

CMR

INSTITUTE OF

TECHNOLOGY

USN

 Internal Assesment Test – I

Solution

Sub

:
Design and Analysis of Algorithms

Code: 15CS43

Date

:
28 / 03 / 2017 Duration: 90 mins Max Marks: 50 Sem: 4

Branch: CSE/ISE

 Answer Any FIVE FULL Questions

Mar

ks

OBE

 CO RB

T
1 (a) Explain the asymptotic notations for analysis of algorithms. Support your answer with proper

graphs and examples.

O-notation:

A function t(n) is said to be in O(g(n)), if t(n) is bounded above by some positive

constant multiple of g(n) for all large n, i.e.

t(n) ≤ c.g(n) for all n≥n0

e.g. 100n + 5 ϵ O(n
2
)

Ω-notation:

A function t(n) is said to be in Ω (g(n)), if t(n) is bounded below by some positive

constant multiple of g(n) for all large n, i.e.

t(n) ≥ c.g(n) for all n≥n0

e.g. 100n
3
 + 5 ϵ Ω(n2

)

Θ-notation:

A function t(n) is said to be in Θ (g(n)), if t(n) is bounded both above and below by some

positive constant multiples of g(n) for all large n, i.e.

c2g(n) ≤ t(n) ≤ c1.g(n) for all n≥n0

e.g. 100n2 + 5n ϵ Θ(n2
)

[5] CO1 L1

 (b) Prove that if t1(n) ϵ O(g1(n)) and t2(n) ϵ O(g2(n)), then, t1(n) + t2(n) ϵ O(max{O(g1(n),(g2(n)})

 Proof:

 t1(n)≤c1g1(n) for all n ≥n1

 t2(n)≤c2g2(n) for all n ≥n2

 let c3 = max(c1, c2), and consider n ≥ max(n1,n2)

Adding the above two, we get

t1(n) + t2(n) ≤ c1g1(n) + c2g2(n)
t1(n) + t2(n) ≤ c3g1(n) + c3g2(n) = c3.2.max(g1(n),g2(n))
thus, t1(n) + t2(n) ϵ O(max{O(g1(n),(g2(n)})

[5] CO2 L3

2 (a) Compare the orders of growth of the functions (log 𝑛) and (√𝑛), and specify which function

grows faster.

[5] CO1 L2

cg(n)

t(n)

n
n0

Ω (g(n))

cg(n)

t(n)

n
n0

O(g(n))

c1g(n)
t(n)

n
n0

θ(g(n))

c2g(n)

lim𝑛→∞ log 𝑛√𝑛 = lim𝑛→∞ log 𝑛 ′√𝑛 ′ = lim𝑛→∞ log 𝑒 .𝑛/ √𝑛

Applying limits, we get 0.

Since the limit = 0, log2 n has smaller growth than √𝑛

 (b) Explain the mathematical analysis of Fibonacci recursive algorithm.

 Fib(n) = Fib(n-1) + Fib(n-2) , n>1

 = 1, n=1

 = 0, n=0

 A(n) = A(n-1) + A(n-2) + 1, at step 1 (+1 is for the comparison to check if n>1)

 This is re-written as,

 [A(n) + 1] – [A(n-1) + 1] – [A(n-2) + 1] = 0

Let B(n) = A(n) + 1

Then the above is re-written as

B(n) – B(n-1) –B(n-2) = 0

B(0) = 0, B(1) = 1

That is, B(n) = F(n+1)

And from the Fibbonacci recurrence equation, A(n) = B(n) -1 = √5 𝛷𝑛+ − 𝛷𝑛− − 1

This is exponential in time.

[5] CO4 L4

3 17. (a) What is an algorithm? Give the algorithm specifications. Define time complexity and space

complexity.(1+2+1+1)
An algorithm is a finite set of instructions that if followed accomplishes a particular task.

