o Document the input and output values required for the processing of each operation, and
populate the types section with XSD schema types required to process the operations. Move
the XSD schema information to a separate file, if required.

¢ Build the WSDL definition by creating the portType (or interface) area, inserting the
identified operation constructs. Then, add the necessary message constructs containing the
part elements which reference the appropriate schema types. Add naming conventions that are
in alignment with those used by your other WSDL definitions.

e Add meta information via the documentation element.
o Apply other design standards within the confines of the modeling tool.

There is less opportunity to incorporate the other steps from the service design processes described in
Chapter 15. For example, applying the service-orientation principle of statelessness is difficult, since
process services maintain state so that other services don’t have to.

Example

It looks like the Timesheet Submission Process Service interface will be pretty straight-forward. It
only requires one operation used by a client to initiate the process instance (Figure 16.11).

Timesheet
Submission
Process

O Submit

Figure 16-3 Timesheet Submission Process Service design.

Below is the corresponding WSDL definition.

<definitions name="TimesheetSubmission"
targetNamespace="http://www.xmltc.com/tls/process/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:ts="http://www.xmltc.com/tls/timesheet/schema/"

22 |Page

xmlns:tsd="http://www.xmltc.com/tls/timesheetservice/schema/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.xmltc.com/tls/timesheet/wsdl/"

xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-1ink/">
<types>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

targetNamespace="http://www.xmltc.com/tls/timesheetsubmissionservice
/schema/">

<xsd:import
namespace="http://www.xmltc.com/tls/timesheet/schema/"
schemal.ocation="Timesheet.xsd"/>

<xsd:element name="Submit">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ContextID" type="xsd:integer"/>

<xsd:element name="TimesheetDocument"
type="ts:TimesheetType"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</types>
<message name="receiveSubmitMessage">
<part name="Payload" element="tsd:TimesheetType"/>
</message>
<portType name="TimesheetSubmissionInterface">
<documentation>
Initiates the Timesheet Submission process. </documentation>
<operation name="Submit">
<input message="tns:receiveSubmitMessage"/>
</operation>
</portType>
<plnk:partnerLinkType name="TimesheetSubmissionType">
<plnk:role name="TimesheetSubmissionService">
<plnk:portType name="tns:TimesheetSubmissionInterface"/>
</plnk:role>

</plnk:partnerLinkType>
23 |

</definitions>
Example 16-13 The abstract service definition for the Timesheet Submission Process Service.

Note the bolded plnk:parnterLinkType construct at the end of this WSDL definition. This is
added to every partner service.

Step 3: Formalize partner service conversations.

We now begin our WS-BPEL process definition by establishing details about the services with which
our process service will be interacting.
The following steps are suggested:

1. Define the partner services that will be participating in the process and assign each the role it will
be playing within a given message exchange.

2. Add parterLinkType constructs to the end of the WSDL definitions of each partner service.
Create partnerLink elements for each partner service within the process definition.

4. Define variable elements to represent incoming and outgoing messages exchanged with
partner services.

This information essentially documents the possible conversation flows that can occur within the
course of the process execution. Depending on the process modeling tool used, completing these
steps may simply require interaction with the user-interface provided by the modeling tool.
Example

Now that the Timesheet Submission Process Service has an interface, TLS can begin to work on the
corresponding process definition. It begins by looking at the information it gathered in Step 1. As you
may recall, TLS determined the process service as having one potential client partner service, and
four potential partner services from which it may need to invoke up to five operations.

Roles are assigned to each of these services, labeled according to how they relate to the process
service. These roles are then formally defined by appending existing service WSDL definitions with a
partnerLinkType construct.

The example below shows how the Employee Service definition (as designed in Chapter 15) is
amended to incorporate the WS-BPEL partnerLinkType construct and its corresponding
namespace.

<definitions
name="Employee"
targetNamespace="http://www.xmltc.com/tls/employee/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:act="http://www.xmltc.com/tls/employee/schema/accounting/"
xmlns:hr="http://www.xmltc.com/tls/employee/schema/hr/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.xmltc.com/tls/employee/wsdl/"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-1link/">

24|Page

<plnk:partnerLinkType name="EmployeeType'>
<plnk:role name="EmployeeService'">
<plnk:portType name="tns:EmployeeInterface"/>
</plnk:role>
</plnk:partnerLinkType>
</definitions>

Example 16-14 The request messages expected to be processed by the Timesheet
Submission Process Service.

