
1 | P a g e

Service Oriented Architecture – 16MCA553

Nov 2018 – Internal Test - 3 – Answer Key

1. Elaborate support for SOA in .NET platform

Windows OS :

2 | P a g e

Microsoft family of OS supports the .NET framework and CLR essential for an enterprise application. While in theory

CLR can be ported to other OS only Windows family of OS supports it as of now. The open source Mono project is an

effort to provide the >NET framework and CLR o the Unix family of OS.

Common Language Run-Time (CLR)

3 | P a g e

4 | P a g e

5 | P a g e

6 | P a g e

2. Describe about WS-Notification Framework.

As with other WS-* frameworks, what is represented by WS-Notification is a family of related extensions that have been

designed with composability in mind.

• WS-BaseNotification—Establishes the standardized interfaces used by services involved on either end of a notification

exchange.

• WS-Topics—Governs the structuring and categorization of topics.

• WS-BrokeredNotification—Standardizes the broker intermediary used to send and receive messages on behalf of

publishers and subscribers.

7 | P a g e

Situations, notification messages, and topics

 The notification process typically is tied to an event that is reported on by the publisher.

 This event is referred to as a situation. Situations can result in the generation of one or more notification

messages. These messages contain information about (or relating to) the situation, and are categorized according

to an available set of topics.

 Through this categorization, notification messages can be delivered to services that have subscribed to

 corresponding topics.

Notification producers and publishers

 The term publisher represents the part of the solution that responds to situations and is responsible for generating

notification messages. However, a publisher is not necessarily required to distribute these messages. Distribution

of notification messages is the task of the notification producer.

 This service keeps track of subscriptions and corresponds directly with subscribers. It ensures that notification

messages are organized by topic and delivered accordingly.

Notification consumers and subscribers

 A subscriber is the part of the application that submits the subscribe request message to the notification producer.

This means that the subscriber is not necessarily the recipient of the notification messages transmitted by the

notification producer.

 The recipient is the notification consumer, the service to which the notification messages are delivered

Notification broker, publisher registration manager, and subscription manager

 The notification broker—A Web service that acts on behalf of the publisher to perform the role of the

notification producer. This isolates the publisher from any contact with subscribers. Note that when a notification

8 | P a g e

broker receives notification messages from the publisher, it temporarily assumes the role of notification

consumer.

 The publisher registration manager—A Web service that provides an interface for subscribers to search through

and locate items available for registration. This role may be assumed by the notification broker, or it may be

implemented as a separate service to establish a further layer of abstraction.

 The subscription manager—A Web service that allows notification producers to access and retrieve required

subscriber information for a given notification message broadcast. This role also can be assumed by either the

notification producer or a dedicated service.

Figure 7.39

3.a Explain the Application service layer

Provide reusable functions related to processing data within legacy or new application environments

Characteristics

they expose functionality within a specific processing context

they draw upon available resources within a given platform

they are solution-agnostic

they are generic and reusable

they can be used to achieve point-to-point integration with other application services

they are often inconsistent in terms of the interface granularity they expose

they may consist of a mixture of custom-developed services and third-party services that have been

purchased or leased

Utility service

When a separate business service layer exists, then turn all application services into generic utility services

9 | P a g e

Wrapper service

Wrapper services most often are utilized for integration purposes. They consist of services that encapsulate

("wrap")

some or all parts of a legacy environment to expose legacy functionality to service requestors

Proxy service or auto-generated WSDL

Another variation of the wrapper service model

This simply provides a WSDL definition that mirrors an existing component interface

Hybrid application services/hybrid services

Services that contain both application and business logic can be referred to as hybrid application services

or just hybrid services. This service model is commonly found within traditional distributed architectures

Application integration services /Integration services

Application services that exist solely to enable integration between systems often are referred to as

application integration services or simply

integration services. Integration services often are implemented as controllers

3.b Discuss in detail about the Business service layer

While application services are responsible for representing technology and application logic, the

business service layer introduces a service concerned solely with representing business logic, called

the business service

Business service layer abstraction leads to the creation of two further business service models:

1. Task-centric business service A service that encapsulates business logic specific to a task or business

process. This type of service generally is required when business process logic is not centralized as

part of an orchestration layer. Task-centric business services have limited reuse potential.

2. Entity-centric business service A service that encapsulates a specific business entity (such as an

invoice or timesheet). Entity-centric services are useful for creating highly reusable and business

process-agnostic services that are composed by an orchestration layer or by a service layer consisting

of task-centric business services (or both).

10 | P a g e

4. What is mean by technology framework? Briefly explain web service framework

 A technology framework is a collection of things.

 It can include one or more architectures, technologies, concepts, models, and even sub-

frameworks.

Framework is characterized by:

 an abstract (vendor-neutral) existence defined by standards organizations and implemented

by (proprietary) technology platforms

 core building blocks that include Web services, service descriptions, and messages

 a communications agreement centered around service descriptions based on WSDL

 a messaging framework comprised of SOAP technology and concepts

 a service description registration and discovery architecture sometimes realized through

UDDI

 a well-defined architecture that supports messaging patterns and compositions

 a second generation of Web services extensions (also known as the WS-* specifications)

continually broadening its underlying feature-set

. Services (as Web services)
 services - how they provide a means of encapsulating various extents of logic.

