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1  (a) Explain the asymptotic notations for analysis of algorithms. Support your answer with proper 

graphs and examples. 

O-notation: 

A function t(n) is said to be in O(g(n)), if t(n) is bounded above by some positive 

constant multiple of g(n) for all large n, i.e. 

t(n) ≤ c.g(n) for all n≥n0 

e.g. 100n + 5 ϵ O(n
2
) 

Ω-notation: 

A function t(n) is said to be in Ω (g(n)), if t(n) is bounded below by some positive 

constant multiple of g(n) for all large n, i.e. 

t(n) ≥ c.g(n) for all n≥n0 

e.g. 100n
3
 + 5 ϵ Ω(n2

) 

 

Θ-notation: 

A function t(n) is said to be in Θ (g(n)), if t(n) is bounded both above and below by some 

positive constant multiples of g(n) for all large n, i.e. 

c2g(n) ≤ t(n) ≤ c1.g(n) for all n≥n0 

e.g. 100n2 + 5n ϵ Θ(n2
) 
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 (b)  Prove that if t1(n) ϵ O(g1(n)) and t2(n) ϵ O(g2(n)), then, t1(n) + t2(n) ϵ O(max{O(g1(n),(g2(n)}) 

 Proof: 

 t1(n)≤c1g1(n) for all n ≥n1 

 t2(n)≤c2g2(n) for all n ≥n2 

 let c3 = max(c1, c2), and consider n ≥ max(n1,n2) 

Adding the above two, we get 

t1(n) + t2(n) ≤ c1g1(n) + c2g2(n) 
t1(n) + t2(n) ≤ c3g1(n) + c3g2(n) = c3.2.max(g1(n),g2(n)) 
thus, t1(n) + t2(n) ϵ O(max{O(g1(n),(g2(n)}) 

[5] CO2 L3 

2  (a) Compare the orders of growth of the functions (log 𝑛) and (√𝑛), and specify which function 

grows faster. 
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lim𝑛→∞ log 𝑛√𝑛  = lim𝑛→∞ log 𝑛 ′√𝑛 ′  = lim𝑛→∞ log 𝑒 .𝑛/ √𝑛    

Applying limits, we get 0. 

Since the limit = 0, log2 n has smaller growth than √𝑛 

 (b)  Explain the mathematical analysis of Fibonacci recursive algorithm. 

 Fib(n) = Fib(n-1) + Fib(n-2) , n>1 

            = 1, n=1 

            = 0, n=0 

 A(n) = A(n-1) + A(n-2) + 1, at step 1 (+1 is for the comparison to check if n>1) 

 This is re-written as, 

 [A(n) + 1] – [A(n-1) + 1] – [A(n-2) + 1] = 0 

Let B(n) = A(n) + 1 

Then the above is re-written as 

B(n) – B(n-1) –B(n-2) = 0 

B(0) = 0, B(1) = 1 

 

That is, B(n) = F(n+1) 

And from the Fibbonacci recurrence equation, A(n) = B(n) -1 = √5 𝛷𝑛+ − 𝛷𝑛− − 1  

This is exponential in time. 
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3 17. (a) What is an algorithm? Give the algorithm specifications. Define time complexity and space 

complexity.(1+2+1+1) 
An algorithm is a finite set of instructions that if followed accomplishes a particular task. 

Algorithm  must satisfy the following criteria: 
Input: Zero or more inputs supplied 
Output: At least one quantity is produced 
Definiteness: Each instruction is clear and unambiguous. 
Finiteness: Algorithm terminates after finite number of steps. 
Effectiveness: Every instruction must be basic and feasible. 

 
Specification: Algorithm is specified as a pseudocode or program form. It can either be 

iteratively specified with loops, or recursively specified using recursive function calls. 
 
Time Complexity: Number of steps/computer time it takes to run the algorithm. The time T(P) 

taken by the program P is the sum of the compile time and run time. 
 
Space Complexity: Amount of memory/resources it needs to run the algorithm. There is a fixed 

part and a variable part. 

