

Page 1 of 8

CMR

INSTITUTE OF

TECHNOLOGY

Answer Scheme and solution

Sub:
File structures

Code:1

0IS63

Max

Marks:
50

Sem

:
VI Branch: ISE

Mark

s

1 (a)

Differentiate between the physical file and the logical file

Physical file Logical file

1. Occupies the portion of

memory. It contains the original

data.

1. Does not occupy any memory space. Does not

contain any data. It loads itself at run time

as per the defined access path.

2. A physical file contains one

record format

 2. A logical file can contain up to 32 record formats.

3.Can exist even without LF 3. Can’t exist without PF

4. If there is a logical file for a

PF, the PF can’t be deleted until
and unless we delete the LF.

4. If there is a logical file for a PF, the LF can be

deleted without deleting the PF.

5.CRTPF command is used to

create such object

CRTLF command is used to create such type object

[4]

 (b) Summarize the notes about the CD-ROM strengthens and weakness

CD-ROM Strengths & Weaknesses

 Seek Performance: very bad

 Data Transfer Rate: Not Terrible/Not Great

 Storage Capacity: Great

o Benefit: enables us to build indexes and other support structures that can help

overcome some of the limitations associated with CD-ROM’s poor performance.

[6]

Page 2 of 8

 Read-Only Access: There can’t be any changes ==> File organization can be optimized.

 No need for interaction with the user (which requires a quick response)

2 (a) Difference between the disk and magnetic tape

Magnetic Tapes

A magnetic tape is a thin and a long plastic strip coated with a magnetizable material. The

recorder orders the magnetizable material on the magnetic tape according to the incoming signal.

The reading process is simply done by sending the tape near a coil which produces a current

which can be decoded to the original source. Magnetic tapes are also used as computer data

storage. These were used before hard disc drives were invented. Magnetic tapes are still used to

archive large amounts of data for non-frequent usage. The magnetic tape is a sequential storage

device. The data can only be read as a serial input. Magnetic tapes are mostly used in Audio

cassettes and video cassettes. Magnetic tapes are used as digital data storage devices as well as

analog data storage devices.

Magnetic Disks

A magnetic disk operates the same way a magnetic tape does, but magnetic disks can usually store

a large amount of data than the magnetic tapes. The main advantage of the magnetic disk is that

data can be read from anywhere. A magnetic disk is also more portable than the magnetic tape.

Computer hard disc drives are the main devices that use magnetic disks. Magnetic disks are not

shockproof. A shock can change the current magnetic condition of a material. However, since

magnetic tapes are not solid, the chance of a shock is minimal. Magnetic disks are used as digital

data storage devices rather than analog data storage devices. A certain area on the disk is known

as a block. The net magnetic orientation of a block decides whether it is a digital 0 or a 1.

[5]

 b) Difference between CLV and CAV in detail

In optical storage, constant linear velocity (CLV) is a qualifier for the rated speed of an optical

disc drive, and may also be applied to the writing speed of recordable discs. CLV implies that the

angular velocity (i.e. rpm) varies during an operation, as contrasted with CAV modes.

CLV = Constant Linear Velocity

CAV = Constant Angular Velocity

Pros:

CLV: The laser sees the disc moving at the same speed throughout the whole burning session

therefore the interection between laser and disk is consistent.

CAV: Spindle speed is kept constant while the write speed constantly changes.

Cons:

CLV: varying RPM will cause the disc to vibrate quite a bit, this can cause write quality errors.

[5]

Page 3 of 8

Limited to speeds of 16x on drives.

CAV: The interection between disk and laser can't be predicted exactly as the velocity of the disk

and laser power must be changed continuously.

3 (a) It is needed to store a backup of a large file with 1 million 100 bytes of records on a 6250 bpi

tape that has an inter block gap of 0.3 inches with a blocking factor of 50, then calculate tape

length required

Example:

– one million 100-byte records

– 6,250 BPI tape

– 0.3 inches of interblock gap

How much tape is needed?

– when blocking factor is between 1 and 50

Nominal recording density

Effective recording density

:

– number of byte per block / number of inches for block

[8]

 (b) Define the inter block gap. Why inter block gap has been provided on tape ?

Interblock gap definition, the area or space separating consecutive blocks of data or consecutive

physical records on an external storage medium

[2]

4 Understand the concepts of records creation and write how to Add a structure to the records using

relevant example.

[10

]

5

Define a file? List the fundamental file operations.

Opening Files

Opening a file makes it ready for use by the program.

Two options for opening a file :

•
open an

existing

file

•
create a

new

file

When we open a file we are positioned at the beginning of the file.

In C :

.

.

[10

]

Page 4 of 8

.

FILE * outfile;

outfile = fopen("myfile.txt", "w");

.

.

.

The first argument indicates the physical name of the file. The second one

determines the “mode”, i.e. the way, the file is opened.
For example :

“r” = open for reading,
“w” = open for writing (file need not to exist),

“a” = open for appending (file need not to exist),
among other modes (“r+”,“w+”, “a+”).
In C++ :

.

.

.

fstream outfile;

outfile.open("myfile.txt",ios::out);

.

.

.

