

Page 1 of 16

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assessment Test - I

 Sub: Software Architectures Code: 10IS81

Date: 28 / 03 / 2017 Duration: 90 mins Max Marks: 50 Sem: VIII Branch: ISE

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1 (a)

 Soln.

Explain common software architectures.

1. Module

Module-based structures include the following.

Decomposition: The units are modules related to each other by the "is a submodule of "

relation, showing how larger modules are decomposed into smaller ones recursively

until they are small enough to be easily understood. Modules in this structure represent a

common starting point for design, as the architect enumerates what the units of software

will have to do and assigns each item to a module for subsequent design and eventual

implementation. The decomposition structure provides a large part of the system's

modifiability, by ensuring that likely changes fall within the purview of at most a few

small modules.

Uses: The units of this important but overlooked structure are also modules procedures

or resources on the interfaces of modules. The units are related by the uses relation. One

unit uses another if the correctness of the first requires the presence of a correct version

of the second. The uses structure is used to engineer systems that can be easily extended

to add functionality or from which useful functional subsets can be easily extracted.

[10]

CO1 L1

Page 2 of 16

Layered: When the uses relations in this structure are carefully controlled in a particular

way, a system of layers emerges, in which a layer is a coherent set of related

functionality. In a strictly layered structure, layer n may only use the services of layer n

– 1.

Class, or generalization: The module units in this structure are called classes. The

relation is "inherits-from" or "is-an-instance-of." This view supports reasoning about

collections of similar behavior or capability and parameterized differences which are

captured by subclassing. The class structure allows us to reason about re-use and the

incremental addition of functionality.

2. Component-and-Connector

These structures include the following.

Process, or communicating processes: Like all component-and-connector structures,

this one is orthogonal to the module-based structures and deals with the dynamic aspects

of a running system. The units here are processes or threads that are connected with each

other by communication, synchronization, and/or exclusion operations. The relation in

this is attachment, showing how the components and connectors are hooked together.

The process structure is important in helping to engineer a system's execution

performance and availability.

Concurrency: This component-and-connector structure allows the architect to determine

opportunities for parallelism and the locations where resource contention may occur.

The units are components and the connectors are "logical threads." A logical thread is a

sequence of computation that can be allocated to a separate physical thread later in the

design process. The concurrency structure is used early in design to identify the

requirements for managing the issues associated with concurrent execution.

Shared data, or repository: This structure comprises components and connectors that

create, store, and access persistent data. If the system is in fact structured around one or

more shared data repositories, this structure is a good one to illuminate. It shows how

data is produced and consumed by runtime software elements, and it can be used to

ensure good performance and data integrity.

Client-server: If the system is built as a group of cooperating clients and servers, this is

a good component-and-connector structure to illuminate. The components are the clients

and servers, and the connectors are protocols and messages they share to carry out the

system's work. This is useful for separation of concerns, for physical distribution, and

for load balancing.

3. Allocation

Allocation structures include the following.

Deployment. The deployment structure shows how software is assigned to hardware-

processing and communication elements. The elements are software, hardware entities

(processors), and communication pathways. Relations are "allocated-to," showing on

which physical units the software elements reside, and "migrates-to," if the allocation is

dynamic. This view allows an engineer to reason about performance, data integrity,

availability, and security. It is of particular interest in distributed or parallel systems.

Page 3 of 16

Implementation. This structure shows how software elements (usually modules) are

mapped to the file structure(s) in the system's development, integration, or configuration

control environments. This is critical for the management of development activities and

build processes.

Work assignment. This structure assigns responsibility for implementing and integrating

the modules to the appropriate development teams. Having a work assignment structure

as part of the architecture makes it clear that the decision about who does the work has

architectural as well as management implications. The architect will know the expertise

required on each team. Also, on large multi-sourced distributed development projects,

the work assignment structure is the means for calling out units of functional

commonality and assigning them to a single team, rather than having them implemented

by everyone who needs them.

2 (a) Explain Process Control view of cruise control. [8] CO3 L2

Soln. A control loop architecture is embedded in a physical system that involves continuing

behavior, especially when the system is subject to external perturbations. The system is

supposed to maintain constant speed in an automobile despite variations in terrain,

vehicle load, air resistance, fuel quality, etc. To develop a control loop architecture for

this system, we begin by identifying the essential system elements.