[5] CO1 L1 

18. (b)  Design a recursive algorithm for solving tower of Hanoi problem and give the general plan of 

analyzing that algorithm. Show that the time complexity of tower of Hanoi algorithm is 

exponential in nature. 

TowersOfHanoi(int n, tower x, tower y, tower z) 

 { 

    if (n) 

 { 

  TowersOfHanoi( n-1, x,z,y) 

  Output “Move top disk from tower ‘x’ to top of tower ‘y’” 

  TowersOfHanoi(n-1, z, y,x)   

 } 

}   

 

M(n) = 2 M(n-1) + 1, n>1 

M(1) = 1 

\ 

Step 1 
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M(n) = 2 M(n-1) + 1 

Step 2, M(n) = 2
2
M(n-2) +2 + 1 

 

Step k, M(n) = 2
k
 M(n-k) + 2

k-1
 +2

k-2+ …+20
   

Last step is when k = n-1     

M(n) = 2
n-1

 M(1) + 2
n-2

 +2n
n-3+ …+20

   

= 2
n
-1, which is exponential in time. 

4  (a) Is Quick sort a stable sort. Design the algorithm for quick Sort. Give the time complexity for 

best, average, and worst cases. 
No, quick sort is not a stable algorithm as it does not preserve the order of the input sequence. 
 

algorithm quicksort(A, lo, hi) is 

    if lo < hi then 

        p := partition(A, lo, hi) 

        quicksort(A, lo, p – 1) 
        quicksort(A, p + 1, hi) 

 

algorithm partition(A, lo, hi) is 

    pivot := A[hi] 

    i := lo - 1     

    for j := lo to hi - 1 do 

        if A[j] ≤ pivot then 
            i := i + 1 

            swap A[i] with A[j] 

    swap A[i+1] with A[hi] 

    return i + 1 
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 (b) Sort the following numbers using quick sort, 65, 70, 75, 80, 85, 60, 55, 50, 45 
Let array be called A[], and assume elements start from 0 and ends at 8. 
Choose 65, A[0] as pivot. 

i=0, j=9: 65, 70, 75, 80, 85, 60, 55, 50, 45;  
i=1, j=8:  65, 45, 75, 80, 85, 60, 55, 50, 70;  

i=2, j=7: 65, 45, 50, 80, 85, 60, 55, 75, 70;  

i=3, j=6: 65, 45, 50, 55, 85, 60, 80, 75, 70;  

i=4, j=5: 65, 45, 50, 55, 60, 85, 80, 75, 70;  

i=5, j=4: break loop 
Swap pivot with A[j] 
i=4, j=5:60,45, 50, 55, 65, 85, 80, 75, 70;  

 

A: 60,45, 50, 55, 65, 85, 80, 75, 70; 

 

A11Quicksort(60,45, 50, 55) and A12 Quicksort (85, 80, 75, 70) 

A11: 60,45, 50, 55 

55,45, 50, 60 => A21 Quicksort(55,45, 50) 

 

A12: 85, 80, 75, 70 
85, 80, 75, 70 
70, 80, 75, 85 => A22 Quicksort(70, 80, 75) 

 

A: 55,45, 50, 60, 65, 70, 80, 75, 85 

 

A21: 55,45, 50 => 50, 45, 55 => A31 Quicksort(50, 45) => 45, 50 

A22: 70, 80, 75 => A32 Quicksort(80,75) => 75, 80 
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A: 45, 50, 55, 65, 70, 75, 80, 85 

 OR    

 (a) You are given a set of n elements. Your task is to design an algorithm to find the maximum and 

minimum element in the set. Use the divide & conquer approach. The algorithm should satisfy all 

the criteria of a good algorithm. 
Void MaxMin(int i, int, j, Type& max, Type& min) 
{ 
if (i==j) max=min=a[i]; 
else if (i=j-1) 
 { 
  if (a[i]<a[j]) {max=a[j]; min=a[i];} 
  else {max=a[i]; min=a[j];} 
 } 
else 
 { 
  mid=(i+j)/2 
  MaxMin(i,mid,max,min); 
  MaxMin(i,mid+1,max1,min1); 
 
  if(max<max1) max = max1; 
  if(min>min1) min = min1; 
 } 
} 
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5  (a) Explain the concept of divide and conquer. Design the algorithm for merge Sort.  
Given a problem of size n, the divide and conquer strategy suggests splitting the problem into k 

distinct subsets, 1<k≤n, yielding k subproblems. These subproblems are in turn solved using 

further dividing them in sub-subproblems, and so on until the problem is small enough to be 

solved individually or in constant time. The steps are as follows: 
Divide, Conquer and combine. 
 