 Manifesting services in real world automation solutions requires the use of a technology
capable of preserving fundamental service-orientation, while implementing real world
business functionality.

 Web services provide the potential of fulfilling these primitive requirements

 Web services framework is flexible and adaptable.

 Web services can be designed to duplicate the behavior and functionality found in proprietary
distributed systems, or they can be designed to be fully SOA-compliant.

 This flexibility has allowed Web services to become part of many existing application
environments

 Fundamentally, every Web service can be associated with:
o a temporary classification based on the roles it assumes during the runtime

processing of a message
o a permanent classification based on the application logic it provides and the roles it

assumes within a solution environment

 We explore both of these design classifications in the following two sections:
o service roles (temporary classifications)
o service models (permanent classifications)

WSDL (Web Services Description Language)

 Service Description provides the key to establishing a consistently loosely coupled form of

communication between services implemented as Web services.

 Description documents are required to accompany any service wanting to act as an ultimate

receiver.

The primary service description document is the WSDL definition

11 | P a g e

SOAP (Simple Object Access Protocol)

All communication between services is message-based,

same format and transport protocol.

Message-centric application design that an increasing amount of business and application logic is

embedded into messages.

messages processed by Web services

5.4.1. Messages
Simple Object Access Protocol, the SOAP specification's main purpose is to define a standard message

format.

The structure of this format is quite simple, but its ability to be extended and customized

Envelope, header, and body
Every SOAP message is packaged into a container known as an envelope.

Much like the metaphor this conjures up, the envelope is responsible for housing all parts of the message

UDDI (Universal Description Discovery and Integration)

Private and public registries

 UDDI accepted standard for structuring registries that keep track of service descriptions

 These registries can be searched manually and accessed programmatically via a
standardized API.

12 | P a g e

5. Explain the basics of WS-BPEL Language

WS-BPEL language basics

WS-BPEL process definition

<process>

<partnerLinks>

...

</partnerLinks>

<variables>

...

</variables>

<faultHandlers>

...

</faultHandlers>

<sequence>

<receive ...>

<invoke ...>

<reply ...>

...

</sequence>

...

</process>

Figure 16-1 A common WS-BPEL process definition structure.

A brief history of BPEL4WS and WS-BPEL

 The Business Process Execution Language for Web Services (BPEL4WS) was first conceived in July, 2002 with

the release of the BPEL4WS 1.0 specification, a joint effort by IBM, Microsoft, and BEA.

 This document proposed an orchestration language inspired by previous variations, such as IBM’s Web Services

Flow Language (WSFL) and Microsoft’s XLANG specification.

 Next version of BPEL4WS is WS-BPEL Prerequisites

The process element

 BPEL processes are exposed as WSDL services †

o Message exchanges map to WSDL operations †

o WSDL can be derived from partner definitions and the role played by the process in interaction with

partners †

o BPEL processes interact with WSDL services exposed by business partners

<process name="TimesheetSubmissionProcess"

 targetNamespace="http://www.xmltc.com/tls/process/"

 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 xmlns:bpl="http://www.xmltc.com/tls/process/"

 xmlns:emp="http://www.xmltc.com/tls/employee/"

13 | P a g e

 xmlns:inv="http://www.xmltc.com/tls/invoice/"

 xmlns:tst="http://www.xmltc.com/tls/timesheet/"

 xmlns:not="http://www.xmltc.com/tls/notification/">

 <partnerLinks>

 ...

 </partnerLinks>

 <variables>

 ...

 </variables>

 <sequence>

 ...

 </sequence>

 ...

</process>

Example 16-1 A skeleton process definition.

The process construct contains a series of common child elements

The partnerLinks and partnerLink elements

A partnerLink element establishes the port type of the service (partner) that will be participating during the execution of

the business process.

Partner services can act as a client to the process, responsible for invoking the process service.

Alternatively, partner services can be invoked by the process service itself.

The contents of a partnerLink element represent the communication exchange between two partners – the process service

being one partner and another service being the other.

<partnerLinks>

 <partnerLink name="client"

 partnerLinkType="tns:TimesheetSubmissionType"

 myRole="TimesheetSubmissionServiceProvider"/>

 <partnerLink name="Invoice"

 partnerLinkType="inv:InvoiceType"

 partnerRole="InvoiceServiceProvider"/>

 <partnerLink name="Timesheet"

 partnerLinkType="tst:TimesheetType"

 partnerRole="TimesheetServiceProvider"/>

 <partnerLink name="Employee"

 partnerLinkType="emp:EmployeeType"

 partnerRole="EmployeeServiceProvider"/>

 <partnerLink name="Notification"

 partnerLinkType="not:NotificationType"

 partnerRole="NotificationServiceProvider"/>

14 | P a g e

</partnerLinks>

Example 16-2 The partnerLinks construct containing one partnerLink element in which the process service is invoked

by an external client partner, and four partnerLink elements that identify partner services invoked by the process

service.