This is formalized within the process definition through the creation of partnerLink elements that
reside within the partnerLinks construct. TLS analysts and architects work with a process
modeling tool to drag and drop partnerLink objects, resulting in the following code being
generated.

<partnerLinks>
<partnerLink name="client"
partnerLinkType="bpl:TimesheetSubmissionProcessType"
myRole="TimesheetSubmissionProcessServiceProvider"/>
<partnerLink name="Invoice"
partnerLinkType="inv:InvoiceType"
partnerRole="InvoiceServiceProvider"/>
<partnerLink name="Timesheet"
partnerLinkType="tst:TimesheetType"
partnerRole="TimesheetServiceProvider" />
<partnerLink name="Employee"
partnerLinkType="emp:EmployeeType"
partnerRole="EmployeeServiceProvider" />
<partnerLink name="Notification"
partnerLinkType="not:NotificationType"
partnerRole="NotificationServiceProvider"/>
</partnerLinks>

Example 16-15 The partnerLinks construct containing partnerLink elements for each of
the process partner services.

Next the input and output messages of each partner service are assigned to individual variable
elements, as part of the variables construct. A variable element is also added to represent the
Timesheet Submission Process Service Submit operation that is called by the HR client application
to kick off the process.

<variables>

<variable name="ClientSubmission"
messageType="bpl:receiveSubmitMessage" />

25 |

<variable name="EmployeeHoursRequest"
messageType="emp:getWeeklyHoursRequestMessage" />

<variable name="EmployeeHoursResponse"
messageType="emp:getWeeklyHoursResponseMessage" />

<variable name="EmployeeHistoryRequest"
messageType="emp:updateHistoryRequestMessage"/>

<variable name="EmployeeHistoryResponse"
messageType="emp:updateHistoryResponseMessage" />

<variable name="InvoiceHoursRequest"
messageType="1inv:getBilledHoursRequestMessage" />

<variable name="InvoiceHoursResponse"
messageType="1inv:getBilledHoursResponseMessage" />

<variable name="TimesheetAuthorizationRequest"
messageType="tst:getAuthorizedHoursRequestMessage" />

<variable name="TimesheetAuthorizationResponse"
messageType="tst:getAuthorizedHoursResponseMessage" />

<variable name="NotificationRequest" messageType="not:sendMessage" />

</variables>

Example 16-16 The variables construct containing individual variable elements

representing input and output messages from all partner services and for the process service
itself.

If you check back to the Employee Service definition TLS designed in Chapter 15, you'll notice that
the name values of the message elements correspond to the values assigned to the messageType
attributes in the above displayed variable elements.

Step 4: Define process logic.

Finally, everything is in place for us to complete the process definition. This step is a process in itself,
as it requires that all existing workflow intelligence be transposed and implemented via a WS-BPEL
process definition.

26|Page

‘29fojdwa ay) 01 abessaw
© puas 0} 9JINI8S UONEIION Byl asn

'ssao0.d
ay1 pu3 OAU|

ubissy

19beuew s,aakojdwa ayy 0} abessaw

® puas o0} 89l

9S UOIRIYION By} asn

9)OAU|

ubissy

‘Kioisiy
a[yoid s,@ako/dwa ay) 0} JUBWWOD
© ppe 0] 3JIAI8S 9akojdw3 ay) asn

9YOAU|

ubissy

urew sy} Woly SusWald
MOJY! Y1 JO auo Auy

</copy>

<copy>
<from expression="..."/>
<to variable="EmployeeHistoryRequest" .../>
</copy>
</assign>

<invoke name="UpdateHistory"
partnerLink="Employee"
portType="emp:EmployeeInterface"
operation="UpdateHistory"
inputVariable="EmployeeHistoryRequest"
outputVariable="EmployeeHistoryResponse" />
Example 16-17 Two copy elements used to populate the EmployeeHistoryRequest message.

To perform the first task of updating the employee history, the fault handler routine uses an assign
construct with two copy constructs. The first retrieves the EmployeelD value from the
ClientSubmission variable, while the latter adds a static employee profile history comment.