Merge sort: 
 

MERGE-SORT (A, p, r) 

1.     IF p < r                                                    // Check for base case 

2.         THEN q = FLOOR[(p + r)/2]                 // Divide step 

3.                 MERGE (A, p, q)                          // Conquer step. 

4.                 MERGE (A, q + 1, r)                     // Conquer step. 

5.                 MERGE (A, p, q, r)                       // Conquer step. 

MERGE (A, p, q, r ) 

1.      n1 ← q − p + 1 

2.      n2 ← r − q 

3.      Create arrays L[1 . . n1 + 1] and R[1 . . n2 + 1] 

4.      FOR i ← 1 TO n1 

5.            DO L[i] ← A[p + i − 1] 
6.      FOR j ← 1 TO n2 

7.            DO R[j] ← A[q + j ] 

8.      L[n1 + 1] ← ∞ 

9.      R[n2 + 1] ← ∞ 

10.    i ← 1 

11.    j ← 1 

12.    FOR k ← p TO r 

13.         DO IF L[i ] ≤ R[ j] 
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14.                THEN A[k] ← L[i] 
15.                        i ← i + 1 

16.                ELSE A[k] ← R[j] 
17.                        j ← j + 1 

 (b) Sort the list E, X, A, M, P, L, E in alphabetical order using merge sort. 
 
Divide: 
EXAMPLE 
EXAM   PLE 
EX   AM  PL  E 
E   X  A   M   P  L  E 
Conquer & Combine: 
EX  AM   LP  E 
AEMX   ELP 

AEELMPX 
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6  (a) Design a recursive algorithm for finding the minimum and maximum elements in a list. Give the 

recursive equation for time complexity. 
Void MaxMin(int i, int, j, Type& max, Type& min) 
{ 
if (i==j) max=min=a[i]; 
else if (i=j-1) 
 { 
  if (a[i]<a[j]) {max=a[j]; min=a[i];} 
  else {max=a[i]; min=a[j];} 
 } 
else 
 { 
  mid=(i+j)/2 
  MaxMin(i,mid,max,min); 
  MaxMin(i,mid+1,max1,min1); 
 
  if(max<max1) max = max1; 
  if(min>min1) min = min1; 
 } 
} 
 

 

T(n) = T(n/2) + T(n/2) + 2, n>2 

        = 1, n = 2 

        = 0, n = 1 

Solving, we get  

T(n) = 3n/2 -2 

[5] CO4 L2 

 (b)  Find the upper bound of recurrences given below by substitution method 

 i) T(n) = 2T(n/2)+n 

a = 2, b=2, f(n) = n 

h(n) = f(n)/n^(logb a) = n/n = 1 = (log n)^i, i=0 

u(n) = θ(log n) 
T(n) = n^( logb a) [T(1) + θ(log n)] = θ(n log n) 
 

 ii) T(n) = T(n/2) + 1 

a = 1, b=2, f(n) = 1 

h(n) = f(n)/n^(logb a) = 1/1 = 1 = (log n)^i, i=0 

u(n) = θ(log n) 

T(n) = n^( logb a) [T(1) + θ(log n)] = θ(log n) 
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7  (a) Obtain topological sorting for the given 

diagraph  
Remove source nodes one by one. 

1. Remove f 

2. Remove e 

3. Remove a 

4. Remove b 
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5. Remove c 

6. Remove d 

7. Remove g 

Topological sorted order: f, e, a, b, c, d, g 

 (b) Analyze and compare the time complexities of matrix multiplication using (i) conventional 

divide-and conquer method, versus (ii) Strassen’s method. Which method is better? Justify your 
answer.  