The partnerLinkType element

For each partner service involved in a process, partnerLinkType elements identify the WSDL portType elements

referenced by the partnerLink elements within the process definition.

The partnerLinkType construct contains one role element for each role the service can play

Therefore, a partnerLinkType will have either one or two child role elements.

<definitions name="Employee"

 targetNamespace="http://www.xmltc.com/tls/employee/wsdl/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

 ...

>

 ...

 <plnk:partnerLinkType name="EmployeeServiceType"

 xmlns="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

 <plnk:role name="EmployeeServiceProvider">

 <portType name="emp:EmployeeInterface"/>

 </plnk:role>

 </plnk:partnerLinkType>

 ...

</definitions>

Example 16-3 A WSDL definitions construct containing a partnerLinkType construct.

Note that multiple partnerLink elements can reference the same partnerLinkType. This is useful for when a process

service has the same relationship with multiple partner services. All of the partner services can therefore use the same

process service portType elements.

The variables element

Variables are used to define data containers „

 WSDL messages received from or sent to partners „

 Messages that are persisted by the process „

 XML data defining the process state

 messageType, element, or type.

 The messageType attribute allows for the variable to contain an entire WSDL-defined message,

15 | P a g e

 Element attribute simply refers to an XSD element construct.

 The type attribute can be used to just represent an XSD simpleType, such as string or integer.

<variables>

 <variable name="ClientSubmission"

 messageType="bpl:receiveSubmitMessage"/>

 <variable name="EmployeeHoursRequest"

 messageType="emp:getWeeklyHoursRequestMessage"/>

 <variable name="EmployeeHoursResponse"

 messageType="emp:getWeeklyHoursResponseMessage"/>

 <variable name="EmployeeHistoryRequest"

 messageType="emp:updateHistoryRequestMessage"/>

 <variable name="EmployeeHistoryResponse"

 messageType="emp:updateHistoryResponseMessage"/>

 ...

</variables>

Example 16-4 The variables construct hosting only some of the child variable elements used later by the Timesheet

Submission Process.

The getVariableProperty and getVariableData functions

getVariableProperty(variable name, property name)

 accepts the variable and property names as input and returns the requested value.

getVariableData(variable name, part name, location path)

This function is required to provide other parts of the process logic access to this data.

The getVariableData function has a mandatory variable name parameter, and two optional arguments that can be used to

specify a specific part of the variable data.

In our examples we use the getVariableData function a number of times to retrieve message data from variables.

getVariableData(‘InvoiceHoursResponse’,‘ResponseParameter’)

getVariableData(‘input’,’payload’,‘/tns:TimesheetType/Hours/...’)

Example 16-5 Two getVariableData functions being used to retrieve specific pieces of data from different variables.

The sequence element

The sequence construct allows you to organize a series of activities so that they are executed in a predefined, sequential

order.

WS-BPEL provides numerous activities that can be used to express the workflow logic within the process definition.

<sequence>

 <receive>

 ...

 </receive>

 <assign>

 ...

16 | P a g e

 </assign>

 <invoke>

 ...

 </invoke>

 <reply>

 ...

 </reply>

</sequence>

Example 16-6 A skeleton sequence construct containing only some of the many activity elements provided by WS-

BPEL.

The invoke element

The invoke element is equipped with five common attributes which further specify the details of the invocation (Table

16.1).

Attribute Description

partnerLink This element names the partner service via its corresponding

partnerLink.

portType The element used to identify the portType element of the partner

service.

operation The partner service operation to which the process service will need

to send its request.

inputVariable The input message that will be used to communicate with the partner

service operation. Note that it is referred to as a variable because it is

referencing a WS-BPEL variable element with a messageType

attribute.

outputVariable This element is used when communication is based on the request-

response MEP. The return value is stored in a separate variable

element.

Table 16-1 invoke element attributes.

<invoke name="ValidateWeeklyHours"

 partnerLink="Employee"

 portType="emp:EmployeeInterface"

 operation="GetWeeklyHoursLimit"

 inputVariable="EmployeeHoursRequest"

 outputVariable="EmployeeHoursResponse"/>

Example 16-7 The invoke element identifying the target partner service details.

The receive element

The receive element allows us to establish the information a process service expects upon receiving a request from an

external client partner service.

The receive element contains a set of attributes, each of which is assigned a value relating to the expected incoming

communication (Table 16.2).

Attribute Description

partnerLink The client partner service identified in the corresponding partnerLink

construct.

portType The partner service’s portType involved in the message transfer.

operation The partner service’s operation that will be issuing the request to the

17 | P a g e

process service.

variable The process definition variable construct in which the incoming

request message will be stored.

createInstance When this attribute is set to “yes” the receipt of this particular request

may be responsible for creating a new instance of the process.

Table 16-2 receive element attributes.

Note that this element can also be used to receive callback messages during an asynchronous message exchange.

<receive name="receiveInput"

 partnerLink="client"

 portType="tns:TimesheetSubmissionInterface"

 operation="Submit"

 variable="ClientSubmission"

 createInstance="yes"/>

Example 16-8 The receive element used in the Timesheet Submission Process definition to indicate the client partner

service responsible for launching the process with the submission of a timesheet document.

