
CMR INSTITUTE OF TECHNOLOGY

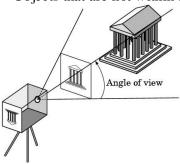
Internal Assessment Test I – March 2017

SOLUTION

Sub:	Computer Gra	phics & Vis	ualization		Code:	10CS65			
Date:	30/03/2017	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	CSE

- Camera (eye) coordinates
- Screen coordinates
- Vertex processor also computes vertex colors

Primitive Assembly


Vertices must be collected into geometric objects before clipping and rasterization can take place

- Line segments
- Polygons
- Curves and surfaces

Clipping

Just as a real camera cannot "see" the whole world, the virtual camera can only see part of the world or object space.

- Objects that are not within this volume are said to be *clipped* out of the scene

Rasterization:

- If an object is not clipped out, the appropriate pixels in the frame buffer must be assigned colors
- Rasterizer produces a set of fragments for each primitive.

	Fragments are "potential pixels"			
	- Have a location in frame buffer			
	- Color and depth attributes			
	Vertex attributes are interpolated over objects by the rasterizer			
	Fragment Processor:			
	• Fragments are processed to determine the color of the corresponding pixel in the frame buffer			
	Colors can be determined by texture mapping or interpolation of vertex colors			
	Fragments may be blocked by other fragments closer to the camera			
	Truginonis may be ersened by outer magnitudes eroser to the earner			
2	Write a program to generate 3D dimensional gasket using recursive subdivision of a tetrahedron	10		
	(triangle as a primitive)?	10		
	#include <stdio.h></stdio.h>			
	#include <gl glut.h=""></gl>			
	float vertices[4][3]={{-40,-40,-40},			
	{40,-40,-40},			
	{0,40,-40},			
	{0,-20,40}};			
	int n;		CO2	L1
	void triangle(float *a, float *b, float *c)			
	{			
	<pre>glBegin(GL_TRIANGLES);</pre>			
	glVertex3fv(a);			
	glVertex3fv(b);			
	glVertex3fv(c);			
	glEnd();			
	} void d_t(float *a, float *b, float *c, int m)			

```
float v1[3], v2[3], v3[3];
    if(m>0)
        for(int i=0;i<3;i++)
            v1[i]=(a[i]+b[i])/2;
            v2[i]=(a[i]+c[i])/2;
            v3[i]=(c[i]+b[i])/2;
        d t(c,v2,v3,m-1);
        d_t(a,v1,v2,m-1);
        d_t(b,v1,v3,m-1);
    else
        triangle(a,b,c);
void display()
    glClearColor(1,1,1,1);
    glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
    glColor3f(1,0,0);
    d_t(vertices[0], vertices[1], vertices[3], n);
    glColor3f(0,1,0);
    d_t(vertices[0], vertices[3], vertices[2], n);
    glColor3f(0,0,1);
    d_t(vertices[1], vertices[2], vertices[3], n);
    glColor3f(1,1,0);
    d_t(vertices[0], vertices[1], vertices[2], n);
    glFlush();
void init()
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glOrtho(-50,50,-50,50,-50,50);
```