Page 4 of 16

Page 5 of 16

 (b) Explain the problem statement of cruise control with input parameters. [2] CO3 L2

Soln. A cruise control system exists to maintain the speed of a car, even over varying

terrain.

Page 6 of 16

3 (a) Explain the following Architectural Styles

i) Event Based Implicit Invocation

ii) Pipes and Filters

[10] CO3 L2

Soln. i) Event Based Implicit Invocation

 In a system in which the component interfaces provide a collection of

procedures and functions, components interact with each other by explicitly

invoking those routines.

 The idea behind implicit invocation is that instead of invoking a procedure

directly, a component can announce (or broadcast) one or more events. Other

components in the system can register an interest in an event by associating a

procedure with the event. When the event is announced the system itself invokes

all of the procedures that have been registered for the event. Thus an event

announcement ``implicitly'' causes the invocation of procedures in other

modules.

 For example, tools such as editors and variable monitors register for a

debugger’s breakpoint events. When a debugger stops at a breakpoint, it
announces an event that allows the system to automatically invoke methods in

those registered tools.

 These methods might scroll an editor to the appropriate source line or redisplay

the value of monitored variables. In this scheme, the debugger simply announces

an event, but does not know what other tools (if any) are concerned with that

event, or what they will do when that event is announced.

 The main invariant of this style is that announcers of events do not know which

components will be affected by those events.

 Components cannot make assumptions about order of processing, or even about

what processing, will occur as a result of their events.

 One important benefit of implicit invocation is that it provides strong support for

reuse. Any component can be introduced into a system simply by registering it

for the events of that system.

 A second benefit is that implicit invocation eases system evolution. Components

may be replaced by other components without affecting the interfaces of other

components in the system.

 In contrast, in a system based on explicit invocation, whenever the identity of a

that provides some system function is changed, all other modules that import

that module must also be changed.

 The primary disadvantage of implicit invocation is that components relinquish

control over the computation performed by the system. When a component

announces an event, it has no idea what other components will respond to it.

Worse, even if it does know what other components are interested in the events

it announces, it cannot rely on the order in which they are invoked. Nor can it

know when they are finished.

 Another problem concerns exchange of data. Sometimes data can be passed with

the event. But in other situations, event systems must rely on a shared repository

Page 7 of 16

for interaction.

 Reasoning about correctness can be problematic, since the meaning of a

procedure that announces events will depend on the context of bindings in

which it is invoked.

ii) Pipes and Filters

 In a pipe and filter style each component has a set of inputs and a set of outputs.

A component reads streams of data on its inputs and produces streams of data on

its outputs, delivering a complete instance of the result in a standard order.

 This is usually accomplished by applying a local transformation to the input

streams and computing incrementally so output begins before input is

consumed. Hence components are termed “filters”.

 The connectors of this style serve as conduits for the streams, transmitting

outputs of one filter to inputs of another. Hence the connectors are termed

“pipes”.

 Filters must be independent entities: in particular, they should not share state

with other filters.

 Filters do not know the identity of their upstream and downstream filters.

 The correctness of the output of a pipe and filter network should not depend on

the order in which the filters perform their incremental processing.

 Common specializations of this style include pipelines, which restrict the

topologies to linear sequences of filters; bounded pipes, which restrict the

amount of data that can reside on a pipe; and typed pipes, which require that the

data passed between two filters have a well-defined type.

 The best-known examples of pipe and filter architectures are programs written

in the Unix shell.

 Pipe and filter systems have a number of nice properties. First, they allow the

designer to understand the overall input/output behavior of a system as a simple

composition of the behaviors of the individual filters.

 Second, they support reuse: any two filters can be hooked together, provided

they agree on the data that is being transmitted between them.

 Third, systems can be easily maintained and enhanced: new filters can be added

to existing systems and old filters can be replaced by improved ones.

 Fourth, they permit certain kinds of specialized analysis, such as throughput and

deadlock analysis.

Page 8 of 16

 Finally, they naturally support concurrent execution. Each filter can be

implemented as a separate task and potentially executed in parallel with other

filters.

But these systems also have their disadvantages.

 First, pipe and filter systems often lead to a batch organization of processing.

Although filters can process data incrementally, since filters are inherently

independent, the designer is forced to think of each filter as providing a

complete transformation of input data to output data. In particular, because of

their transformational character, pipe and filter systems are typically not good at

handling interactive applications.