The reply element

The reply element is responsible for establishing the details of returning a response message to the requesting client

partner service.

Attribute Description

partnerLink The same partnerLink element established in the receive element.

portType The same portType element displayed in the receive element.

operation The same operation element from the receive element.

variable The process service variable element that holds the message that is

returned to the partner service.

messageExchange It is being proposed that this optional attribute be added by the WS-

BPEL 2.0 specification. It allows for the reply element to be

explicitly associated with a message activity capable of receiving a

message (such as the receive element).

Table 16-3 reply element attributes.

<reply partnerLink="client"

 portType="TimeSubmissionProcessInterface"

 operation="SubmitTimesheet"

 variable="TimesheetSubmissionResponse"/>

Example 16-9 A potential companion reply element to the previously displayed receive element.

The switch, case, and otherwise elements

The switch element establishes the scope of the conditional logic

multiple case constructs can be nested to check for various conditions using a condition attribute.

condition attribute resolves to “true,” the activities defined within the corresponding case construct are executed.

The otherwise element can be added as a catch all at the end of the switch construct.

Should all preceding case conditions fail, the activities within the otherwise construct are executed.

<switch>

 <case condition="getVariableData(‘EmployeeResponseMessage’,‘ResponseParameter’)=0">

 ...

18 | P a g e

 </case>

 <otherwise>

 ...

 </otherwise>

</switch>

Example 16-10 A skeleton case element wherein the condition attribute uses the getVariableData function to compare

the content of the EmployeeResponseMessage variable to a zero value.

Note: It has been proposed that the switch, case, and otherwise elements be replaced with if, elseif, and else elements in

WS-BPEL 2.0.

The assign, copy, from, and to elements

This set of elements simply gives us the ability to copy values between process variables

<assign>

 <copy>

 <from variable="TimesheetSubmissionFailedMessage"/>

 <to variable="EmployeeNotificationMessage"/>

 </copy>

 <copy>

 <from variable="TimesheetSubmissionFailedMessage"/>

 <to variable="ManagerNotificationMessage"/>

 </copy>

</assign>

Example 16-11 Within this assign construct, the contents of the TimesheetSubmissionFailedMessage variable are

copied to two different message variables.

Note that the copy construct can process a variety of data transfer functions

from and to elements can contain optional part and query attributes that allow for specific parts or values of the variable to

be referenced.

faultHandlers, catch, and catchAll elements

This construct can contain multiple catch elements, each of which provides activities that perform exception handling for

a specific type of error condition.

Faults can be generated by the receipt of a WSDL-defined fault message, or they can be explicitly triggered through the

use of the throw element.

The faultHandlers construct can consist of (or end with) a catchAll element to house default error handling activities.

<faultHandlers>

 <catch faultName="SomethingBadHappened"

 faultVariable="TimesheetFault">

 ...

 </catch>

 <catchAll>

 ...

 </catchAll>

</faultHandlers>

19 | P a g e

Example 16-12 The faultHandlers construct hosting catch and catchAll child constructs.

Other WS-BPEL elements

Table 16.4 provides brief descriptions of other relevant parts of the WS-BPEL language.

Element Description

compensationHandler A WS-BPEL process definition can define a compensation process

that kicks in a series of activities when certain conditions occur to

justify a compensation. These activities are kept in the

compensationHandler construct. (For more information about

compensations, see the Business activities section in Chapter 6.)

correlationSets WS-BPEL uses this element to implement correlation, primarily to

associate messages with process instances. A message can belong to

multiple correlationSets. Further, message properties can be defined

within WSDL documents.

empty This simple element allows you to state that no activity should occur

for a particular condition.

eventHandlers The eventHandlers element enables a process to respond to events

during the execution of process logic. This construct can contain

onMessage and onAlarm child elements that trigger process activity

upon the arrival of specific types of messages (after a predefined

period of time, or at a specific date and time, respectively).

exit See the terminate element description below.

flow A flow construct allows you to define a series of activities that can

occur concurrently and are required to complete after all have

finished executing. Dependencies between activities within a flow

construct are defined using the child link element.

pick Similar to the eventHandlers element, this construct can also contain

child onMessage and onAlarm elements, but is used more to respond

to external events for which process execution is suspended.

scope Portions of logic within a process definition can be sub-divided into

scopes using this construct. This allows you to define variables,

faultHandlers, correlationSets, compensationHandler, and

eventHandlers elements local to the scope.

terminate This element effectively destroys the process instance. The WS-

BPEL 2.0 specification proposes that this element be renamed to exit.

throw WS-BPEL supports numerous fault conditions. Using the throw

element allows you to explicitly trigger a fault state in response to a

specific condition.

wait The wait element can be set to introduce an intentional delay within

the process. Its value can be a set time or a predefined date.

while This useful element allows you to define a loop. As with the case

element, it contains a condition attribute that, as long as it continues

resolving to “true”, will continue to execute the activities within the

while construct.

Table 16-4 Quick reference table providing short descriptions for additional WS-BPEL elements (listed in alphabetical

order).