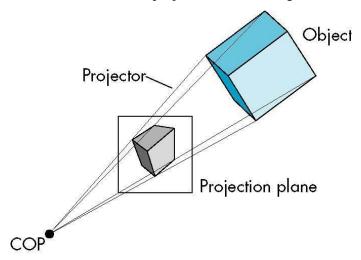
```
glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
int main(int argc,char **argv)
    printf("Enter the value of n: ");
    scanf("%d",&n);
    glutInit(&argc,argv);
    glutInitDisplayMode(GLUT RGB|GLUT SINGLE|GLUT DEPTH);
    glutInitWindowPosition(0,0);
    glutInitWindowSize(500,500);
    glutCreateWindow("3D Gasket using Triangle");
    glutDisplayFunc(display);
    init();
    glEnable(GL DEPTH TEST);
    glutMainLoop();
Define view port and aspect ratio? What is display list? Give the OpenGL code that defines display
                                                                                                       10
list generating a red colored rectangle with vertices (50, 50), (150, 50) and (100, 50)?
Viewport – A rectangular area of the display window, whose height and width can be adjusted to match
that of the clipping window, to avoid distortion of the images. OpenGL function to set a viewport is
given as below.
void glViewport(Glint x, Glint y, GLsizei w, GLsizei h)
where, x & y is the left lower corner of the viewport, w & h give the width and height of the
viewport respectively.
                                                                                                               CO<sub>1</sub>
                                                                                                                        L1
Aspect ratio is the ratio of width to height of a rectangle.
The Display Processor in modern graphics systems could be considered as a graphics server. The
compiled list of instructions that is sent to the display processor after processing the user program in
host system were stored in a display memory called Display List.
# define RECT 1
glNewList(RECT, GL COMPILE)
```

	glBegin(GL_LINE_LOOP); glColor3f(1,0,0); glVertex2f(50,50); glVertex2f(150,50); glVertex2f(150,100); glVertex2f(50,100); glEnd(); glEnd(); glEndList(); GL_COMPLIE_AND_EXECUTE flag can be used instead of GL_COMPLIE to immediate display of the contents while the list is being constructed. GL_COMPILE tells system to send the list to server but not to display its contents.			
4	Whenever we wish to draw the rectangle, just a calling function is executed as below, glCallList(RECT); Classify the major groups of API functions of OpenGL? Explain each of them with an example?	10		
	 Primitive functions: Defines low level objects such as points, line segments, polygons etc. Ex: GL_PLOYGON, GL_LINES, GL_POINTS Attribute functions: Attributes determine the appearance of objects. — Color (points, lines, polygons) Ex: glColor3f(), glPointSize() Viewing functions: Allows us to specify various views by describing the camera's position and orientation. Ex: glOrtho(), glPerspective(), glFrustum() Transformation functions: Provides user to carry out transformation of objects like rotation, scaling etc. Ex: glRotatef(), glTranslatef(), glScalef() Control functions: Enables us to initialize our programs, helps in dealing with any errors during execution of the program. Ex: glutInit(), gluInitDisplayMode(), glutCreateWindow() 		CO1	L3