 Second, they may be hampered by having to maintain correspondences between

two separate, but related streams.

 Third, depending on the implementation, they may force a lowest common

denominator on data transmission, resulting in added work for each filter to

parse and unparse its data. This, in turn, can lead both to loss of performance

and to increased complexity in writing the filters themselves.

4 (a) Explain the following concepts

i) Architectural Pattern

ii) Reference Model

iii) Reference Architecture

[5] CO1 L1

Soln. An architectural pattern is a description of element and relation types together with a

set of constraints on how they may be used. A pattern can be thought of as a set of

constraints on an architecture—on the element types and their patterns of interaction—
and these constraints define a set or family of architectures that satisfy them. For

example, client-server is a common architectural pattern. Client and server are two

element types, and their coordination is described in terms of the protocol that the server

uses to communicate with each of its clients. Use of the term client-server implies only

that multiple clients exist; the clients themselves are not identified, and there is no

discussion of what functionality, other than implementation of the protocols, has been

assigned to any of the clients or to the server.

An architectural pattern is not an architecture, then, but it still conveys a useful image of

the system—it imposes useful constraints on the architecture and, in turn, on the system.

One of the most useful aspects of patterns is that they exhibit known quality attributes.

This is why the architect chooses a particular pattern and not one at random. Some

patterns represent known solutions to performance problems, others lend themselves

well to high-security systems, still others have been used successfully in high-

availability systems.

A reference model is a division of functionality together with data flow between the

pieces. A reference model is a standard decomposition of a known problem into parts

that cooperatively solve the problem. Arising from experience, reference models are a

characteristic of mature domains.

A reference architecture is a reference model mapped onto software elements (that

cooperatively implement the functionality defined in the reference model) and the data

flows between them. Whereas a reference model divides the functionality, a reference

architecture is the mapping of that functionality onto a system decomposition. The

mapping may be, but by no means necessarily is, one to one. A software element may

implement part of a function or several functions.

Page 9 of 16

 (b) Explain Layered System Architectural Style. [5] CO3 L2

Soln. A layered system is organized hierarchically, each layer providing service to the

layer above it and serving as a client to the layer below.

 The connectors are defined by the protocols that determine how the layers will

interact. Topological constraints include limiting interactions to adjacent layers.

 The most widely known examples of this kind of architectural style are layered

communication protocols. In this application area, each layer provides a

substrate for communication at some level of abstraction.

Layered systems have several desirable properties.

 First, they support design based on increasing levels of abstraction. This allows

implementers to partition a complex problem into a sequence of incremental

steps. Second, they support enhancement. Like pipelines, because each layer

interacts with at most the layers below and above, changes to the function of one

layer affect at most two other layers.

 Third, they support reuse. Like abstract data types, different implementations of

the same layer can be used interchangeably, provided they support the same

interfaces to their adjacent layers. This leads to the possibility of defining

standard layer interfaces to which different implementers can build.

 But layered systems also have disadvantages.

 Not all systems are easily structured in a layered fashion. And even if a system

can logically be structured as layers, considerations of performance may require

closer coupling between logically high-level functions and their lower-level

implementations. Additionally, it can be quite difficult to find the right levels of

abstraction. This is particularly true for standardized layered models.

 In one sense this is similar to the benefits of implementation hiding found in

abstract data types. However, here there are multiple levels of abstraction and

implementation.

Page 10 of 16

 They are also similar to pipelines, in that components communicate at most with

one other component on either side. But instead of simple pipe read/write

protocol of pipes, layered systems can provide much richer forms of interaction.

5 (a)

Explain ABC with respect to software process and activities involved in

creating software architecture.

 [10] CO1 L1

Soln. Software process is the term given to the organization, ritualization, and management

of software development activities. These activities include the following:

 Creating the business case for the system

 Understanding the requirements

 Creating or selecting the architecture

 Documenting and communicating the architecture

 Analyzing or evaluating the architecture

 Implementing the system based on the architecture

 Ensuring that the implementation conforms to the architecture

ARCHITECTURE ACTIVITIES

1. Creating the Business Case for the System
Creating a business case is broader than simply assessing the market need for a system.

It is an important step in creating and constraining any future requirements.

 How much should the product cost?

 What is its targeted market?

 What is its targeted time to market?

 Will it need to interface with other systems?

Page 11 of 16

 Are there system limitations that it must work within?