6.a) List and compare any three standard organization that contribute SOA

 The World Wide Web Consortium – (W3C)

 Organization for the Advancement of Structured Information Standards (OASIS)

 The Web Services Interoperability Organization (WS-I)

20 | P a g e

6.b) Write short note about Orchestration Service Layer

 It allows us to directly link process logic to service interaction within our workflow logic

 Orchestration brings the business process into the service layer, positioning it as a master composition

controller.

 The orchestration service layer introduces a parent level of abstraction to ensure that service operations

are executed in a specific sequence.

 This promotes agility and reusability

 Within the orchestration service layer, process services compose other services that provide specific sets

of functions, independent of the business rules and scenario-specific logic required to execute a process

instance.

21 | P a g e

7. Summarize the steps to design service oriented business process

Step 1: Map out interaction scenarios.

By using the following information gathered so far, we can define the message exchange

requirements of our process service:

 Available workflow logic produced during the service modeling process in Chapter 12.

 The process service candidate created in Chapter 12.

 The existing service designs created in Chapter 15.

This information is now used to form the basis of an analysis during which all possible interaction

scenarios between process and partner services are mapped out. The result is a series of processing

requirements that will form the basis of the process service design we proceed to in Step 2.

The result of mapping out interaction scenarios establishes that the process service has one
potential client partner service, and four potential partner services from which it may need to invoke
up to five operations (Figure 16.10).

Timesheet

Submission

Process

Invoice.GetBilledHours

Timesheet.GetAuthorizedHours

Employee.GetWeeklyHoursLimit

Employee.UpdateHistory

Notification.SendMessage

Submit

22 | P a g e

Figure 16-2 The incoming and outgoing request messages expected to be processed by the
Timesheet Submission Process Service.

Step 2: Design the process service interface.

Now that we understand the message exchange requirements, we can proceed to define a service

definition for the process service. When working with process modeling tools, the process service

WSDL will typically be auto-generated for you. However, you should also be able to edit the source

markup code or even import your own WSDL.

Either way, it is best to review the WSDL being used and revise it as necessary. Here are some

suggestions:

 Document the input and output values required for the processing of each operation, and

populate the types section with XSD schema types required to process the operations. Move

the XSD schema information to a separate file, if required.

 Build the WSDL definition by creating the portType (or interface) area, inserting the

identified operation constructs. Then, add the necessary message constructs containing the

part elements which reference the appropriate schema types. Add naming conventions that are

in alignment with those used by your other WSDL definitions.

 Add meta information via the documentation element.

 Apply other design standards within the confines of the modeling tool.

There is less opportunity to incorporate the other steps from the service design processes described in

Chapter 15. For example, applying the service-orientation principle of statelessness is difficult, since

process services maintain state so that other services don’t have to.

Example

It looks like the Timesheet Submission Process Service interface will be pretty straight-forward. It
only requires one operation used by a client to initiate the process instance (Figure 16.11).

Timesheet

Submission

Process

Submit

Figure 16-3 Timesheet Submission Process Service design.

Below is the corresponding WSDL definition.

 <definitions name="TimesheetSubmission"

 targetNamespace="http://www.xmltc.com/tls/process/wsdl/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:ts="http://www.xmltc.com/tls/timesheet/schema/"

23 | P a g e

 xmlns:tsd="http://www.xmltc.com/tls/timesheetservice/schema/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://www.xmltc.com/tls/timesheet/wsdl/"

 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

<types>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.xmltc.com/tls/timesheetsubmissionservice

/schema/">

 <xsd:import

namespace="http://www.xmltc.com/tls/timesheet/schema/"

schemaLocation="Timesheet.xsd"/>

 <xsd:element name="Submit">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="ContextID" type="xsd:integer"/>

 <xsd:element name="TimesheetDocument"

type="ts:TimesheetType"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

</types>

<message name="receiveSubmitMessage">

 <part name="Payload" element="tsd:TimesheetType"/>

</message>

<portType name="TimesheetSubmissionInterface">

 <documentation>

 Initiates the Timesheet Submission process. </documentation>

 <operation name="Submit">

 <input message="tns:receiveSubmitMessage"/>

 </operation>

</portType>

<plnk:partnerLinkType name="TimesheetSubmissionType">

 <plnk:role name="TimesheetSubmissionService">

 <plnk:portType name="tns:TimesheetSubmissionInterface"/>

 </plnk:role>

</plnk:partnerLinkType>

24 | P a g e

</definitions>

Example 16-13 The abstract service definition for the Timesheet Submission Process Service.

Note the bolded plnk:parnterLinkType construct at the end of this WSDL definition. This is

added to every partner service.

Step 3: Formalize partner service conversations.

We now begin our WS-BPEL process definition by establishing details about the services with which

our process service will be interacting.

The following steps are suggested:

1. Define the partner services that will be participating in the process and assign each the role it will
be playing within a given message exchange.

2. Add parterLinkType constructs to the end of the WSDL definitions of each partner service.

3. Create partnerLink elements for each partner service within the process definition.

4. Define variable elements to represent incoming and outgoing messages exchanged with

partner services.

