

VLSI Circuits & Design

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Explain the nMOS fabrication process with neat diagram.

b. Discuss Moore's law, with graph.

c. Compare the characteristics of cMOS and bipolar technologies.

(02 Marks) (08 Marks)

2 a. Define $Z_{p,u}$ and $Z_{p,d}$. Show that pull up to pull down ratio for nMOS inverter driven through

one or more pass transistor, is $\frac{Z_{pu2}}{Z_{pd2}} = 8:1$.

(10 Marks)

(10 Marks)

b. Explain the latch-up phenomena in cMOS circuits.

c. With neat diagrams, explain the merits and demerits of BiCMOS inverter configurations.

(05 Marks)

3 a. Draw the stick diagram and layout for an nMOS two way selector, with enable input.

b. Define stick diagram. Explain the encodings used for a simple nMOS process. (06 Marks) (06 Marks)

- c. With relevant diagrams, explain the Lambda based design rules as applicable to p-well cMOS process. (08 Marks)
- 4 a. What is silicide? Discuss the advantages and disadvantages of using it inplace of polysilicon.

 (06 Marks)
 - b. What is sheet resistance? Calculate sheet resistance of transistor channel if $L = 8\lambda$, $W = 2\lambda$, if n transistor channel $R_S = 10^4 \Omega$ / square. (06 Marks)
 - c. Calculate the area capacitance for the following structure if relative capacitances are:
 - i) Metal 1 to substrate 0.0754×10^{-4} pF/ μ m².

ii) Polysilicon to substrate $0.1 \times 10^{-4} \text{ pF/}\mu\text{m}^2$

iii) Gate to channel 1×10⁻⁴ pF/μm².

(08 Marks)

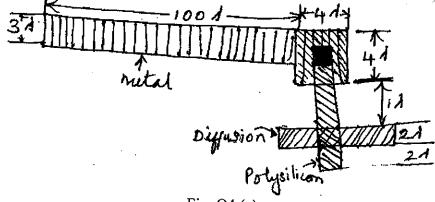


Fig. Q4 (c)

PART - B

5		List the scaling factors for device parameters. Discuss limitations of scaling for interconnect and contact resistance.	(14 Marks) (06 Marks)
6	a.	What are the guidelines for a subsystem design process? Bring out the merits between pass transistor and transmission gate.	and demerits (08 Marks)

b. Write the structure and stick diagram of cMOS, BicMOS two input NOR gate. (08 Marks)

c. Explain in detail pseudo-nMOS logic.

(04 Marks)

7 a. Explain the operation of 4×4 cross bar switch with a neat diagram.

(10 Marks)

b. Explain the design of an ALU subsystem.

(10 Marks)

Write short notes on:

a. Super buffers.

b. Basic bus architéctures.

c. Two phase clock generator using 'D' flip-flops.

d. Dynamic register élement.

(20 Marks)

CMRIT LIBRARY
BANGALORE - 560 037