Algorithm must satisfy the following criteria:
Input: Zero or more inputs supplied
Output: At least one quantity is produced
Definiteness: Each instruction is clear and unambiguous.
Finiteness: Algorithm terminates after finite number of steps.
Effectiveness: Every instruction must be basic and feasible.

Specification: Algorithm is specified as a pseudocode or program form. It can either be

iteratively specified with loops, or recursively specified using recursive function calls.

Time Complexity: Number of steps/computer time it takes to run the algorithm. The time T(P)

taken by the program P is the sum of the compile time and run time.

Space Complexity: Amount of memory/resources it needs to run the algorithm. There is a fixed

part and a variable part.

[5] CO1 L1

18. (b) Design a recursive algorithm for solving tower of Hanoi problem and give the general plan of

analyzing that algorithm. Show that the time complexity of tower of Hanoi algorithm is

exponential in nature.

TowersOfHanoi(int n, tower x, tower y, tower z)

 {

 if (n)

 {

 TowersOfHanoi(n-1, x,z,y)

 Output “Move top disk from tower ‘x’ to top of tower ‘y’”

 TowersOfHanoi(n-1, z, y,x)

 }

}

M(n) = 2 M(n-1) + 1, n>1

M(1) = 1

\

Step 1

[5] CO5 L2

M(n) = 2 M(n-1) + 1

Step 2, M(n) = 2
2
M(n-2) +2 + 1

Step k, M(n) = 2
k
 M(n-k) + 2

k-1
 +2

k-2+ …+20

Last step is when k = n-1

M(n) = 2
n-1

 M(1) + 2
n-2

 +2n
n-3+ …+20

= 2
n
-1, which is exponential in time.

4 (a) Is Quick sort a stable sort. Design the algorithm for quick Sort. Give the time complexity for

best, average, and worst cases.
No, quick sort is not a stable algorithm as it does not preserve the order of the input sequence.

algorithm quicksort(A, lo, hi) is

 if lo < hi then

 p := partition(A, lo, hi)

 quicksort(A, lo, p – 1)
 quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is

 pivot := A[hi]

 i := lo - 1

 for j := lo to hi - 1 do

 if A[j] ≤ pivot then
 i := i + 1

 swap A[i] with A[j]

 swap A[i+1] with A[hi]

 return i + 1

[5] CO3 L2

 (b) Sort the following numbers using quick sort, 65, 70, 75, 80, 85, 60, 55, 50, 45
Let array be called A[], and assume elements start from 0 and ends at 8.
Choose 65, A[0] as pivot.

i=0, j=9: 65, 70, 75, 80, 85, 60, 55, 50, 45;
i=1, j=8: 65, 45, 75, 80, 85, 60, 55, 50, 70;

i=2, j=7: 65, 45, 50, 80, 85, 60, 55, 75, 70;

i=3, j=6: 65, 45, 50, 55, 85, 60, 80, 75, 70;

i=4, j=5: 65, 45, 50, 55, 60, 85, 80, 75, 70;

i=5, j=4: break loop
Swap pivot with A[j]
i=4, j=5:60,45, 50, 55, 65, 85, 80, 75, 70;

A: 60,45, 50, 55, 65, 85, 80, 75, 70;

A11Quicksort(60,45, 50, 55) and A12 Quicksort (85, 80, 75, 70)

A11: 60,45, 50, 55

55,45, 50, 60 => A21 Quicksort(55,45, 50)

A12: 85, 80, 75, 70
85, 80, 75, 70
70, 80, 75, 85 => A22 Quicksort(70, 80, 75)