This information essentially documents the possible conversation flows that can occur within the

course of the process execution. Depending on the process modeling tool used, completing these

steps may simply require interaction with the user-interface provided by the modeling tool.

Example

Now that the Timesheet Submission Process Service has an interface, TLS can begin to work on the
corresponding process definition. It begins by looking at the information it gathered in Step 1. As you
may recall, TLS determined the process service as having one potential client partner service, and
four potential partner services from which it may need to invoke up to five operations.

Roles are assigned to each of these services, labeled according to how they relate to the process
service. These roles are then formally defined by appending existing service WSDL definitions with a

partnerLinkType construct.

The example below shows how the Employee Service definition (as designed in Chapter 15) is

amended to incorporate the WS-BPEL partnerLinkType construct and its corresponding

namespace.

<definitions

 name="Employee"

 targetNamespace="http://www.xmltc.com/tls/employee/wsdl/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:act="http://www.xmltc.com/tls/employee/schema/accounting/"

 xmlns:hr="http://www.xmltc.com/tls/employee/schema/hr/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://www.xmltc.com/tls/employee/wsdl/"

 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

...

25 | P a g e

 <plnk:partnerLinkType name="EmployeeType">

 <plnk:role name="EmployeeService">

 <plnk:portType name="tns:EmployeeInterface"/>

 </plnk:role>

 </plnk:partnerLinkType>

</definitions>

Example 16-14 The request messages expected to be processed by the Timesheet
Submission Process Service.

This is formalized within the process definition through the creation of partnerLink elements that

reside within the partnerLinks construct. TLS analysts and architects work with a process

modeling tool to drag and drop partnerLink objects, resulting in the following code being

generated.

<partnerLinks>

 <partnerLink name="client"

 partnerLinkType="bpl:TimesheetSubmissionProcessType"

 myRole="TimesheetSubmissionProcessServiceProvider"/>

 <partnerLink name="Invoice"

 partnerLinkType="inv:InvoiceType"

 partnerRole="InvoiceServiceProvider"/>

 <partnerLink name="Timesheet"

 partnerLinkType="tst:TimesheetType"

 partnerRole="TimesheetServiceProvider"/>

 <partnerLink name="Employee"

 partnerLinkType="emp:EmployeeType"

 partnerRole="EmployeeServiceProvider"/>

 <partnerLink name="Notification"

 partnerLinkType="not:NotificationType"

 partnerRole="NotificationServiceProvider"/>

</partnerLinks>

Example 16-15 The partnerLinks construct containing partnerLink elements for each of

the process partner services.

Next the input and output messages of each partner service are assigned to individual variable

elements, as part of the variables construct. A variable element is also added to represent the

Timesheet Submission Process Service Submit operation that is called by the HR client application
to kick off the process.

<variables>

 <variable name="ClientSubmission"

messageType="bpl:receiveSubmitMessage"/>

26 | P a g e

 <variable name="EmployeeHoursRequest"

messageType="emp:getWeeklyHoursRequestMessage"/>

 <variable name="EmployeeHoursResponse"

messageType="emp:getWeeklyHoursResponseMessage"/>

 <variable name="EmployeeHistoryRequest"

messageType="emp:updateHistoryRequestMessage"/>

 <variable name="EmployeeHistoryResponse"

messageType="emp:updateHistoryResponseMessage"/>

 <variable name="InvoiceHoursRequest"

messageType="inv:getBilledHoursRequestMessage"/>

 <variable name="InvoiceHoursResponse"

messageType="inv:getBilledHoursResponseMessage"/>

 <variable name="TimesheetAuthorizationRequest"

messageType="tst:getAuthorizedHoursRequestMessage"/>

 <variable name="TimesheetAuthorizationResponse"

messageType="tst:getAuthorizedHoursResponseMessage"/>

 <variable name="NotificationRequest" messageType="not:sendMessage"/>

</variables>

Example 16-16 The variables construct containing individual variable elements

representing input and output messages from all partner services and for the process service
itself.

If you check back to the Employee Service definition TLS designed in Chapter 15, you’ll notice that

the name values of the message elements correspond to the values assigned to the messageType

attributes in the above displayed variable elements.

Step 4: Define process logic.

Finally, everything is in place for us to complete the process definition. This step is a process in itself,

as it requires that all existing workflow intelligence be transposed and implemented via a WS-BPEL

process definition.

27 | P a g e

R
e
tr

ie
v
e

e
m

p
lo

y
e
e

ID

fr

o
m

ti
m

e
s
h
e
e
t

v
a
ri
a
b
le

 a
n
d
 p

la
c
e
 i
t

(a
lo

n
g
 w

it
h

c
o
m

m
e
n
t

te
x
t)

 i
n
to

th
e
 E

m
p
lo

y
e
e

S
e
rv

ic
e
 r

e
q
u
e
s
t

m
e
s
s
a
g
e
 f

o
r

th
e

U
p
d
a
te

H
is

to
ry

o
p
e
ra

ti
o
n
.

