
Page 1 of 16

CMR

INSTITUTE OF

TECHNOLOGY

Internal Assessment Test I – March 2017

SOLUTION

Sub: Computer Graphics & Visualization Code: 10CS65

Date: 30/03/2017 Duration:
90

mins
Max

Marks: 50 Sem: VI Branch: CSE

Questions and Answers. Marks
OBE

CO RBT

1 With neat diagram, explain graphics pipeline architecture with major steps involved in imaging
process?

Process objects one at a time in the order they are generated by the application

 All steps can be implemented in hardware on the graphics card

Vertex Processor

 Much of the work in the pipeline is in converting object representations from one coordinate system

to another

– Object coordinates

10

CO1 L4

Page 2 of 16

– Camera (eye) coordinates

– Screen coordinates

 Vertex processor also computes vertex colors

Primitive Assembly

Vertices must be collected into geometric objects before clipping and rasterization can take place

– Line segments

– Polygons

– Curves and surfaces

Clipping

Just as a real camera cannot “see” the whole world, the virtual camera can only see part of the world or

object space.
– Objects that are not within this volume are said to be clipped out of the scene

Rasterization:

 If an object is not clipped out, the appropriate pixels in the frame buffer must be assigned colors

 Rasterizer produces a set of fragments for each primitive.

Page 3 of 16

 Fragments are “potential pixels”

– Have a location in frame buffer

– Color and depth attributes

 Vertex attributes are interpolated over objects by the rasterizer

Fragment Processor:

 Fragments are processed to determine the color of the corresponding pixel in the frame buffer

 Colors can be determined by texture mapping or interpolation of vertex colors

 Fragments may be blocked by other fragments closer to the ca mera

2 Write a program to generate 3D dimensional gasket using recursive subdivision of a tetrahedron

(triangle as a primitive)?
#include<stdio.h>
#include<GL/glut.h>
float vertices[4][3]={{-40,-40,-40},
 {40,-40,-40},
 {0,40,-40},
 {0,-20,40}};
int n;

void triangle(float *a, float *b, float *c)
{
 glBegin(GL_TRIANGLES);
 glVertex3fv(a);
 glVertex3fv(b);
 glVertex3fv(c);
 glEnd();
}
void d_t(float *a, float *b, float *c, int m)

10

CO2 L1

Page 4 of 16

{
 float v1[3],v2[3],v3[3];
 if(m>0)
 {
 for(int i=0;i<3;i++)
 {
 v1[i]=(a[i]+b[i])/2;
 v2[i]=(a[i]+c[i])/2;
 v3[i]=(c[i]+b[i])/2;
 }
 d_t(c,v2,v3,m-1);
 d_t(a,v1,v2,m-1);
 d_t(b,v1,v3,m-1);
 }
 else
 triangle(a,b,c);
}
void display()
{
 glClearColor(1,1,1,1);
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 glColor3f(1,0,0);
 d_t(vertices[0],vertices[1],vertices[3],n);
 glColor3f(0,1,0);
 d_t(vertices[0],vertices[3],vertices[2],n);
 glColor3f(0,0,1);
 d_t(vertices[1],vertices[2],vertices[3],n);
 glColor3f(1,1,0);
 d_t(vertices[0],vertices[1],vertices[2],n);

 glFlush();
}
void init()
{
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-50,50,-50,50,-50,50);

Page 5 of 16

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}
int main(int argc,char **argv)
{
 printf("Enter the value of n: ");
 scanf("%d",&n);
 glutInit(&argc,argv);
 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE|GLUT_DEPTH);
 glutInitWindowPosition(0,0);
 glutInitWindowSize(500,500);
 glutCreateWindow("3D Gasket using Triangle");
 glutDisplayFunc(display);
 init();
 glEnable(GL_DEPTH_TEST);
 glutMainLoop();
}

3 Define view port and aspect ratio? What is display list? Give the OpenGL code that defines display
list generating a red colored rectangle with vertices (50, 50), (150, 50) and (100, 50)?

Viewport – A rectangular area of the display window, whose height and width can be adjusted to match

that of the clipping window, to avoid distortion of the images. OpenGL function to set a viewport is
given as below.

void glViewport(Glint x, Glint y, GLsizei w, GLsizei h)

where, x & y is the left lower corner of the viewport, w & h give the width and height of the

viewport respectively.

Aspect ratio is the ratio of width to height of a rectangle.