A: 55,45, 50, 60, 65, 70, 80, 75, 85

A21: 55,45, 50 => 50, 45, 55 => A31 Quicksort(50, 45) => 45, 50

A22: 70, 80, 75 => A32 Quicksort(80,75) => 75, 80

[5] CO5 L3

A: 45, 50, 55, 65, 70, 75, 80, 85

 OR

 (a) You are given a set of n elements. Your task is to design an algorithm to find the maximum and

minimum element in the set. Use the divide & conquer approach. The algorithm should satisfy all

the criteria of a good algorithm.
Void MaxMin(int i, int, j, Type& max, Type& min)
{
if (i==j) max=min=a[i];
else if (i=j-1)
 {
 if (a[i]<a[j]) {max=a[j]; min=a[i];}
 else {max=a[i]; min=a[j];}
 }
else
 {
 mid=(i+j)/2
 MaxMin(i,mid,max,min);
 MaxMin(i,mid+1,max1,min1);

 if(max<max1) max = max1;
 if(min>min1) min = min1;
 }
}

[10] CO4 L5

5 (a) Explain the concept of divide and conquer. Design the algorithm for merge Sort.
Given a problem of size n, the divide and conquer strategy suggests splitting the problem into k

distinct subsets, 1<k≤n, yielding k subproblems. These subproblems are in turn solved using

further dividing them in sub-subproblems, and so on until the problem is small enough to be

solved individually or in constant time. The steps are as follows:
Divide, Conquer and combine.

Merge sort:

MERGE-SORT (A, p, r)

1. IF p < r // Check for base case

2. THEN q = FLOOR[(p + r)/2] // Divide step

3. MERGE (A, p, q) // Conquer step.

4. MERGE (A, q + 1, r) // Conquer step.

5. MERGE (A, p, q, r) // Conquer step.

MERGE (A, p, q, r)

1. n1 ← q − p + 1

2. n2 ← r − q

3. Create arrays L[1 . . n1 + 1] and R[1 . . n2 + 1]

4. FOR i ← 1 TO n1

5. DO L[i] ← A[p + i − 1]
6. FOR j ← 1 TO n2

7. DO R[j] ← A[q + j]

8. L[n1 + 1] ← ∞

9. R[n2 + 1] ← ∞

10. i ← 1

11. j ← 1

12. FOR k ← p TO r

13. DO IF L[i] ≤ R[j]

[5] CO4 L2

14. THEN A[k] ← L[i]
15. i ← i + 1

16. ELSE A[k] ← R[j]
17. j ← j + 1

 (b) Sort the list E, X, A, M, P, L, E in alphabetical order using merge sort.

Divide:
EXAMPLE
EXAM PLE
EX AM PL E
E X A M P L E
Conquer & Combine:
EX AM LP E
AEMX ELP

AEELMPX

[5] CO2 L3

6 (a) Design a recursive algorithm for finding the minimum and maximum elements in a list. Give the

recursive equation for time complexity.
Void MaxMin(int i, int, j, Type& max, Type& min)
{
if (i==j) max=min=a[i];
else if (i=j-1)
 {
 if (a[i]<a[j]) {max=a[j]; min=a[i];}
 else {max=a[i]; min=a[j];}
 }
else
 {
 mid=(i+j)/2
 MaxMin(i,mid,max,min);
 MaxMin(i,mid+1,max1,min1);

 if(max<max1) max = max1;
 if(min>min1) min = min1;
 }
}

T(n) = T(n/2) + T(n/2) + 2, n>2

 = 1, n = 2

 = 0, n = 1

Solving, we get

T(n) = 3n/2 -2

[5] CO4 L2

 (b) Find the upper bound of recurrences given below by substitution method

 i) T(n) = 2T(n/2)+n

a = 2, b=2, f(n) = n

h(n) = f(n)/n^(logb a) = n/n = 1 = (log n)^i, i=0

u(n) = θ(log n)
T(n) = n^(logb a) [T(1) + θ(log n)] = θ(n log n)

 ii) T(n) = T(n/2) + 1

a = 1, b=2, f(n) = 1

h(n) = f(n)/n^(logb a) = 1/1 = 1 = (log n)^i, i=0

u(n) = θ(log n)

T(n) = n^(logb a) [T(1) + θ(log n)] = θ(log n)

[5] CO1 L2

7 (a) Obtain topological sorting for the given

diagraph
Remove source nodes one by one.