The invoke element then launches the Employee Service (used previously for its
GetWeeklyHoursLimit operation), and submits the EmployeeHistoryRequest message to its
UpdateHistory operation in order to log the profile history comment.

The next block of markup code takes care of both the remaining “Send notification” tasks.

<assign name="GetManagerID">

<copy>
<from expression="getVariableData(...)"/>
<to variable="NotificationRequest"™ .../>
</copy>
</assign>

<invoke name="SendNotification"
partnerLink="Notification"
portType="not:NotificationInterface"
operation="SendMessage"
inputVariable="NotificationRequest"/>

<assign name="GetEmployeeID">

<copy>
<from expression="getVariableData(...)"/>
<to variable="NotificationRequest" .../> </copy>
</assign>

28 |

<invoke name="SendNotification"
partnerLink="Notification"
portType="not:NotificationInterface"
operation="SendMessage"
inputVariable="NotificationRequest"/>
<terminate name="EndTimesheetSubmissionProcess"/>
Example 16-18 The last activities in the process.

Finally, the faultHandlers construct contains two more assign + invoke element pairs. Both
use the Notification Service’s SendMessage operation, but in different ways. The first assign
construct extracts the ManagerID value from the ClientSubmission variable, which is then passed to
the Notification Service. It is the sole parameter that the service subsequently uses to look up the
corresponding e-mail address used to send the notification message.

Next, the second assign construct retrieves the EmployeelD value from the same ClientSubmission
variable, which the Notification Service ends up using to send a message to the employee.

terminate, the very last element in the construct, halts all further processing.

Step 5: Align interaction scenarios and refine process. (Optional)

This final, optional step encourages you to perform two specific tasks: revisit the original interaction
scenarios created in Step 1 and review the WS-BPEL process definition to look for optimization
opportunities.

Let’s start with the first task. Bringing the interaction scenarios in alignment with the process logic
expressed in the WS-BPEL process definition provides a number of benefits, including:

e The service interaction maps (as activity diagrams or in whatever format you created them) are
an important part of the solution documentation, and will be useful for future maintenance and
knowledge transfer requirements.

e The service interaction maps make for great test cases, and can spare testers from having to
perform speculative analysis.

¢ The implementation of the original workflow logic as a series of WS-BPEL activities may have
introduced new or augmented process logic. Once compared to the existing interaction
scenarios, the need for additional service interactions may arise, leading to the discovery of new
fault or exception conditions that can then be addressed back in the WS-BPEL process
definition.

Secondly, spending some extra time to review your WS-BPEL process definition is well worth the
effort. WS-BPEL is a multi-feature language that provides different approaches for accomplishing
and structuring the same overall activities. By refining your process definition, you may be able to:

e Consolidate or restructure activities to achieve performance improvements.
e Streamline the markup code to make maintenance easier.

o Discover features that were previously not considered.

29|Page

Receive

Assign

Assign Assign

Invoke Invoke Invoke

Switch Switch Switch

Receive

Assign Assign Assign

Invoke Invoke Invoke

Switch

Switch Switch

30|Page

Finally, while reviewing the structure of the fault handling routine, a further refinement is suggested.
Because the last two activities invoke the same Notification Service, they can be collapsed into a
while construct that loops twice through the invoke element.

17.1.1. The EndpointReference element

The EndpointReference element is used by the From, ReplyTo, and FaultTo elements described in the
Message information header

elements section. This construct can be comprised of a set of elements that assist in providing service
interface information (including

supplementary metadata), as well as the identification of service instances.

The WS-Addressing elements described in Table 17.1 can be associated with an EndpointReference
construct.

Table 17.1. WS-Addressing endpoint reference elements.

Element Description

Address The standard WS-Addressing Address element used to provide the address of the
service. This is the only required child element of the EndpointReference element.

ReferenceProperties This construct can contain a series of child elements that provide details of
properties associated with a service instance.

ReferenceParameters Also a construct that can supply further child elements containing parameter values
used for processing service instance exchanges.

PortType The name of the service portType.

ServiceName and PortName The names of the service and port elements that are part of the destination service
WSDL definition construct.