In
v
o
k
e

th

e

E
m

p
lo

y
e
e

S

e
rv

ic
e

b
y
 s

e
n
d
in

g
 t

h
e

U
s
e
 t

h
e
 E

m
p
lo

y
e
e
 S

e
rv

ic
e
 t

o
 a

d
d
 a

c
o
m

m
e
n
t

to
 t

h
e
 e

m
p
lo

y
e
e
's

 p
ro

fi
le

h
is

to
ry

.

In
v
o
k
e

T
h

ro
w

A
s
s
ig

n

G
e
t

th
e
 I

D
 o

f
th

e

e
m

p
lo

y
e
e
's

m
a
n
a
g
e
r

fr
o
m

 t
h
e

ti
m

e
s
h
e
e
t

v
a
ri
a
b
le

,

a
n
d
 s

to
re

 i
t

in
 t

h
e

re
q
u
e
s
t

m
e
s
s
a
g
e

fo
r

th
e

N

o
ti
fi
c
a
ti
o
n

S
e
rv

ic
e
.

S
e
n
d
 t

h
e
 r

e
q
u
e
s
t

m
e
s
s
a
g
e
 t

o
 t

h
e

N
o
ti
fi
c
a
ti
o
n

S
e
rv

ic
e
,

U
s
e
 t

h
e
 N

o
ti
fi
c
a
ti
o
n
 S

e
rv

ic
e
 t

o
 s

e
n
d
 a

m
e
s
s
a
g
e
 t

o
 t

h
e
 e

m
p
lo

y
e
e
's

 m
a
n
a
g
e
r.

In
v
o
k
e

A
s
s
ig

n

L
o
o
k
 u

p
 t

h
e

e
m

p
lo

y
e
e

ID

fr

o
m

th
e
 t

im
e
s
h
e
e
t

v
a
ri
a
b
le

 a
n
d
 c

o
p
y
 i

t

to

th

e

N

o
ti
fi
c
a
ti
o
n

S
e
rv

ic
e
 r

e
q
u
e
s
t

m
e
s
s
a
g
e
.

th
e
n
 s

e
n
d
 t

h
e
 n

e
x
t

e
-m

a
il

n
o
ti
fi
c
a
ti
o
n
 t

o

th
e

e
m

p
lo

y
e
e
.

U
s
e
 t

h
e
 N

o
ti
fi
c
a
ti
o
n
 S

e
rv

ic
e
 t

o
 s

e
n
d
 a

m
e
s
s
a
g
e
 t

o
 t

h
e
 e

m
p
lo

y
e
e
.

A
s
s
ig

n

E
n
d
 t

h
e

p
ro

c
e
s
s
.

re
q
u
e
s
t

m
e
s
s
a
g
e
 t

o

it
s

U
p
d
a
te

H
is

to
ry

o
p
e
ra

ti
o
n
 (
w

h
ic

h

re
s
p
o
n
d
s
 w

it
h
 a

re
tu

rn
 m

e
s
s
a
g
e
).

w
h
ic

h
 s

u
b
s
e
q
u
e
n
tl
y

is
s
u
e
s
 a

n
 e

-m
a
il

to

th
e
 m

a
n
a
g
e
r.

S
e
n
d
 a

n
o
th

e
r

re
q
u
e
s
t

to
 t

h
e

N
o
ti
fi
c
a
ti
o
n

S
e
rv

ic
e
,

In
v
o
k
e

A
n
y
 o

n
e
 o

f
th

e
 t

h
ro

w

e
le

m
e
n
ts

 f
ro

m
 t

h
e
 m

a
in

p
ro

c
e
s
s
 w

ill
 l
e
a
d
 t

o
 t

h
is

fa
u
lt
 h

a
n
d
lin

g
 p

ro
c
e
s
s
.

Figure 16-4 A visual representation of the process logic within the faultHandlers construct.

Note that the following, abbreviated markup code samples reside within the sequence child

construct of the parent faultHandlers construct established in the previous example.

First up is the markup code for the “Update employee profile history” task.

<assign name="SetEmployeeMessage">

 <copy>

 <from variable="ClientSubmission" .../>

 <to variable="EmployeeHistoryRequest" .../>

28 | P a g e

 </copy>

 <copy>

 <from expression="..."/>

 <to variable="EmployeeHistoryRequest" .../>

 </copy>

</assign>

<invoke name="UpdateHistory"

 partnerLink="Employee"

 portType="emp:EmployeeInterface"

 operation="UpdateHistory"

 inputVariable="EmployeeHistoryRequest"

 outputVariable="EmployeeHistoryResponse"/>

Example 16-17 Two copy elements used to populate the EmployeeHistoryRequest message.

To perform the first task of updating the employee history, the fault handler routine uses an assign

construct with two copy constructs. The first retrieves the EmployeeID value from the

ClientSubmission variable, while the latter adds a static employee profile history comment.

The invoke element then launches the Employee Service (used previously for its

GetWeeklyHoursLimit operation), and submits the EmployeeHistoryRequest message to its
UpdateHistory operation in order to log the profile history comment.

The next block of markup code takes care of both the remaining “Send notification” tasks.

