

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test – III, November 2018

Sub: SOFTWARE ENGINEERING Code: 17MCA34

Date: 20-11-2018 Duration: 90 mins Max Marks: 50 Sem: III Branch: MCA

Answer ONE FULL QUESTION from each part Marks
OBE

CO RBT

Part - I

1 Explain in detail about different levels of cohesion. 10 CO5 L2
(OR)

2 Discuss about Cyclomatic complexity with example. 10 CO5 L2
Part – II

3 Explain in detail about the issues related to the distributed system design. 10 CO5 L2

(OR)

4 Explain in detail about five different architectural styles of distributed systems. 10 CO5 L2
Part – III

5 Explain in detail about software as a service. 10 CO5 L2
(OR)

6 Describe in detail about COCOMO effort estimation model. 10 CO5 L2

PART - IV
7 Discuss in detail about project scheduling and staffing. 10 CO5 L2

(OR)

8 Briefly explain the steps involved in the risk management process. 10 CO5 L2
Part – V

9 Write in detail about white box testing techniques. 10 CO4 L2

(OR)

10 Write in detail about any two black box testing techniques. 10 C04 L2

CMR Institute of Technology, Bengalore – 560 037
Department of Computer Applications

Internal Assessment Test – II
Answer Key for 17MCA34 – SOFTWARE ENGINEERING Semester / Section: III / A Date of Test: 20-11-2018

--
1 Out of 10

1. Explain in detail about different levels of cohesion (10)

i. Coincidental cohesion occurs when there is no meaningful relationship

among the elements of a module

o tasks that have no meaningful relationship to one another

o Example: Fix Car, Bake Cake, Walk Dog, Fill out Application Form,

Go to the Movie

ii. A module has logical cohesion if there is some logical relationship

between the elements of a module, and the elements perform functions

that fall in the same logical class

o elements contribute to activities of the same general category in

which the activity or activities to be executed are selected from

outside the module.

o Example: contemplating a journey might compile the following

list: Go by car, Go by Train, Go by Plane

iii. Temporal cohesion is the same as logical cohesion, except that the

elements are also related in time and are executed together

o tasks that are all related in time

o Example: “initialization”, “termination”, “Do All Startup Activities”

iv. A procedurally cohesive module contains elements that belong to a

common procedural unit

o possibly unrelated activities, in which control passes from one

activity to the next

• Example: a loop or a sequence of decision statements

v. Sequentially cohesive modules bear a close resemblance to the

problem structure.

o a sequentially bound module may contain several functions or

parts of different functions

o elements are involved in activities such that output data from one

activity serves as input data to the next (data passes from one

activity to another)

iii. Temporal cohesion is the same as logical cohesion, except that the

elements are also related in time and are executed together

o tasks that are all related in time

o Example: “initialization”, “termination”, “Do All Startup Activities”

iv. A procedurally cohesive module contains elements that belong to a

common procedural unit

o possibly unrelated activities, in which control passes from one

activity to the next

• Example: a loop or a sequence of decision statements

v. Sequentially cohesive modules bear a close resemblance to the

problem structure.

o a sequentially bound module may contain several functions or

parts of different functions

o elements are involved in activities such that output data from one

activity serves as input data to the next (data passes from one

activity to another)

 (OR)

CMR Institute of Technology, Bengalore – 560 037
Department of Computer Applications

Internal Assessment Test – II
Answer Key for 17MCA34 – SOFTWARE ENGINEERING Semester / Section: III / A Date of Test: 20-11-2018

--
2 Out of 10

2. Discuss about Cyclomatic complexity with example (10)

• A more refined measure is the cyclomatic complexity measure

• For a graph G, the cyclomatic number V(G) is defined as V(G) = e - n +

p where n – no. of nodes, e - no. of edges, and p - connected

components (a subgraph in which any two vertices are connected to

each other by paths) or p is number of nodes that have exit points

• To use this to define the cyclomatic complexity of a module, the

control flow graph (CFG) G of the module is first drawn.

• To construct a control flow graph of a program module

o break the module into blocks (nodes) delimited by statements that

affect the control flow, like if, while, repeat, and goto

o If the control from a block i can branch to a block j , then draw an arc

from node i to node j in the graph

• The control flow of a program can be constructed mechanically

 If the Cyclomatic number is between 1 and 10 then it represents the
Structured and well written code, High Testability and Cost and Effort
is less

Note: the students can compute the Cyclomatic number based on the
graph and connected components.

3. Explain in detail about the issues related to the distributed

system design

(10)

 Transparency

o To what extent should the distributed system appear to the user as a

single system?

 Openness

o Should a system be designed using standard protocols that support

interoperability?

 Scalability

o How can the system be constructed so that it is scalable?

 Security

o How can usable security policies be defined and implemented?

 Quality of service (QoS)

o How should the quality of service be specified?