(i) Conventional method: 

T(n) = b, n ≤2 

        = 8T(n/2) + cn
2
, n >2, b, c are constants 

Solving, we get 

h(n) = c/n 

u(n) = O(1) 

T(n)=O(n
3
) 

 

(ii) Strasse ’s ethod: 
T  = ,  ≤2 

        = 7T(n/2) + an
2
, n >2, b, a are constants 

h(n) = a/n^(0.81) 

u(n) = O(1) 

T(n) = O(n^(2.81)) 

 

Comparing the time o plexities, we see that Strasse ’s ethod has a lower ti e 
complexity than the conventional method, and hence better. 
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8  (a) Consider a modification of merge sort in which the array is recursively divided into two halves, 

up to a point till the sub-arrays reach size k (where k is a constant, and 1<k<n). These sub-arrays 

of size k are individually sorted in time θ(k2
), and then merged using the standard merging 

mechanism.  Illustrate this modified algorithm, and analyze its time complexity. 
 
At the lowest level we have n/k sub-arrays each of size k. They are sorted in θ(k2

) time. 
These n/k sub arrays at that level are sorted in (n/k)θ(k2

) = θ(nk) time in the worst case. 
They are then merged using the standard merge procedure. Thus the complexity to merge from 

level n/k is θ(n log (n/k)) in worst case. 
 
Thus the modified algorithm runs in θ(nk + n log (n/k)) in worst case. 
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 (b)  Solve the following recurrence relations 

 i) f(n)=f(n-1)+n, n>0 

          =0,              n=0 
f(n) = f(n-1) + n = f(n-2) + n-1 + n 
step k, f(n) = f(n-k) + kn – (1+2+… + k-1)  
last step, k=n 
f(n) = f(0) + n^2 – (1+2+…+ n-1)  
solving, we get f(n) = n(n+1)/2 = O(n^2) 
 

 
  ii) x(n)= 3x(n-1) for n>1, x(1)=4 

At step k, x(n) = 3^k x(n-k) 

Last step, k=n-1 

x(n) = 3^(n-1) . 4 =O(3^n) 

 
  iii)  x(n)= x(n/2)+n, for n>1, x(1)=1, n=2

k
 

 Step i, x(n) = x(n/2^i) + n/2^(i-1) + … + n/2^0 

 Putting n=2
k
 

 Step i, x(n) = x(2^(k-i)) + 2^(k-(i-1)) + … + 2^(k-0) 

  

 Last step, i=k-1 

 x(n) = 1 + (2^2 + 2^3 + … + 2^(k)) = 2n-1 = O(n) 

 
[5] 
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OBE- Outcome Based Education 

RBT- Revised Blooms Taxonomy 

CO - Course Outcome 

PO- Program Outcome 

L - Cognitive Level 
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CO1: 

Ability to understand the fundamental 

principles of algorithm design to solve a 

computational problem. 

2 1 2 1 1 1 0 0 2 0 1 1 

CO2: 
Ability to analyse algorithms to determine 

the correctness and efficiency class 
1 2 2 2 0 1 0 0 2 0 1 1 

CO3: 

Ability to analyse algorithms at their 

worst-case, average-case, and best-case 

behaviours 

1 2 2 2 0 1 0 0 2 0 1 1 

CO4: 

Ability to devise algorithms using 

different design techniques (brute‐force, 
divide and conquer, greedy, decrease and 

conquer, dynamic programming and back 

tracking), and compare their efficiencies 

1 2 2 2 0 1 0 0 2 1 2 1 

CO5: 

Ability to apply and implement learned 

algorithm design techniques and data 

structures to solve problems 

1 2 2 2 2 1 0 0 2 0 1 1 

CO6: 
Ability to design and implement new 

algorithms to solve real world problems 
1 2 2 2 2 1 0 0 2 0 1 2 

 

Cognitive level KEYWORDS 

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.  

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend  

L3 
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, 

experiment, discover.  

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.  

L5 
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, 

conclude, compare, summarize.  

 

 

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; 

PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7- 

Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work; 

PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning 