The Display Processor in modern graphics systems could be considered as a graphics server. The

compiled list of instructions that is sent to the display processor after processing the user program in
host system were stored in a display memory called Display List.

define RECT 1

glNewList(RECT, GL_COMPILE)

10

CO1 L1

Page 6 of 16

 glBegin(GL_LINE_LOOP);
 glColor3f(1,0,0);

 glVertex2f(50,50);

 glVertex2f(150,50);
 glVertex2f(150,100);

 glVertex2f(50,100);
 glEnd();

glEndList();

GL_COMPLIE_AND_EXECUTE flag can be used instead of GL_COMPLIE to immediate display of

the contents while the list is being constructed. GL_COMPILE tells system to send the list to server but
not to display its contents.

Whenever we wish to draw the rectangle, just a calling function is executed as below,

glCallList(RECT);

4 Classify the major groups of API functions of OpenGL? Explain each of them with an example?

 Primitive functions : Defines low level objects such as points, line segments, polygons etc.

Ex: GL_PLOYGON, GL_LINES, GL_POINTS

 Attribute functions : Attributes determine the appearance of objects.

– Color (points, lines, polygons)

Ex: glColor3f(), glPointSize()

 Viewing functions : Allows us to specify various views by describing the camera’s position and

orientation.

Ex: glOrtho(), glPerspective(), glFrustum()

 Transformation functions : Provides user to carry out transformation of objects like rotation,

scaling etc.

Ex: glRotatef(), glTranslatef(), glScalef()

 Control functions : Enables us to initialize our programs, helps in dealing with any errors

during execution of the program.

Ex: glutInit(), gluInitDisplayMode(), glutCreateWindow()

10

CO1 L3

Page 7 of 16

 Input functions : Allows us to deal with a diverse set of input devices like keyboard, mouse etc.
Ex: Mouse and Keyboard callback functions.

 Query functions : Helps query information about the properties of the particular
implementation.

5 Write the different OpenGL primitives, with example for each primitive?

Points (GL_POINTS) Each vertex is displayed at a size of at least one pixel.
Line segments (GL_LINES) The line-segment type causes successive pairs of vertices to be
interpreted as the endpoints of individual segments.

Polylines (GL_LINE_STRIP, GL_LINE_LOOP) If successive vertices (and line segments) are
to be connected, we can use the line strip, or polyline form. Many curves can be approximated via a

suitable polyline. If we wish the polyline to be closed, we can locate the final vertex in the same
place as the first, or we can use the GL_LINE_LOOP type, which will draw a line segment from the
final vertex to the first, thus creating a closed path.

Triangles (GL_TRIANGLES) The edges are the same as they would be if we used line loops.

Each successive group of three vertices specifies a new triangle.
Strips and Fans (GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN) These objects are based on

groups of triangles that share vertices and edges. In the triangle strip, for example, each additional
vertex is combined with the previous two vertices to define a new triangle. A triangle fan is based
on one fixed point. The next two points determine the first triangle, and subsequent triangles are

formed from one new point, the previous point, and the first (fixed) point.

10

CO1 L2

Page 8 of 16

6 Explain RGB and Index coloring mechanisms? Write a note on viewing concept?

RGB color:

Each color component is stored separately in the frame buffer, usually 8 bits per component in

buffer. Note in glColor3f the color values range from 0.0 (none) to 1.0 (all), whereas in

glColor3ub the values range from 0 to 255. The color as set by glColor3f becomes part of the state

and will be used until changed

– Colors and other attributes are not part of the object but are assigned when the object is rendered

RGBA color system:

This has 4 arguments – RGB and alpha – Opacity.

glClearColor(1.0,1.0,1.0,1.0)

This would render the window white since all components are equal to 1.0, and is opaque as alpha

is also set to 1.0

10

CO2 L4

Page 9 of 16

glColor3f(1.0,0.0,0.0) is used set the color state variable(red in this context) to select the rendering

color of the objects that are defined after this function call.

Indexed color:

Colors are indices into tables of RGB values

Requires less memory

o indices usually 8 bits

o not as important now

Classical Viewing

3 basic elements for viewing:

– One or more objects

– A viewer with a projection surface

– Projectors that go from the object(s) to the projection surface

Classical views are based on the relationship among these elements. Each object is assumed to

Page 10 of 16

constructed from flat principal faces

– Buildings, polyhedra, manufactured objects

– Front, top and side views.

Perspective and parallel projections:

Parallel viewing is a limiting case of perspective viewing

Perspective projection has a COP where all the projector lines converge.

Orthographic Projections:

Projectors are perpendicular to the projection plane. Projection plane is kept parallel to one of the

principal faces. A viewer needs more than 2 views to visualize what an object looks like from its

Page 11 of 16

multiview orthographic projection.

