USN					

Internal Assesment Test - I

Sub:	QUANTITAT	IVE METHODS						Code:	16MBA14
Date:		Duration:	90 mins	Max Marks:	40	Sem:	I	Branch:	MBA

Date:		Duration:	90 mins	Max N	Marks: 40	Sem:	I B	ranch:	MBA	
									OE	BE
									k _{CO}	RB
	TD 4.4 A	A	E 11.0	19 (4 6 %)	22.34			S		Т
	Part A - Ai	nswer Any Tw	o Full Ques	stions (16*t)2=32 Ma	rks)				
1 (a)	What is dispe	ersion? Write a	ny 2 characte	eristics of d	ispersion			[02]] CO1	L1
(b)	Calculate the	median from t	he following	distributio	n using st	en deviation?		[06	[CO2	1.2
(-)	Carcarate the	medium moim t	ne ronowing	, distributio	ii asing st	ep de viation.		Loc	,1002	
	Marks: 4-7	8-11 12-15 16	5-19 20-23	24-27						
	F : 12	23 40	65 17	3						
(a)	E 41 1.4.	1 1		£ 41 4		1.1 . 0		LUC	21 ((())	T 5
		a given below s n Co-efficient		or the two se	eries is inc	ore variable?		נטפ	[CO2	L5
	inici basca o	ii Co-cificiciit	or variation.							
	Variable	10-20	20-30	30-40	40-50	50-60	60-70			
		1.0	10		10		10			
	Frequency A	10	12	32	40	22	18			
	Frequency	18	22	40	32	18	10			
	В			. 0	02					
						1				
2 (a)	Define Mode	? Give any 2 e	xamples of r	node.				[02:	CO2	L1
		•	-		1.1					
(b)	If the average	e wages paid to	25 workers	1s /9.60, fi	nd the mis	ssing frequencie	es.	[06]] CO2	L2
	Wages	50 60	70	80	90	100 110				

Wages	50	60	70	80	90	100	110
Workers	1	3	-	-	6	2	1

(c) From the following data find out the simple and weighted average of the pass percentages [08] CO2 L3 and comment upon the performance of the students of the three universities

Courses	Bangalore University		Delhi Uni	versity	Chennai U	niversity
	Pass %	No of students	Pass %	No of students	Pass %	No of students
BA	60	3	50	4	80	7
B.Sc	70	4	60	5	30	6
B.COM	65	5	70	2	60	5
M.A.	40	2	80	3	50	3
M.Sc	55	3	40	4	70	2
M,Com	40	1	30	5	40	1

			distribution es if Media			quency	y - 230				[06]		
C.I f	10-20	20-30	30-40	40-50 65	50-6		60-70	70-8 19	00				
A Ma	_	tively cons	sidering the	followin	g two r	mutual	lly excl	usive p	rojects	for	[08]	CO2	2
Year			Project M Cash profit	t (Rs in lal	khs)	Proje Cash lakhs	profit (I	Rs in					
1			10			5	,						
2			5			25							
3			20			45							
5			60			30							
Part i)		-	1*08=08 m		de, star	ndard	deviatio	on and	co-effi	cient of	f [081	CO2	2
	Find the	e value of	1*08=08 m The mean, mean below data	dian, moo	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	2
	Find the	e value of n from the	mean, mea	dian, moo	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	2
	Find the	e value of n from the	mean, med below data	dian, moo	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	
	Find the variatio	e value of n from the	mean, med below data	dian, mod	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	
	Find the variation	e value of n from the	mean, med below data	dian, mod a. ats	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	2
	Find the variation Class In 43-47 48-52	e value of n from the	mean, med below data	dian, mod i. its 2 5	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	
	Find the variation Class In 43-47 48-52 53-57	e value of n from the	mean, med below data	dian, mod n. nts 2 5	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	
	Find the variation Class In 43-47 48-52 53-57 58-62	e value of n from the	mean, med below data	dian, mod a. ats 2 5 12	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	
	Find the variation Class In 43-47 48-52 53-57 58-62 63-67	e value of n from the	mean, med below data	dian, mod ats 2 5 12 17	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	
	Find the variation Class In 43-47 48-52 53-57 58-62 63-67 68-72	e value of n from the	mean, med below data	dian, mod ats 2 5 12 17 14 6	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	
	Find the variation Class In 43-47 48-52 53-57 58-62 63-67 68-72 73-77	e value of n from the	mean, med below data	dian, mod ats 2 5 12 17 14 6	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	
	Find the variation Class In 43-47 48-52 53-57 58-62 63-67 68-72 73-77	e value of n from the	mean, med below data	dian, mod ats 2 5 12 17 14 6	de, star	ndard	deviatio	on and	co-effi	cient of	f [08]	CO2	