1. Remove f

2. Remove e

3. Remove a

4. Remove b

[5] CO5 L3

5. Remove c

6. Remove d

7. Remove g

Topological sorted order: f, e, a, b, c, d, g

 (b) Analyze and compare the time complexities of matrix multiplication using (i) conventional

divide-and conquer method, versus (ii) Strassen’s method. Which method is better? Justify your
answer.

(i) Conventional method:

T(n) = b, n ≤2

 = 8T(n/2) + cn
2
, n >2, b, c are constants

Solving, we get

h(n) = c/n

u(n) = O(1)

T(n)=O(n
3
)

(ii) Strasse ’s ethod:
T = , ≤2

 = 7T(n/2) + an
2
, n >2, b, a are constants

h(n) = a/n^(0.81)

u(n) = O(1)

T(n) = O(n^(2.81))

Comparing the time o plexities, we see that Strasse ’s ethod has a lower ti e
complexity than the conventional method, and hence better.

[5] CO4 L4

8 (a) Consider a modification of merge sort in which the array is recursively divided into two halves,

up to a point till the sub-arrays reach size k (where k is a constant, and 1<k<n). These sub-arrays

of size k are individually sorted in time θ(k2
), and then merged using the standard merging

mechanism. Illustrate this modified algorithm, and analyze its time complexity.

At the lowest level we have n/k sub-arrays each of size k. They are sorted in θ(k2

) time.
These n/k sub arrays at that level are sorted in (n/k)θ(k2

) = θ(nk) time in the worst case.
They are then merged using the standard merge procedure. Thus the complexity to merge from

level n/k is θ(n log (n/k)) in worst case.

Thus the modified algorithm runs in θ(nk + n log (n/k)) in worst case.

[5] CO5 L4

 (b) Solve the following recurrence relations

 i) f(n)=f(n-1)+n, n>0

 =0, n=0
f(n) = f(n-1) + n = f(n-2) + n-1 + n
step k, f(n) = f(n-k) + kn – (1+2+… + k-1)
last step, k=n
f(n) = f(0) + n^2 – (1+2+…+ n-1)
solving, we get f(n) = n(n+1)/2 = O(n^2)

 ii) x(n)= 3x(n-1) for n>1, x(1)=4

At step k, x(n) = 3^k x(n-k)

Last step, k=n-1

x(n) = 3^(n-1) . 4 =O(3^n)

 iii) x(n)= x(n/2)+n, for n>1, x(1)=1, n=2

k

 Step i, x(n) = x(n/2^i) + n/2^(i-1) + … + n/2^0

 Putting n=2
k

 Step i, x(n) = x(2^(k-i)) + 2^(k-(i-1)) + … + 2^(k-0)

 Last step, i=k-1

 x(n) = 1 + (2^2 + 2^3 + … + 2^(k)) = 2n-1 = O(n)

[5]

CO5 L3

OBE- Outcome Based Education

RBT- Revised Blooms Taxonomy

CO - Course Outcome

PO- Program Outcome

L - Cognitive Level

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

CO1:

Ability to understand the fundamental

principles of algorithm design to solve a

computational problem.

2 1 2 1 1 1 0 0 2 0 1 1

CO2:
Ability to analyse algorithms to determine

the correctness and efficiency class
1 2 2 2 0 1 0 0 2 0 1 1

CO3:

Ability to analyse algorithms at their

worst-case, average-case, and best-case

behaviours

1 2 2 2 0 1 0 0 2 0 1 1

CO4:

Ability to devise algorithms using

different design techniques (brute‐force,
divide and conquer, greedy, decrease and

conquer, dynamic programming and back

tracking), and compare their efficiencies

1 2 2 2 0 1 0 0 2 1 2 1

CO5:

Ability to apply and implement learned

algorithm design techniques and data

structures to solve problems

1 2 2 2 2 1 0 0 2 0 1 1

CO6:
Ability to design and implement new

algorithms to solve real world problems
1 2 2 2 2 1 0 0 2 0 1 2

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,

experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,

conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;

PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-

Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work;

PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

