

 DEPARTMENT : CSE/ISE

 Scheme and Solution for IAT1-March 2017

Unix System Programming (10CS62)

1. POSIX definition -2 Marks

 Each subgroup- 1 Mark each

 Program - 6Marks

 POSIX or “Portable Operating System Interface” is the name of a family of related standards

specified by the IEEE to define the application-programming interface (API), along with shell and

utilities interface for thesoftware compatible with variants of the UNIX operating system. Because

many versions of UNIX exist today and each of them provides its own set of API functions, it is

difficult for system developers to create applications that can be easily ported to different versions

of UNIX.

 Some of the subgroups of POSIX are POSIX.1, POSIX.1b & POSIX.1c .

 POSIX.1

This committee proposes a standard for a base operating system API; this standard specifies APIs

for the manipulating of files and processes.

It is formally known as IEEE standard 1003.1-1990[6] and it was also adopted by the ISO as the

international standard ISO/IEC 9945:1:1990.

POSIX.1b

This committee proposes a set of standard APIs for a real time OS interface; these include IPC

(inter- process communication).

This standard is formally known as IEEE standard 1003.4-1993[7].

POSIX.1c

This standard specifies multi-threaded programming interface. This standard is formally known as

IEEE standard 1003.4-1993[8]

#define _POSIX_SOURCE

#define _POSIX_C_SOURCE 199309L

#include<stdio.h>

#include<iostream.h>

#include<unistd.h>

int main()

{

int res;

if((res=sysconf(_SC_CHILD_MAX))==-1)

perror(“sysconf”);

else

cout<<”Maximum number of child processes:”<<res<<endl;

if((res=pathconf(“/”,_PC_PATH_MAX))==-1)

perror(“pathconf”);

else

cout<<”max path length:”<<(res+1)<<endl;

if((res=pathconf(“/”,_PC_LINK_MAX))==-1)

perror(“pathconf”);

else

cout<<”Maximum number of links of a file:”<<res<<endl;

return 0;

}

 2a) 3 Differences-3 Marks

 ANSI C C++

Uses K&R C default function declaration for any Requires that all functions must be declared /

functions that are referred before their declaration defined before they can be referenced.

in the program.

int foo(); int foo();

ANSI C treats this as old C function declaration & C++ treats this as int foo(void);

interprets it as declared in following manner. Meaning that foo may not accept any

with any number of arguments.

Does not employ type_safe linkage technique Encrypts external function names for

type_safe and does not catch user errors. linkage. Thus reports any user errors.

b)3 Differences -3Marks

The major difference between the stream pointer and the file descriptors are as follows:

c)4 differences -4 Marks

Differences between hard link and symbolic link are listed below:

3.a) Explanation -1mark

 Diagram -2 Marks

 steps for to open a file -2 Marks

 steps for to close a file -2 marks

 In UNIX system V, the kernel maintains a file table that has an entry of all opened files and

also there is an inode table that contains a copy of file inodes that are most recently accessed. A

process, which gets created when a command is executed will be having its own data space (data

structure) wherein it will be having file descriptor table. The file descriptor table will be having an

maximum of OPEN_MAX file entries. Whenever the process calls the open function to open a file

to read or write, the kernel will resolve the pathname to the file inode number.

 The steps involved for open() are :

1. The kernel will search the process descriptor table and look for the first unused entry. If an

entry is found, that entry will be designated to reference the file .The index of the entry will be

returned to the process as the file descriptor of the opened file.

2. The kernel will scan the file table in its kernel space to find an unused entry that can be

assigned to reference the file.

If an unused entry is found the following events will occur:

The process file descriptor table entry will be set to point to this file table entry.

The file table entry will be set to point to the inode table entry, where the inode record of the file is

stored.

The file table entry will contain the current file pointer of the open file. This is an offset from the

beginning of the file where the next read or write will occur.

The file table entry will contain an open mode that specifies that the file opened is for read only,

write only or read and write etc. This should be specified in open function call.

The reference count (rc) in the file table entry is set to 1. Reference count is used to keep track of

how many file descriptors from any process are referring the entry.

The reference count of the in-memory inode of the file is increased by 1. This count specifies how

many file table entries are pointing to that inode.

If either (1) or (2) fails, the open system call returns -1 (failure/error)

The following events will occur whenever a process calls the close function to close the files that

are opened.

1. The kernel sets the corresponding file descriptor table entry to be unused.

2. It decrements the rc in the corresponding file table entry by 1, if rc not equal to 0 go to step 6.

3. The file table entry is marked as unused.

4. The rc in the corresponding file inode table entry is decremented by 1, if rc value not equal to 0

go to step 6.

5. If the hard link count of the inode is not zero, it returns to the caller with a success status

otherwise it marks the inode table entry as unused and de-allocates all the physical dusk storage of

the file.

6. It returns to the process with a 0 (success) status.

Data Structure for File Manipulation

b) 9 commonly defined files- 3 marks(1 mark for ,listing 3 files with usage)
The following files are commonly defined in most UNIX systems

FILE Use

/etc Stores system administrative files and programs

/etc/passwd Stores all user information’s

/etc/shadow Stores user passwords

/etc/group Stores all group information

/bin Stores all the system programs like cat, rm, cp,etc.

/dev Stores all character device and block device files

/usr/include Stores all standard header files.

/usr/lib Stores standard libraries

/tmp Stores temporary files created by program

Q.4a) Differentiate between ANSI C and K & R C. Explain each with example 7M

ANSI C supports :

Function Prototyping -1M

Support of const and volatile datatype qualifiers-2M

Permit function pointers to be used without dereferencing-2M

Support of wide character and internationalization-2M

Write explanation with example

b) Why are the APIs more time consuming than the C library functions

User mode-1M

Kernel Mode 1

Explanation 1M

Q. 5 a) Explain the following APIs with their prototypes

 i) open() ii) lseek() ii) access() v) utime()

Each 2.5 M -1M Prototype + 1.5M explanation

i)Open()

1)

2)

3)

Permission:

ii) lseek()

iii) access()

iv) utime ()

#include <sys/types.h>

#include <utime.h>

int utime(const char *filename, const struct utimbuf *buf);

utime() changes the access and modification times of the inode specified by filename to the actime and

modtime fields of buf respectively.

If buf is NULL, then the access and modification times of the file are set to the current time.

The utimbuf structure is:

struct utimbuf {

 time_t actime; /* access time */

 time_t modtime; /* modification time */

};

Q.6 a) What do you mean by the term feature test macros? List all the test macros along with their

meaning.

Test macro explanation-1M

Feature test macros allow the programmer to control the definitions that are exposed by system header

files when a program is compiled.

Each test macro 1M*5=5M

Q. 6 b) Discuss the common characteristics of API along with their error status code (any four)

Common characteristics of API-1M

Any four error codes= 2*0.5M=2M

Q.7 a) Mention the different file types in Unix /POSIX System. Also explain how to create these

files-6M

Listing all files-1M

Each file description 5*1M=5M

b) List out any four POSIX.1b defined system configuration limits along with their meaning and

minimum value - 4M

Any four limits-4*1M=4M

Meaning Min. value Meaning

_POSIX_AIO_MAX 1 No. of simultaneous asynchronous I/O

_POSIX_TIMER_MAX 32 Max no of timers that can be used by a process

_POSIX_MQ_OPEN_MAX 2 Max no of message queues per process

_POSIX_SEM_VALUE_MAX 32767 Max value that may be assigned to a semaphore