 Failure management

o How can system failures be detected, contained and repaired?

 (OR)

4. Explain in detail about five different architectural styles of

distributed systems

(10)

 When designing a distributed application, you should choose an
architectural style (pattern) that supports the critical non-functional
requirements of your system.

 Five architectural styles:
1. Master-slave architecture: which is used in real-time systems in which

guaranteed interaction response times are required.
• commonly used in real-time systems where there may be separate

processors associated with data acquisition from the system’s

CMR Institute of Technology, Bengalore – 560 037
Department of Computer Applications

Internal Assessment Test – II
Answer Key for 17MCA34 – SOFTWARE ENGINEERING Semester / Section: III / A Date of Test: 20-11-2018

--
3 Out of 10

environment, data processing, and computation and actuator
management

2. Two-tier client–server architecture: which is used for simple client–
server systems, and in situations where it is important to centralize the
system for security reasons. In such cases, communication between the
client and server is normally encrypted.
• The system is implemented as a single logical server plus an indefinite

number of clients that use that server
o Thin-Client model: the presentation layer is implemented on the client

and all other layers (data management, application processing, and
database) are implemented on a server.

o Fat-client model: some or all of the application processing is carried
out on the client. Data management and database functions are
implemented on the server.

3. Multi-tier client–server architecture: which is used when there is a high
volume of transactions to be processed by the server.
• Improves the problems identified in the previous models – scalability,

performance
• the different layers of the system are separate processes that may

execute on different processors.
• Example: An Internet banking system
• The three-tier client–server model can be extended to a multi-tier

variant, where additional servers are added to the system

4. Distributed component architecture: which is used when resources
from different systems and databases need to be combined, or as an
implementation model for multi-tier client–server systems.
• There is no distinction in distributed component architectures

between clients and servers.
• Each distributable entity is an object that provides services to other

components and receives services from other components.

CMR Institute of Technology, Bengalore – 560 037
Department of Computer Applications

Internal Assessment Test – II
Answer Key for 17MCA34 – SOFTWARE ENGINEERING Semester / Section: III / A Date of Test: 20-11-2018

--
4 Out of 10

• Component communication is through a middleware system.
• However, distributed component architectures are more complex to

design than client server systems.

5. Peer-to-peer (P2P) architecture: which is used when clients exchange
locally stored information and the role of the server is to introduce clients
to each other. It may also be used when a large number of independent
computations may have to be made.
• In the typical client-server architectural models, servers do more work

than clients
• P2P are decentralised systems where computations may be carried out

by any node in the network.
• The overall system is designed to take advantage of the computational

power and storage of a large number of networked computers
• The standards and protocols that enable communications across the

nodes are embedded in the application itself and each node must run
a copy of that application.

Example: BitTorrent, Instant messaging systems, Voice over IP (VOIP)
phone services, such as Skype

o Decentralized architecture: the nodes in the network are not simply
functional elements but are also communications switches that can
route data and control signals from one node to another

o Semi-centralized architecture: one or more nodes act as servers to

facilitate node communications
• This reduces the amount of traffic between nodes
• the role of the server (sometimes called a super-peer) is to help

establish contact between peers in the network, or to coordinate the
results of a computation

5. Explain in detail about software as a service (5)

• the problems of server overload can be significantly reduced by using a

modern browser as the client software.

• a browser can be configured and used as a client, with significant local

processing.

CMR Institute of Technology, Bengalore – 560 037
Department of Computer Applications

Internal Assessment Test – II
Answer Key for 17MCA34 – SOFTWARE ENGINEERING Semester / Section: III / A Date of Test: 20-11-2018

--
5 Out of 10

• This notion of Software as a Service (SaaS) involves hosting the

software remotely and providing access to it over the Internet

• The key elements of SaaS

1. Software is deployed on a server (or more commonly a number of

servers) and is accessed through a web browser. It is not deployed on a

local PC.

2. The software is owned and managed by a software provider, rather

than the organizations using the software.

3. Users may pay for the software according to the amount of use they

make of it or through an annual or monthly subscription. Sometimes, the

software is free.

 Implementation factors for SaaS

o Configurability: How do you configure the software for the specific

requirements of each organization?

o Multi-tenancy: How do you present each user of the software with the

impression that they are working with their own copy of the system

while, at the same time, making efficient use of system resources?

o Scalability: How do you design the system so that it can be scaled to

accommodate an unpredictably large number of users?

• the benefit of SaaS: the costs of management of software are

transferred to the provider.

o The provider is responsible for fixing bugs and installing software

upgrades, dealing with changes to the operating system platform, and

ensuring that hardware capacity can meet demand.

o Software license management costs are zero and pay-per-use model

• Disadvantages:

o the costs of data transfer to the remote service

o lack of control over software evolution

o problems with laws and regulations

(OR)

6. Describe in detail about COCOMO effort estimation model (10)

 estimates the total effort in terms of person-months.