Policy This element can be used to establish related WS-Policy policy assertion information

17.1.2. Message information header elements

This collection of elements (first introduced as concepts in Chapter 7) can be used in various ways to
assemble metadata-rich SOAP header blocks. Table 17.2 lists the primary elements and provides brief
descriptions.

Table 17.2. WS-Addressing message information header elements

Element Description

MessagelD An element used to hold a unique message identifier, most likely for correlation purposes. This
element is required if the ReplyTo or FaultTo elements are used.

RelatesTo This is also a correlation header element used to explicitly associate the current message with
another. This element is required if the message is a reply to a request.

ReplyTo The reply endpoint (of type EndpointReference) used to indicate which endpoint the recipient
service should send a response to upon receiving the message. This element requires the use of
MessagelD.

From The source endpoint element (of type EndpointReference) that conveys the source endpoint

address of the message.

FaultTo The fault endpoint element (also of type EndpointReference) that provides the address to which a
fault notification should be sent. FaultTo also requires the use of MessagelD.

To The destination element used to establish the endpoint address to which the current message is
being delivered.

Action This element contains a URI value that represents an action to be performed when processing
the MI header.

31|Page

17.1.3. WS-Addressing reusability

The e_ndpoint identification and message routing mechanisms provided by WS-Addressing establish a
generic set of extensions useful to custom service-oriented solutions but also reusable by other WS-*
specifications. As such, WS-Addressing can be viewed as a utility specification that further supports

the notion of composability within SOA.

AI_though we don't discuss the WS-Notification or WS-Eventing languages in any detail, let's take a
brief glimpse at their Header constructs for some examples of how WS-Addressing message

information header elements are reused in support of other WS-* extensions.

Principle 1: Well-defined application layers

p A layer is a logical grouping of software elements that address similar

concerns (Lhotka, 2005).

25 Concerns of the application is separated into distinct layers — presentation

layer, business layer and data access layer.
3. Rationale for layers

e Presentation layer: User interface (UI) requirements change fre-
quently. Hence, changes need to be localized by the definition of

a layer.

e Business layer: A separate layer is required to implement the busi-
ness logic while addressing that non-functional requirements such
as performance, scalability, etc.

e Data access layer: A layer is specified to provide encapsulated access
to data in data stores and localize changes to this laver of application
should it be necessary to change the type or scheme of data stores.

pciple 2: Closed layer architecture

Each layer communicates only with the layers immediately next to it.
Communication between the lavers happens via well-defined interfaces.

iple 3: Configurable plug-in points for screen navigation and application
ess rules

Navigation logic is not hard-coded into the application.

Changes to screen navigation and business rules are handled through

few changes to code.
Screen navigation is handled through metadata.

iple 4: Separation of validation logic from business logic

Validation logic for application is separated from business logic as fail-
ure to do so makes the code difficult to maintain.

iple 5: Encapsulation of access to databases

No calls are made directly to the database from presentation layer.
Data access layer (IDAL) is designed to interact with set of data sources
and to coordinate transactions among them.

iple 6: Cache data on the server andlor client for improved performance

1. Data that changes less frequently is cached on the server and /or client
for improved performance.

ri ciple 7: Failover and redundancy is used for high availability and disaster

1. Cluster configurations address failover and redundancy requirements.
2. Horizontal and vertical clustering of servers is considered for high
availability and disaster recovery solutions.

iple 8: Scalability options

. Applications have goals for the desired performance for changing
workload that could include number of concurrent users and the
amount of data that the svstem would need to store/process. These
scalability goals are considered in architecture, design and when
developing the application in order that the enterprise application
scales as the business it serves grows.

32|Page

76 ® SOFTWARKE T s - 7

2. Component models that allow for distributed de

execution of Componen\s. are leveraged for scalability-

3. Network load balancing ent load palancing technig

direct end-user service requests to the servers and components §

are least busy and therefore are capable of providing the requy
pcrformancc even with increasing workload characteristic.

in multiple tiers

Principle 9: Dcployment of applicah‘on a
ysical boundary and represents

1. Aterisa ph

application components (Rotem, 2006)-
2, BY grouping app\'\cat'\on compon=nts nto separa!e\y dep\oyab\e
ments called tiers. the compor\ents < y = the physica\ ind
structure better through greater optim'\zmion and utilization
ating with one another.

ployment

omponents
physica\ separation

interoper
3. Ters offer pcrformancc, scalability, fau
sly used and, therefore, application component
as tiers and deployed ac

judiciow

lications are stru:tured

when
enterprise app
ingly (Lhotka, 2005).

of calls to th
and components used In app

principle 10: Wrapping pird-party products and components
lications (-84
~od to be replacec

t vendors
e Java E

er shown
t containe
d Editior

3 during Meigis build |

1. Third-party products
= engine /workflow engine) may ne
cycle of application owing 0 pusiness and technical considerati
d approach is considered in order to wrap ac = E
e Jave
ts.

