ands achiene

	F	I	T					 	
	1	1	1	1	1	l		ı	
			1		:	1		1	
TICK	•		1	?		!	1	1	
11.7								!	
~~·									1
			i .						,

Fourth Semester B.E. Degree Examination, December 2011 **Graph Theory and Combinatorics**

Time: 3 hrs.

Max. Marks:100

CS42

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Define the following terms: i) Spanning subgraph 1 ii) K-regular graph
 - iii) Complement of G where G is a loop-free undirected graph on n vertices.
 - iv) Euler circuit. (04 Marks)
 - b. Prove that the sum of the degrees of all vertices in a graph is twice the number of edges. Deduce that the number of vertices of odd degree in a graph must be even. (06 Marks)
 - c. Is it possible to have a graph G with 15 edges, 4 vertices each have degree 2 and the remaining vertices each have degree 4? Justify your answer. (04 Marks)
 - d. A graph G is said to be a self dual graph if G is isomorphic to its dual. Prove that the complete graph on 4 vertices is a self dual graph.
- a. Let G be a directed graph on n vertices. If the associated undirected graph for G is K_n (complete graph on n vertices), then prove that $\sum_{v \in V} [od(v)]^2 = \sum_{v \in V} [id(v)]^2$ where id(v) denotes
 - the indegree of v and od(v) denotes the out degree of v. (08 Marks)
 - b. Let G = (V, E) be a connected planar graph or multigraph with v vertices, e edges and r regions. Prove that r = e - v + 2. Deduce that in a loop-free connected planar graph with v vertices, e > 2 edges and r regions, $3r \le 2e$ and $e \le 3v - 6$. (12 Marks)
- 3 Let G = (V, E) be a loop-free undirected graph consisting of $n \ge 3$ vertices. If $deg(x)+deg(y) \ge n$ for all non adjacent x, $y \in V$, prove that G contains a Hamilton cycle. (08 Marks)
 - b. If T = (V, E) is a tree where $|V| \ge 2$, prove that T has at least two pendant vertices. (06 Marks)
 - c. Construct an optimal prefix code for the symbols a, 0, q, u, y, z which occur in a given sample with frequencies 20, 28, 4, 17, 12, 7 respectively. (06 Marks)
- Define the following: i) Matching Transport network ii)
 - iii) Complete matching iv) Maximal matching (04 Marks)
 - With usual notations, prove that in bipartite graph G = (V, E) where V is partitioned as $X \cup Y$, the maximum number of vertices in X which can be matched with those in Y is $|X| - \delta(G)$. (08 Marks)
 - Using Kruskal's algorithm, obtain a minimum cost spanning tree for the graph given below: (08 Marks)

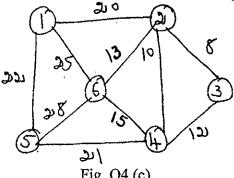


Fig. Q4 (c)

PART - B

5 a. Verify that for each integer $n \ge 1$,

$$\binom{2n}{n} - \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}$$

(06 Marks)

- b. Define S(m, n), sterling number of the second kind. If m and n are positive integers with $1 < n \le m$, then prove that S(m+1, n) = S(m, n-1) + nS(m, n). (08 Marks)
- Show that if any 14 integers are selected from the set $S = \{1, 2, 3....25\}$, there are at least two whose sum is 26. (06 Marks)
- 6 a. Determine the number of positive integers n $(1 \le n \le 2000)$, which are not divisible by 2, 3 or 5. (07 Marks)
 - b. Prove that the number of partitions of a positive integer n into distinct summands is the same as the number of partitions of n into odd summands. (07 Marks)
 - c. If a set X has 2n+1 elements, find the member of subsets of X with utmost n elements.

 (06 Marks)

7 a. In $a_n (n \ge 0)$ is a solution of the recurrence relation $a_{n+1} - da_n = 0$, where $a_3 = 49$, $a_5 = 81$, determine d. (04 Marks)

- b. For $n \ge 0$, let $S = \{1, 2, 3, ..., n\}$ where n = 0, take $S = \emptyset$. Let a_n denote the member of subsets of S which contain no consecutive integers. Find a recurrence relation for a_n and solve.

 (08 Marks)
- c. Solve the recurrence relation $a_r + 5a_{r-1} + 6a_{r-2} = 42 \times 4^r$ with the boundary conditions $a_2 = 278$, $a_3 = 962$. (08 Marks)
- 8 a. Obtain the exponential generating function for each of the following sequences:
 - i) $1, 2, 2^2, 2^3, 2^4, \dots$
 - ii) a, a³, a⁵, a⁷,..... where a is a real number.

(04 Marks)

- b. Let D_n denote the number of derangements of 1, 2, 3...n. Obtain an expression for D_n . Hence determine D_4 and D_5 . (08 Marks)
- c. Consider the members 1, 2, 3 and 4. Suppose forbidden positions are 1 in the second position, 2 in the third position, 3 in the first or fourth position, 4 in the fourth position. Using the method of rook polynomials, determine the following:

Number of permutations of 1, 2, 3, 4 in which

- i) None of the integers is in a forbidden position.
- ii) Exactly one integer is in a forbidden position.
- iii) Exactly two integers are in forbidden positions.
- iv) Exactly three integers are in forbidden positions.
- v) Exactly four integers are in forbidden positions.

(08 Marks)