 The basic steps in this model are:

CMR Institute of Technology, Bengalore – 560 037
Department of Computer Applications

Internal Assessment Test – II
Answer Key for 17MCA34 – SOFTWARE ENGINEERING Semester / Section: III / A Date of Test: 20-11-2018

--
6 Out of 10

1. Obtain an initial estimate (also called nominal estimate) of the

development effort from the estimate of thousands of delivered lines of

source code (KLOC).

2. Determine a set of 15 multiplying factors from different attributes of

the project.

3. Adjust the effort estimate by multiplying the initial estimate with all

the multiplying factors

• To determine the initial effort Ei in person-months the equation used

is of the type Ei = a * (KLOC)b

• The value of the constants a and b depend on three of the project

types: organic, semidetached, and embedded

• There are 15 different attributes, called cost driver attributes that

determine the multiplying factors.

• The multiplying factors for all 15 cost drivers are multiplied to get the

effort adjustment factor (EAF).

• The final effort estimate, E, is obtained by multiplying the initial

estimate by the EAF. That is, E = EAF * Ei.

7. Discuss in detail about project scheduling and staffing (10)

 In a project, the scheduling activity can be broken into two sub-

activities:

o determining the overall schedule (the project duration) with major

milestones, and

o developing the detailed schedule of the various tasks.

 Overall Scheduling

• One method to determine the normal (or nominal) overall schedule is

to determine it as a function of effort

• One approach: fitting a regression curve through the scatter plot

obtained by plotting the effort and schedule of past projects

• Square root check (rule of thumb), is sometimes used to check the

schedule of medium-sized projects

• the proposed schedule can be around the square root of the total

effort in person-months.

 Detailed Scheduling

• Once the milestones and the resources are fixed, it is time to set the

detailed scheduling

• For detailed schedules, the major tasks fixed while planning the

milestones are broken into small schedulable activities in a hierarchical

manner.

 Team Structure

• Detailed scheduling is done only after actual assignment of people has

been done

(i) Hierarchical (Chief Programmer Team) organization:

o the project manager is responsible for all major technical decisions of

the project

o The team typically consists of programmers, testers, a configuration

controller, and possibly a librarian for documentation.

CMR Institute of Technology, Bengalore – 560 037
Department of Computer Applications

Internal Assessment Test – II
Answer Key for 17MCA34 – SOFTWARE ENGINEERING Semester / Section: III / A Date of Test: 20-11-2018

--
7 Out of 10

(ii) Egoless team (democratic team) organization:

o consist of ten or fewer programmers

o input from every member is taken for major decisions

o Group leadership rotates among the group members

(iii) Emerging organization:

• recognizes that there are three main task categories in software

development: (i) development related, (ii) testing related and (iii)

management related

• recognizes that it is often desirable to have the test and development

team be relatively independent, and also not to have the developers

or tests report to a nontechnical manager

• there is an overall unit manager, under whom there are three small

hierarchic organizations – (i) for development, (ii) for testing and (iii)

for program management

o The developers write code and they work under a development

manager

o The testers will test the code and they work under a test manager

o The program managers provides the specifications for what is being

built, and ensure that development and testing are properly

coordinated

(OR)

8. Briefly explain the steps involved in the risk management

process

(10)

 Risk is defined as an exposure to the chance of injury or loss

 Risk management is an attempt to minimize the chances of failure

caused by unplanned events

 The aim of risk management is not to avoid getting into projects that

have risks but to minimize the impact of risks in the projects that are

undertaken

 Risk management is the area that tries to ensure that the impact of

risks on cost, quality, and schedule is minimal

 risk management has to deal with:

o identifying the undesirable events that can occur,

o the probability of their occurring, and

o the loss if an undesirable event does occur.

 the risk management revolves around risk assessment and risk control

 Risk Assessment: an activity that must be undertaken during project

planning

• This involves:

o identifying the risks

o analyzing them and

o prioritizing them on the basis of the analysis

• The goal of risk assessment is to prioritize the risks so that attention

and resources can be focused on the more risky items

CMR Institute of Technology, Bengalore – 560 037
Department of Computer Applications

Internal Assessment Test – II
Answer Key for 17MCA34 – SOFTWARE ENGINEERING Semester / Section: III / A Date of Test: 20-11-2018

--
8 Out of 10

• Risk identification identifies all the different risks for a particular

project

• Methods that can aid risk identification include:

o checklists of possible risks o surveys

o meetings and brainstorming  reviews of plans

o work products o processes

 Risk Analysis:

• the probability of occurrence of a risk has to be estimated, along with

the loss that will occur if the risk does materialize

• This is often done through discussion, using experience and

understanding of the situation.