[MY . ¢ framework»base
third-party produc

Principle 11: Encapsulation
lementation <

1. Hiding of imp’
tions 1S essential in order o deal

ts and components.

of communicaﬁon wi

etails of Vv ocation

with issues related to communic

to a layer other tha

a
\
encoding and security-
za 2. Abroker pattern is used to encapsulate access
£ ness layer. ¥ | X -
ard 3. In the interest of perﬁ)rﬂ\ancc, the number of calls-to the \egac'J
tems and other ;\ppl'\cations are keptata minimunt-
) 1z antion platforms are discussed in i
- _ a2 ~sthor fOU

th external applicatio;ﬂ”.
nectors

of external apgeneous En
smodel alls
municate ¥

\ﬂihCitlre in

The archit
ecture of an enterpri :
tecture that fulfils the funce:'p % ApIP e s
ing are the key architectu ional and non-functional requi o the solution archi-
ral considerations of enterprisqmrer?ems' e
e applications:

1. Functional requirem
cant use ca ents: It is important .
the interacifsnagef EddTGSSed in the archiiic}e:f:l;:?: LXChltecmmuy signifi-
ality of systems cailersh(caHEd actors) with the . Stuse case describes
Architecturally si ,f t erefore, be expressed inyt em. The function-
gniticant use cases have a SubSti;rt?:l of ise cases.
architectural

2. Non functional requirements
e Performance

e Scalability
e Availability
e Reliability
e Security

mplaementea.

consider-

3. Service-orie »
s ..':"g‘..‘:',',-':.‘..fh.’ c'o‘nsiclvrun’nns: e
o il .‘“““: applications discussed e
’_*hlitiunull\r.l(n..-nt = .“'_ differont arc hn-.-clu‘r ;'!‘”"" ol gt Ay
SCOA t.l%(ll‘i-;vd in C ~;" | B iscapplication Punivt.‘w k' \’ll'". e e
apter 4, the following '“!':“::""R‘:“t"""rl"i‘“" “'“h;
o considered:

33|Page

o Sisvices exposed of consumed: Activity, business process, client or
data services that enterprise application exposes ot consumes need
to be identified.

o Granularity of services exposed: The granularity of services
exposed has t0 be at the right level for effective integration and
service orchestration.

o Integration model for services exposed or consumed: Enterprise
service bus and other patterns for integration are to be considered.

o Business process model: Business process model of the enterprise and
the specific business processes implemented by the enterprise appli-
cation have to be taken into account.

« Enterprise data model: Data model for the application has to align
with enterprise data models that may be defined at the organiza-
tion level.

o Infrastructure: Authentication and authorization patterns for serv-
jce security and solutions for design-time and run-time governance
(including technologies for service registry and repository) are o
be considered o

— ey TR T

10. Explain the key patterns for J2EE Reference. model and Technical architecture
Reference Model

e pwzer

Irnernet) intyacet HTTPY

Irsegration
Layor
Buninene x Access Conmponent
Layer s Lotate
Dvsgaa SS—— -,..,‘.‘,“__.“__,,]
l Locats i
Comweo

Areonet Eatesciias
Sesson Facaoe - Oromnt (ﬁ:ﬂ"“m
Ervaosmelars Comiraic § = By

|

|
e S
A== [T =
. Wor cw o - Async
B — —~ | 3 Comgonarr Soecn e Mo
Fartravvn Ot Actieator . e d

R Te

b

Detn Acosss
Otyect

l | l Ovject

(R

| ==V J.
\%r off o
)

Datatase

Data Access

GURE 6- nterp
3 l{ 'f -/ - ~ f
eference model of web-based Tava EE enterprise 11’F‘|' n
se 4§ 1cati

The below pictur

e shows logical S

as layers. i gical organization o ; .

yers. It depicts reference model for a Iayerfe(‘j’31 \E\t]elzrl; (ﬂfsntdweb-ba%d Java EE application
-based java

34|Page

EE application that addresses major concerns of each layer based on the con-
cept of design patterns applicable to Java EE platform. As with any reference
model, the objective is to provide a template for architecture rather than be
comprehensive in coverage of possible scenarios.