<assign name="GetManagerID">

 <copy>

 <from expression="getVariableData(...)"/>

 <to variable="NotificationRequest" .../>

 </copy>

</assign>

<invoke name="SendNotification"

 partnerLink="Notification"

 portType="not:NotificationInterface"

 operation="SendMessage"

 inputVariable="NotificationRequest"/>

<assign name="GetEmployeeID">

 <copy>

 <from expression="getVariableData(...)"/>

 <to variable="NotificationRequest" .../> </copy>

</assign>

29 | P a g e

<invoke name="SendNotification"

 partnerLink="Notification"

 portType="not:NotificationInterface"

 operation="SendMessage"

 inputVariable="NotificationRequest"/>

<terminate name="EndTimesheetSubmissionProcess"/>

Example 16-18 The last activities in the process.

Finally, the faultHandlers construct contains two more assign + invoke element pairs. Both

use the Notification Service’s SendMessage operation, but in different ways. The first assign

construct extracts the ManagerID value from the ClientSubmission variable, which is then passed to
the Notification Service. It is the sole parameter that the service subsequently uses to look up the
corresponding e-mail address used to send the notification message.

Next, the second assign construct retrieves the EmployeeID value from the same ClientSubmission

variable, which the Notification Service ends up using to send a message to the employee.

terminate, the very last element in the construct, halts all further processing.

Step 5: Align interaction scenarios and refine process. (Optional)

This final, optional step encourages you to perform two specific tasks: revisit the original interaction

scenarios created in Step 1 and review the WS-BPEL process definition to look for optimization

opportunities.

Let’s start with the first task. Bringing the interaction scenarios in alignment with the process logic

expressed in the WS-BPEL process definition provides a number of benefits, including:

 The service interaction maps (as activity diagrams or in whatever format you created them) are
an important part of the solution documentation, and will be useful for future maintenance and
knowledge transfer requirements.

 The service interaction maps make for great test cases, and can spare testers from having to
perform speculative analysis.

 The implementation of the original workflow logic as a series of WS-BPEL activities may have
introduced new or augmented process logic. Once compared to the existing interaction
scenarios, the need for additional service interactions may arise, leading to the discovery of new
fault or exception conditions that can then be addressed back in the WS-BPEL process
definition.

Secondly, spending some extra time to review your WS-BPEL process definition is well worth the

effort. WS-BPEL is a multi-feature language that provides different approaches for accomplishing

and structuring the same overall activities. By refining your process definition, you may be able to:

 Consolidate or restructure activities to achieve performance improvements.

 Streamline the markup code to make maintenance easier.

 Discover features that were previously not considered.

30 | P a g e

Task 1:

Compare

billed

hours

Invoke

Assign

Receive

Task 2:

Get

authoriza-

tion

Invoke

Assign

Task 3:

Compare

weekly

hours

limit

Invoke

Assign

Switch

Reply

SwitchSwitch

Figure 16-5 Sequential, synchronous execution of process activities.

Task 1:

Compare

billed

hours

Invoke

Assign

Task 2:

Get

authoriza-

tion

Invoke

Assign

Task 3:

Compare

weekly

hours

limit

Invoke

Assign

Switch

Reply

SwitchSwitch

Receive

Flow

Figure 16-6 Concurrent execution of process activities using the Flow construct.

31 | P a g e

Finally, while reviewing the structure of the fault handling routine, a further refinement is suggested.
Because the last two activities invoke the same Notification Service, they can be collapsed into a

while construct that loops twice through the invoke element.

8. Explain WS-Addressing language basics

17.1.1. The EndpointReference element

The EndpointReference element is used by the From, ReplyTo, and FaultTo elements described in the

Message information header

elements section. This construct can be comprised of a set of elements that assist in providing service

interface information (including

supplementary metadata), as well as the identification of service instances.

The WS-Addressing elements described in Table 17.1 can be associated with an EndpointReference

construct.

17.1.2. Message information header elements

This collection of elements (first introduced as concepts in Chapter 7) can be used in various ways to

assemble metadata-rich SOAP header blocks. Table 17.2 lists the primary elements and provides brief

descriptions.

32 | P a g e

17.1.3. WS-Addressing reusability

The endpoint identification and message routing mechanisms provided by WS-Addressing establish a

generic set of extensions useful to custom service-oriented solutions but also reusable by other WS-*

specifications. As such, WS-Addressing can be viewed as a utility specification that further supports

the notion of composability within SOA.

Although we don't discuss the WS-Notification or WS-Eventing languages in any detail, let's take a

brief glimpse at their Header constructs for some examples of how WS-Addressing message

information header elements are reused in support of other WS-* extensions.

9.a) Write the principles that are to be applied in the architecture of enterprise application

33 | P a g e

9.b List down the architectural consideration of enterprise application

2. Non functional requirements

 Performance

 Scalability

 Availability

 Reliability

 Security

34 | P a g e

10. Explain the key patterns for J2EE Reference. model and Technical architecture
Reference Model

The below picture shows logical organization of a thin client web-based Java EE application
as layers. It depicts reference model for a layered web-based java

35 | P a g e

36 | P a g e

Technical architecture