• Cost estimation (like COCOMO) can be used to assess the cost and

schedule risks

• The other approaches for risk analysis include:

o decision analysis: studying the probability and the outcome of possible

decisions

o network analysis: understanding the task dependencies to decide

critical activities and the probability and cost of their not being

completed on time

o quality factor analysis: risks on the various quality factors like reliability

and usability and

o performance analysis: evaluating the performance early through

simulation, etc., if there are strong performance constraints on the

system

9. Write in detail about white box testing techniques (10)

 White box testing focuses on implementation

 Is also called structural testing

 Types of White-Box (structural) testing:

o Control flow based criteria: looks at the coverage of the control flow

graph

o Data flow based testing: looks at the coverage in the definition-use

graph

o Mutation testing: looks at various mutants of the program

 Control flow based criteria

 Considers the program as control flow graph

 Nodes represent code blocks – i.e. set of statements always executed

together

 An edge (i,j) represents a possible transfer of control from i to j

 Statement Coverage Criterion:

 Criterion: Each statement is executed at least once during testing (i.e.)

set of paths executed during testing should include all nodes

 Limitation: does not require a decision to evaluate to false if no else

clause

 Branch coverage

 Criterion: Each edge should be traversed at least once during testing

i.e. each decision must evaluate to both true and false during testing

 Branch coverage implies statement coverage

CMR Institute of Technology, Bengalore – 560 037
Department of Computer Applications

Internal Assessment Test – II
Answer Key for 17MCA34 – SOFTWARE ENGINEERING Semester / Section: III / A Date of Test: 20-11-2018

--
9 Out of 10

 If multiple conditions in a decision, then all conditions need not be

evaluated to T and F

 The trouble with branch coverage comes if a decision has many

conditions in it

 There are other criteria too - path coverage, predicate coverage,

cyclomatic complexity

 Data Flow-Based Testing

 select the paths to be executed during testing based on data flow

analysis

 information about where the variables are defined and where the

definitions are used is also used to specify the test cases

 The basic idea: the definitions of variables and their subsequent use is

tested

 ensure some coverage of the definitions and uses of variables

 A variable occurrence can be one of the following three types:

o def represents the definition of a variable

o c-use represents computational use of a variable

o p-use represents predicate use

 Mutation Testing

 It takes the program and creates many mutants of it by making simple

changes to the program

 The goal: make sure that during the course of testing, each mutant

produces an output different from the output of the original program

 faults of some pre-decided types are introduced in the program being

tested.

 Testing then tries to identify those faults in the mutants

 this technique will be successful only if the changes introduced in the

main program capture the most likely faults in some form

 competent programmer hypothesis: programmers are generally very

competent

 a programmer will produce a program that is very "close“ to a correct

program

 coupling effect: the test cases that distinguish programs with minor

differences with each other are so sensitive

 (OR)

10. Write in detail about any two black box testing techniques (10)

• In black-box testing the structure of the program is not considered

• It is also called functional or behavioral testing

 Equivalence Class Partitioning

• divide the input domain into a set of equivalence classes, so that if the

program works correctly for a value then it will work correctly for all

the other values in that class

• The equivalence class partitioning method tries to approximate

without looking at the internal structure of the program

CMR Institute of Technology, Bengalore – 560 037
Department of Computer Applications

Internal Assessment Test – II
Answer Key for 17MCA34 – SOFTWARE ENGINEERING Semester / Section: III / A Date of Test: 20-11-2018

--
10 Out of 10

• An equivalence class is formed of the inputs for which the behavior of

the system is specified or expected to be similar.

• Example: 0 < count < Max = count < 0 and count > Max
 Boundary Value Analysis (BVA)
• an equivalence class fail on some special values.
• These values often lie on the boundary of the equivalence class
• In boundary value analysis, choose an input for a test case from an

equivalence class, such that the input lies at the edge of the

equivalence classes

• Boundary value test cases are also called "extreme cases”

 Cause-Effect Graphing

• is a technique that aids in selecting combinations of input conditions

in a systematic way, such that the number of test cases does not

become unmanageably large

• A cause is a distinct input condition, and an effect is a distinct output

condition

• Each condition forms a node in the cause-effect graph. The conditions

should be stated such that they can be set to either true or false

• Example: an input condition "file is empty“ can be set to true by having

an empty input file, and false by a nonempty file.

 Pair-wise Testing

o single-mode fault: parameters can take different values, and for some

of them the software may not work correctly. (Example: a software

not able to print for a particular type of printer)

o multi-mode faults: there are n parameters for a system, and each one

of them can take m different values, generate each test case one

different value of each parameter (Example: a telephone billing

software that does not compute correctly for night time calling)

• most software faults are revealed on some special single values or by

an interaction of pair of values

o pair-wise testing: test all combinations of values for each pair of

parameters