A design pattern is a solution to a recurring problem in specific design
situations (Buschmann et al., 1996). Any specification for a platform such as
Java EE, through the def inition of its application model, brings focus to prob-
lems (e.g., how are HTTP user requests handled) that need to be repeatedly
addressed in every application built for that platform. Design pattern defined
for a platform, therefore, represents reusable micro-architecture that provides a
solution (e.g., use front controller pattern) that can be leveraged in defining
the overall architecture of an enterprise application for the platform.

Several design patterns have been identified for Java platform (Alur et al.,
2003). Table 6-1 lists some of the key patterns that form the basis for a reference
model shown in Figure 6-3 (SDN, 2002).

The concerns of the presentation layer of a thin client Java EE enterprise
web application can be addressed using the model-view—controller (MVC)
pattern. The request from the browser is passed to the controller, which then
passes the request to the classes implementing the business delegate pattern.
The MVC pattern may be implemented with ISP, Servlets and JavaBean

objects.

To encapsulate the business logic and to decouple it from the presenta-
tion layer, business delegate pattern is used. The service locator implementation
is invoked by business delegate to optimize retrieval of the interface infor-
mation related to the busmess objects and session facade. The business layer
implements business processes in business components whose imple-
mentation could include Java objects, Enterprise JavaBeans (EJBs) and
workflow / rule engine.

The data access layer connects to the database using a persist
mechanism. The data access objects wrap access to the persistence objects.
data access mechanism could be implemented using any of the following
nology options:

1. Java Database Connectivity (JDBC);

2. Container-managed entity EJB;

3. Bean-managed entity EIB;

4. Object-relational mapping tools such as Hibernate;

5. Java Persistence API (JPA).

The integration layer provides connectivity for external systems an
messaging infrastructure essential for many enterprise applicatio
A broker pattern is used to hide the implementation details of the ex

nal application invocation by encapsulating it in a layer other than
____ business layer. The Java Connector Architecture (JCA) is a specificati

35|Page

TABLE 6-1 Key patterns for Java EE reference model

Pattern Description

Model-view-controller Pattern suitable for providing multiple views of
data. It separates three types of objects ~ models that
maintain data, views that display all or a portion
of the data, and controllers that handle events that
affect the model or view(s).

Business delegate Pattern to decouple presentation layer from busi-
ness layer. The business delegate encapsulates the
business layer and hides implementation details

. such as lookup and EJB interfaces.

- Note: In the archutecture diagrams in this book, busi-
ness delegate has been shown in business layer in the
logical view to be consistent with definitions in [Alur
et al., 2003]. The business delegate-related classes are

deployed in web tier,
Service locator Pattern for service lookup and creation. It abstracts
the usage of INDI, EJB home lookup and creation.
Session facade Pattern to encapsulate interactions among business

objects. Seasion facade manages business objects [
and provides course-grained access to clients.

Data access object Pattern to abstract access to all data stores. It
manages the connection with the database and
performs operations on data stores.

Broker Pattern to communicate with remote objects. The
broker pattern hides the implementation details of
communication with remote objects by encapsulat-
ing them in a scparate layer,

Technical architecture

The technical architecture shows the resentation layer wi
and JavaBeans. While the presentation rl,ayer can be d);vclo;:::cise gr:;':sdji?
there are many advant'ages of using frameworks such as Struts and ISF for the'
presentation layer which implement the My C design pattern and, therefore,
may be leveraged for implementing the presentation layer. '

, several enterprise application technologies can be leveraged for
, data access and integration layers. These include (SDN, 2007):

Enterprise JavaBeans (E]B);

J2EE Connector Architecture (JCA);
JavaBeans Activation Framework (JAF);
JavaMail API;

Java Message Service API;

Java Persistence API;

Java Transaction API (JTA).

36|Page