7 Discuss the request mode, sample mode and event mode with figures wherever required?

Input devices contain a trigger which can be used to send a signal to the operating system

o Button on mouse

o Pressing or releasing a key

When triggered, input devices return information (their measure) to the system

o Mouse returns position information

o Keyboard returns ASCII code

10

CO3 L2

Page 12 of 16

Request Mode

Measure of the device is provided to the program only when user triggers the device .

Typical of keyboard input

– Can erase (backspace), edit, correct until enter (return) key (the trigger) is depressed

Simple Mode

In this mode the input is immediate. As soon as the function call in the user program is

encountered, the measure is returned. Hence no trigger is needed.

Event Mode

Most systems have more than one input device, each of which can be triggered at an arbitrary time by a

user. Each time a device is triggered, an event generated whose measure is put in an event queue which

can be examined by the user program

Page 13 of 16

Window: resize, expose, iconify

Mouse: click one or more buttons Motion: move mouse

Keyboard: press or release a key.

8 Write an OpenGL program to, draw a rectangle using left click of a mouse device and the

hierarchical menus to increase or decrease the size of rectangle?
#include<stdio.h>
#include<stdlib.h>
#include<GL/gl.h>
#include<GL/glut.h>

int wh=500,ww=500;
int n=3;

void display()
{
 glClearColor(0,0,0,1);
 glClear(GL_COLOR_BUFFER_BIT);
 glFlush();
}

void init()
{
 glViewport(0,0,ww,wh);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(0,ww,0,wh);
 glMatrixMode(GL_MODELVIEW);
 glColor3f(1,0,0);
}

void reshape(GLsizei w,GLsizei h)
{
 glViewport(0,0,w,h);
 glMatrixMode(GL_PROJECTION);

10

CO3 L1

Page 14 of 16

 glLoadIdentity();
 gluOrtho2D(0,w,0,h);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 ww=w;
 wh=h;
}

void drawSquare(int x,int y)
{
 y=wh-y;
 glBegin(GL_POLYGON);
 glVertex2f(x+n,y+n);
 glVertex2f(x-n,y+n);
 glVertex2f(x-n,y-n);
 glVertex2f(x+n,y-n);
 glEnd();
 glFlush();

}

void size_menu(int id)
{
 switch(id)
 {
 case 2: n=n+1;
 break;
 case 3: n=n-1;
 break;
 }
}

void main_menu(int id)
{
 exit(0);
}

Page 15 of 16

void mouse(int button,int state,int x,int y)
{
 if(button==GLUT_LEFT_BUTTON && state==GLUT_DOWN) drawSquare(x,y);
 if(button==GLUT_RIGHT_BUTTON && state==GLUT_DOWN) exit(0);
}

int main(int argc,char **argv)
{
 int sub_menu;
 glutInit(&argc,argv);
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(0,0);
 glutCreateWindow("Menus n Interaction");
 glutDisplayFunc(display);
 init();
 glutMouseFunc(mouse);
 sub_menu=glutCreateMenu(size_menu);
 glutAddMenuEntry("Increase Size",2);
 glutAddMenuEntry("Decrease Size",3);
 glutCreateMenu(main_menu);
 glutAddMenuEntry("Quit",2);
 glutAddSubMenu("Resize",sub_menu);
 glutAttachMenu(GLUT_RIGHT_BUTTON);
 glutKeyboardFunc(keyboard);
 glutReshapeFunc(reshape);
 glutMainLoop();
}

Page 16 of 16

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

CO1:
Describe pipeline arch itecture w.r.t

two dimensional applications.
2 1 2 1 - - - - 1 - 2 -

CO2:

Explain pipeline Hidden surface

removal, implicit functions, color

mechanis m and demonstrate

approximation of sphere

2 2 1 - 3 - - - - - - -

CO3:

Design and Develop CAD program

using picking, Display List, Menu,

Input and Output devices

3 - 3 2 3 - - - - - 1 -

CO4:

Experiment affine transformation

activities w.r.t to Translation,

Rotation and Scaling operations.

1 - 1 1 - - - - - - - -

CO5:
List and summarize details of light

sources and material properties
2 - - 1 2 2 - - - - - -

CO6:

Analyze implementation strategies

w.r.t clipping and display

consideration concepts

1 1 1 2 2 2 3 - - - 1 -

Cognitive

level
KEYW ORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change,

classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, exp lain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;

PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and

society; PO7- Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work ;

PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