The second argument is an integer indicating the mode. Its value is set as a

“bitwise or” of constants defines in class

Ios

Closing Files

This is like “hanging up” the line connected to a file.
After closing a file, the logical name is free to be associated to another phys-

ical file.

Closing a file used for output guarantees everything has been written to the

physical file.

We will see later that bytes are not sent directly to the physical file one by

one; they are first stored in a buffer to be written later as a block of data.

When the file is closed

the leftover from the buffer is flushed to the file.

Files are usually closed automatically by the operating system at the end of

program’s execution.
It’s better to close the file to prevent data loss in case the program does not
terminate normally.

In C :

fclose(outfile);

In C++ :

outfile.close();

Reading

Read data from a file and place it in a variable inside the program.

Generic

Read

function (not specific to any programming language)

Read(Source_file, Destination_addr, Size)

Page 5 of 8

Source

file

= logical name of a file which has been opened

Destination

addr

= first address of the memory block were data should

be stored

Size

= number of bytes to be read

In C (or in C++ using C streams) :

char c;

FILE * infile;

.

.

.

infile = fopen("myfile,"r");

fread(&c,1,1,infile);

1st argument:

destination address (address of variable

c

)

2nd argument: element size in bytes (a

char

occupies 1 byte)

3rd argument:

number of elements

4th argument:

logical file name

In C++ :

char c;

fstream infile;

infile.open("myfile.txt",ios::in);

infile >> c;

Note that in the C++ version, the operator

>>

communicates the same info

at a higher level. Since

c

is a char variable, it’s implicit that only 1 byte is

to be transferred.

Writing

Write data from a variable inside the program into the file.

Generic

Write

function :

Write (Destination_File, Source_addr, Size)

Destination

file

= logical file name of a file which has been opened

Page 6 of 8

Source

addr

= first address of the memory block where data

is stored

Size

= number of bytes to be written

In C (or in C++ using C streams) :

char c;

FILE * outfile;

outfile = fopen("mynew.txt","w");

fwrite(&c,1,1,outfile);

In C++ :

char c;

fstream outfile;

outfile.open("mynew.txt",ios::out);

outfile << c;

Detecting End-of-File

When we try to read and the file has ended, the read was unsuccessful. We

can test whether this happened in the following ways :

In C : Check whether

fread

returned value 0

int i;

i = fread(&c,1,1,infile);

if (i==0) // file has ended

...

in C++: Check whether

infile.fail()

returns

true

infile >> c;

if (infile.fail()) // file has ended

..

6

Apply the direct access approach in files to access the records and explain using relevant

Example

Direct access can also be called random access, because it allows equally easy and fast access to

any randomly selected destination. Somewhat like traveling by a Star Trek transporter instead of

driving along the freeway and passing the exits one at a time, which is what you get with

sequential access.)

In a normal, physical book, the reader is supposed to read pages one by one, in the order in which

they are provided by the author. For most books (fiction, at least), it makes little sense for the

reader to turn directly page 256 and start reading there. Unless, of course, that is where the reader

left off in their last reading session. Getting to page 256 in a 500-pages book poses a bit of a

challenge, as we well know it, and each of us have their preferred method of dealing with it (be it

[10

]

Page 7 of 8

 Buffering means working with large chunks of data in main

memory so the number of accesses to secondary storage is

reduced.

►

Today, we’ll discuss the System I/O buffers. These are
beyond the control of application programs and are

manipulated by the O.S.

►

Note that the application program may implement its own

“buffer” – i.e. a place in memory (variable, object) that

accumulates large chunks of data to be later written to disk as

a chunk.

Double Buffering:

Two buffers can be used to allow

processing and I/O to overlap.

– Suppose that a program is only writing to a disk.

– CPU wants to fill a buffer at the same time that I/O is being

performed.

– If two buffers are used and I/O-CPU overlapping is

permitted, CPU can be filling one buffer while the other

buffer is being transmitted to disk.

– When both tasks are finished, the roles of the buffers can

be exchanged.

►

The actual management is done by the O.S.

Mult iple Buffering

: instead of two buffers any number of

buffers can be used to allow processing and I/O to overlap.

►

Buffer pooling

:

– There is a pool of buffers.

– When a request for a sector is received, O.S. first looks to see that

sector is in some buffer.

a bookmark, a dog ear, or our own memory).

Tables of contents try to alleviate a book’s sequential-access problem by telling people what

content is going to be found in the book and at which page. The user still has the problem of

turning to the desired page number, but at least he doesn’t need to bother with parsing the content
and deciding whether he’s found what he is looking for.

By definition, however, the web embraces direct access. Thus, it is disappointing to see

sequential-access designs becoming increasingly popular nowadays.

7. Define Buffer Management in files and Explain buffering management Strategies

 [10]

Page 8 of 8

– If not there, it brings the sector to some free buffer. If no free buffer

exists, it must choose an occupied buffer.

Move mode (using both system buffer & program buffer)

– moving data from one place in RAM to another before they

can be accessed

– sometimes, unnecessary data moves

►

Locate mode (using system buffer only or program buffer

only)

– perform I/O directly

between secondary storage and

program buffer (program’s data area)
– system buffers handle all I/Os, but program uses

locations

through pointer variable