CO1:					
CO2:	To introduce statistics as a tool for business decision making	3a, 1a	3c	3b	1 c
CO3:					
CO4:					
CO5:					
CO6:					

Cognitive level	KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

Key Answers

- 1) a) The word dispersion literally means deviation of spread over of certain values from their Central Value or the difference between any 2 entreme values of the levies.
 - (i) it deals with a statistical series
 - (ii) it Endicates the degree or estent to which the Vairous items of a series deviate from its ceited value.
- 2) (a) Mode is an average of position. It is defined as the Value around which the items are most heavily Concentrated. en: The average height of Indian male is 5ft 6 inches.

 Average shoe bold in a shoe shop is of number 7.
- 3) (a) An arithmetic average may be defined as the quotient obtained by dividing the total of the values of a variable by total of their observations or items. $\overline{X} = \frac{\sum X}{N}$

$$4$$
) b) CI f Modified CI $c.f$
 $4-7$ 12 $3.5-7.5$ 12
 $8-11$ 23 $7.5-11.5$ 35
 $12-15$ 40 $11.5-15.5$ 75
 $16-19$ $32-65$ $15.5-19.5$ 140
 $20-23$ 1817 $19.5-23.5$ 157
 $24-27$ $\boxed{10}$ 3 $23.5-27.5$ 160

1) c) Variable

C.I
$$f(A)$$
 \times $d=\frac{h}{h}$ fd fd^2 $f(B)$ fd fd^2

10-20 10 15 -2 -20 40 18 -36 72

20-30 12 25 -1 -12 12 22 -22 22

20-30 32 35 0 0 0 40 0 0

30-40 32 35 0 0 0 40 0 0

30-40 32 35 1 40 40 32 32 32

40-50 40 45 1 40 40 32 32 32

50-60 22 55 2 44 88 18 36 72

50-60 18 65 3 54 162 10 30 90

60-70 18 65 3 54 162 10 30 90

$$\overline{X}_{A} = A + hd$$

$$\overline{J} = \frac{2fd}{2f} = \frac{100}{140}$$

$$= 35 + 10(0.71)$$

$$= 42.14$$

$$\overline{J} = \frac{40}{140}$$

$$= 35 + 10(0.285)$$

$$= 37.85$$
Selies B is

$$\overline{U}_{B} = \sqrt{\frac{288}{140} - (0.28)^{2}} \times 10$$

$$= 14$$

$$C. U_{A} = \overline{U} \times 100 = 33.35^{\circ}/.$$

$$= \frac{14}{42.14} \times 100 = 37.12^{\circ}/.$$

$$C.VB = \frac{14}{37.85} \times 100 = 37.12$$

Total
$$f = 25$$

 $\xi f = 1+3+A+B+6+2+1$
 $25 = A+B+13$
 $A+B = 12$
 $B = 12-A$
 $\xi f n = 2040-10A$

$$\overline{\lambda} = \frac{2fx}{N} = \frac{2040 - 10A}{25}$$

$$79.60 = 2040 - 10A$$

$$10A = 50$$

$$A = 5$$

Simple A.M
$$\overline{X} = \frac{2X}{N} \Rightarrow \overline{X} = \frac{330}{6} = 55$$

$$\overline{X}_{DU} = \frac{330}{6} = 55$$

$$\overline{X}_{CU} = \frac{330}{6} = 55$$

Thus, in all the three universities the simple ang 1. of pairs comes to be 55%. Thus the performance of students are all the same.