These are all questions that must involve the system's architects. They cannot be decided

solely by an architect, but if an architect is not consulted in the creation of the business

case, it may be impossible to achieve the business goals.

2. Understanding the Requirements

There are a variety of techniques for eliciting requirements from the stakeholders. For

example, object-oriented analysis uses scenarios, or "use cases" to embody

requirements. Safety-critical systems use more rigorous approaches, such as finite-state-

machine models or formal specification languages.

One fundamental decision with respect to the system being built is the extent to which it

is a variation on other systems that have been constructed. Since it is a rare system these

days that is not similar to other systems, requirements elicitation techniques extensively

involve understanding these prior systems' characteristics.

Another technique that helps us understand requirements is the creation of prototypes.

Prototypes may help to model desired behavior, design the user interface, or analyze

resource utilization. This helps to make the system "real" in the eyes of its stakeholders

and can quickly catalyze decisions on the system's design and the design of its user

interface.

Regardless of the technique used to elicit the requirements, the desired qualities of the

system to be constructed determine the shape of its architecture. Specific tactics have

long been used by architects to achieve particular quality attributes. An architectural

design embodies many tradeoffs, and not all of these tradeoffs are apparent when

specifying requirements. It is not until the architecture is created that some tradeoffs

among requirements become apparent and force a decision on requirement priorities.

3. Creating or Selecting the Architecture

conceptual integrity is the key to sound system design and that conceptual integrity can

only be had by a small number of minds coming together to design the system's

architecture.

4. Communicating the Architecture

For the architecture to be effective as the backbone of the project's design, it must be

communicated clearly and unambiguously to all of the stakeholders. Developers must

understand the work assignments it requires of them, testers must understand the task

structure it imposes on them, management must understand the scheduling implications

it suggests, and so forth. Toward this end, the architecture's documentation should be

informative, unambiguous, and readable by many people with varied backgrounds.

5. Analyzing or Evaluating the Architecture

In any design process there will be multiple candidate designs considered. Some will be

rejected immediately. Others will contend for primacy. Choosing among these

competing designs in a rational way is one of the architect's greatest challenges.

Evaluating an architecture for the qualities that it supports is essential to ensuring that

the system constructed from that architecture satisfies its stakeholders' needs. Becoming

Page 12 of 16

more widespread are analysis techniques to evaluate the quality attributes that an

architecture imparts to a system. Scenario-based techniques provide one of the most

general and effective approaches for evaluating an architecture.

6. Implementing Based on the Architecture

This activity is concerned with keeping the developers faithful to the structures and

interaction protocols constrained by the architecture. Having an explicit and well-

communicated architecture is the first step toward ensuring architectural conformance.

Having an environment or infrastructure that actively assists developers in creating and

maintaining the architecture is better.

7. Ensuring Conformance to an Architecture

Finally, when an architecture is created and used, it goes into a maintenance phase.

Constant vigilance is required to ensure that the actual architecture and its representation

remain faithful to each other during this phase. Although work in this area is

comparatively immature, there has been intense activity in recent years.

6 (a)

Soln.

Explain briefly the properties of a good software architecture design.

Process recommendations and product (or structural) recommendations.

Process recommendations are as follows:

1. The architecture should be the product of a single architect or a small group of

architects with an identified leader.

2. The architect (or architecture team) should have the functional requirements for the

system and an articulated, prioritized list of quality attributes that the architecture is

expected to satisfy.

3. The architecture should be well documented, with at least one static view and one

dynamic view using an agreed-on notation that all stakeholders can understand with

a minimum of effort.

4. The architecture should be circulated to the system's stakeholders, who should be

actively involved in its review.

5. The architecture should be analyzed for applicable quantitative measures and

formally evaluated for quality attributes before it is too late to make changes to it.

6. The architecture should lend itself to incremental implementation via the creation

of a "skeletal" system in which the communication paths are exercised but which at

first has minimal functionality.

Structural rules of thumb are as follows:

1. The architecture should feature well-defined modules whose functional

responsibilities are allocated on the principles of information hiding and separation

of concerns. The information-hiding modules should include those that encapsulate

idiosyncrasies of the computing infrastructure, thus insulating the bulk of the

software from change should the infrastructure change.

2. Each module should have a well-defined interface that encapsulates or "hides"

[6] CO1 L1

Page 13 of 16

changeable aspects from other software that uses its facilities.

3. The architecture should never depend on a particular version of a commercial

product or tool. If it depends upon a particular commercial product, it should be

structured such that changing to a different product is straightforward and

inexpensive.

4. Modules that produce data should be separate from modules that consume data.

This tends to increase modifiability because changes are often confined to either the

production or the consumption side of data.

5. For parallel-processing systems, the architecture should feature well-defined

processes or tasks that do not necessarily mirror the module decomposition

structure.

6. Every task or process should be written so that its assignment to a specific

processor can be easily changed, perhaps even at runtime.

(b) Explain basic requirements of Mobile Robot’s Architecture. [4] CO3 L2

Soln.

Page 14 of 16

7 (a) Explain KWIC with problem statement & following architectural style

i) Abstract data types

ii) Main Program/Subroutine with shared data

[10] CO3 L2

Soln. Problem Statement:

“The KWIC [Key Word in Context] index system accepts an ordered set of lines,

each line is an ordered set of words, and each word is an ordered set of

characters. Any line may be ``circularly shifted'' by repeatedly removing the first

word and appending it at the end of the line. The KWIC index system outputs a

listing of all circular shifts of all lines in alphabetical order.”

ii) Main Program/Subroutine with shared data

 The solution decomposes the problem according to the four basic functions

performed: input, shift, alphabetize, and output. These computational

components are coordinated as subroutines by a main program that sequences

through them in turn. Data is communicated between the components through

shared storage.

 Communication between the computational components and the shared data is

an unconstrained read write protocol. This is made possible by the fact that the

coordinating program guarantees sequential access to the data.

Page 15 of 16

 Using this solution data can be represented efficiently, since computations can

share the same storage. It has a number of serious drawbacks in terms of its

ability to handle changes.

 In particular, a change in data storage format will affect almost all of the

modules. Similarly changes in the overall processing algorithm and

enhancements to system function are not easily accommodated.

 Finally, this decom-position is not particularly supportive of reuse.

i) Abstract Data Types

 In this case data is no longer directly shared by the computational components.

Instead, each module provides an interface that permits other components to

access data only by invoking procedures in that interface.

 This solution provides the same logical decomposition into processing modules

as the first. However, it has a number of advantages over the first solution when

design changes are considered. In particular, both algorithms and data

representations can be changed in individual modules without affecting others.

Moreover, reuse is better supported than in the first solution because modules

make fewer assumptions about the others with which they interact.

 The main problem is that to add new functions to the system, the implementer

must either modify the existing modules—compromising their simplicity and

integrity—or add new modules that lead to performance penalties.

Page 16 of 16

Scheme of Evaluation

Q No. Description Distribution of Marks
Total

Marks

1. Explain common software architectures.

3 M (Diagram)

2 M (Module)

3 M (Component &

Connector)

2 M (Allocation)

10 M 10 M

2.

a. Explain Process Control view of cruise control.
2 M (Diagram)

3 M (Computational

Elements)

3 M (Data Elements)

2 M

6 M
10 M

b. Explain the problem statement of cruise control with input

parameters.
1 M (Problem Statement)

1 M (Input Parameters)
2 M

3.
Explain the following Architectural Styles

i) Event Based Implicit Invocation

ii) Pipes and Filters

5 M (EBII)

1 M (P & F Diagram)

4 M (P & F)

5 M

5 M
10M

4.

a

Explain the following concepts

i) Architectural Pattern

ii) Reference Model

iii) Reference Architecture

1 M (Diagram)

2 M (AP)

1 M (RM)

1 M (RA)

5 M

10 M

b Explain Layered System Architectural Style.
1 M (Diagram)

4 M (Layered System)
5 M

5. Explain ABC with respect to software process and

activities involved in creating software architecture.

1 M (Diagram)

1 M (Listing Activities)

8 M

10 M 10 M

6.

a. Explain briefly the properties of a good software

architecture design.

3 M (Process

Recommendation)

3 M (Product

Recommendation)

6 M

10 M

b. Explain basic requirements of Mobile Robot’s
Architecture.

2 M (Problem Statement)

2 M (4 Requirements)
4 M

7.

Explain KWIC with problem statement & following

architectural style

i) Abstract data types

ii) Main Program/Subroutine with shared data

2 M (Problem Statement)

1 M (Diagram)

3 M (ADT)

1 M (Diagram)

3 M (MP/S)

10M 10M