using weights
$$\frac{7}{80} = \frac{1070}{18} = 59.44 = 60 \text{ approx}$$

$$\frac{7}{80} = \frac{1190}{23} = 51.73 = 52 \text{ approx}$$

$$\frac{7}{80} = \frac{1370}{23} = 57.08 = 57 \text{ approx}$$

$$\frac{7}{80} = \frac{1370}{24} = 57.08 = 57 \text{ approx}$$

For the above lesults of the weighted averages I is injured that the students of B. U have performed better than the other two.

It is to be noted that the Conclusion derived from Simple averages will be wrong I the Conclusion derived from the weighted averages will give the light information

CI WX 10-20 60 20-30 30 30-40 0 40-50

$$70-80$$
 $\frac{19}{230}$ gives Medias -46 Total frequency -230

$$Md = l + \frac{n}{2} - cf \times h$$

$$46 = 40 + \frac{230}{2} - 42 + 21$$

$$\frac{.6}{65} = 115 - 42 + 2 \times 10$$

$$\frac{65 \times 6}{10} = 73 - 2$$

$$39 = 73 - \chi$$

$$\gamma = 34$$

12+30+2+65+4+25+19

~ 230

タナイニ 79

TO Compute C.O.V for project X 3) (4) 9=x-x 10 135 $\bar{x} = \frac{5x}{N} = \frac{135}{5} = 27$ S.Dof $X = \sqrt{\frac{\xi d^2}{n} - \left(\frac{\xi d}{n}\right)^2}$ $= \frac{2080}{5} \frac{\sqrt{0}}{5}^2 = \sqrt{416} = 20.4$ $C.V \int d^{2}x = \frac{D_{X}}{X} \times 100 = \frac{20.4}{27} \times 100 = 75.54$ To compute c.o.v for project y $\overline{x} = \frac{5x}{5} = \frac{135}{5}$ $S.Dfr = \sqrt{\frac{830-10}{5}}^2$ = 12.88 $C.V for Y = \frac{12.88}{27} \times 100 = 47.7 \text{ y}.$ Since C.V for x is more than C.V for Y-7 is his ky project y should be adopted

(4) a)

(4) a) (m) (modified) c.f fm fd
$$d = \frac{x-A}{h} d^{2} fd^{2}$$

(I) midificant CI

43-47 2 45 425-475 7 250-10 -2 4 20

44-52 5 50 47.5 -52.5 19 660 -12 -1 1 12

53-57 12 55 52.5 -57.5 19 660 -12 -1 1 12

53-62 17 60 57.5 -62.5 36 1020 0 0 0

58-62 17 65 62.5 -67.5 50 910 14 1 1 14

(3-67 14 65 62.5 -67.5 56 420 12 2 4 24

(8-72 6 70 67.5 -72.5 56 420 12 2 4 24

(8-72 6 70 72.5 - 17.5 59 22.5 91 3 9 27

73-77 3 75 72.5 - 17.5 59 22.5 91 3 9 27

78-82 1 80 71.5 - 82.5 60 80 3 4 16 16

Above the second of the second o

= 60.73 = 60.73 $= 1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times f_0$ $= 57.5 + \frac{17 - 12}{2(17) - 12 - 14} \times 5$ = 60.625

$$S.D = \sqrt{\frac{131}{56}^2 - (\overline{d})^2} \times h$$

$$= \sqrt{\frac{131}{60} - (0.33)^2} \times S$$

$$= \sqrt{\frac{2.183}{60}} - D.108 \times S$$

$$= 1.44 \times S$$

$$= 7.20$$

$$= 65 + 5 (0.33)$$

$$= 66.65$$

$$= 7.20 \times 100$$

10.80