	se and Keybo functions:	oard callback functions	s.	properties of the particular			
Write the differ	rent OpenGL j	primitives, with exam	mple for each primitiv	ve?	10		
Doints (CI D	MTC) Each	wantay is displayed a	et a size of at least on	o nivol			
	,	* ·	at a size of at least one	e pixel.			
_		of individual segment		ssive pans of vertices to be			
	-	•		tices (and line segments) are			
to be connected	l, we can use	the line strip, or poly	line form. Many curv	ves can be approximated via a			
				e the final vertex in the same			
				draw a line segment from the			
final vertex to t	he first, thus o	creating a closed path	1.				
	\mathbf{p}_2	\mathbf{p}_2	\mathbf{p}_2	p ₂			
P₁●	P ₂ • P ₃	$\mathbf{p}_{1_{f}} \stackrel{\mathbf{p}_{2}}{\smile} \mathbf{p}_{3}$	\mathbf{p}_1 \mathbf{p}_3	\mathbf{p}_1 \mathbf{p}_3		CO1	L2
P _{1•}	P ₂ • P ₃ • P ₄	\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4	\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4	\mathbf{p}_1 \mathbf{p}_3 \mathbf{p}_4		CO1	L2
P _{1•} P _{0•}	P ₂ • P ₃ • P ₄	\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4	\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4	\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4		CO1	L2
P ₁ • P ₀ • p ₇ •	P ₂ • P ₃ • P ₄ • P ₅	\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3} \mathbf{p}_{4} \mathbf{p}_{5}	\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3} \mathbf{p}_{4} \mathbf{p}_{7} \mathbf{p}_{5}	\mathbf{p}_{1} \mathbf{p}_{0} \mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3} \mathbf{p}_{4} \mathbf{p}_{5}		CO1	L2
P ₁ • • • • • • • • • • • • • • • • • •	P ₂ • P ₃ • P ₄ • P ₅ P ₆ POINTS	P ₁ P ₃ P ₄ P ₅ P ₆ GL LINES	\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3} \mathbf{p}_{4} \mathbf{p}_{7} \mathbf{p}_{6} \mathbf{p}_{6} GL LINE STRIP	P ₁ P ₂ P ₃ P ₄ P ₅ P ₆ GL LINE LOOP		CO1	Ľ.
P ₁ • P ₀ • P ₇ • GL_	P ₂ • P ₃ • P ₄ • P ₅ P ₆ POINTS	P ₁ P ₃ P ₄ P ₅ P ₅ GL_LINES	P ₁ P ₂ P ₃ P ₄ P ₅ P ₅ GL_LINE_STRIP	P ₁ P ₂ P ₃ P ₄ P ₅ P ₅ GL_LINE_LOOP		CO1	L
_		_				CO1	Ľ
Triangles (GL	_TRIANGL	ES) The edges are t	the same as they wo	P ₁ P ₃ P ₄ P ₅ P ₅ GL_LINE_LOOP uld be if we used line loops.		CO1	L
Triangles (GL Each successive	_TRIANGL	ES) The edges are to the evertices specifies a	the same as they wo	uld be if we used line loops.		CO1	L
Triangles (GL Each successive Strips and Fai	_TRIANGLI e group of thro ns (GL_TRIA	ES) The edges are to th	the same as they wo a new triangle. L_TRIANGLE_FAN	uld be if we used line loops. N) These objects are based on		CO1	L
Triangles (GL Each successive Strips and Far groups of trians	_TRIANGL e group of thro ns (GL_TRIA gles that share	ES) The edges are to the evertices specifies a ANGLE_STRIP, GI evertices and edges.	the same as they wo a new triangle. L_TRIANGLE_FAN In the triangle strip,	uld be if we used line loops.		CO1	L
Triangles (GL Each successive Strips and Far groups of trianger vertex is combined.	TRIANGLE e group of thro ns (GL_TRIA gles that share ined with the	ES) The edges are to the evertices specifies a ANGLE_STRIP, GI to vertices and edges. The previous two vertices are to the edges.	the same as they wo a new triangle. L_TRIANGLE_FAN In the triangle strip, es to define a new triangle.	uld be if we used line loops. N) These objects are based on for example, each additional		CO1	L

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	P ₆ P ₀ P ₂ P ₄ P ₆ P ₀ GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRIANGLE_FAN			
	2) GL-POMETON 3)GL-QUADS . GL-QUADSTRIP			
	P. P			
6	Explain RGB and Index coloring mechanisms? Write a note on viewing concept? RGB color:	10		
	Each color component is stored separately in the frame buffer, usually 8 bits per component in			
	buffer. Note in glColor3f the color values range from 0.0 (none) to 1.0 (all), whereas in			
	glColor3ub the values range from 0 to 255. The color as set by glColor3f becomes part of the state			
	and will be used until changed			
	- Colors and other attributes are not part of the object but are assigned when the object is rendered		CO2	L4
	RGBA color system:			
	This has 4 arguments – RGB and alpha – Opacity.			
	glClearColor(1.0,1.0,1.0,1.0)			
	This would render the window white since all components are equal to 1.0, and is opaque as alpha			
	is also set to 1.0			

glColor3f(1.0,0.0,0.0) is used set the color state variable(red in this context) to select the rendering color of the objects that are defined after this function call. Indexed color: Colors are indices into tables of RGB values Requires less memory o indices usually 8 bits o not as important now ☐ Memory inexpensive ☐ Need more colors for shading Color Red lookup ta Color Green ookup ta Blue Color Frame buffer lookup ta **Classical Viewing** 3 basic elements for viewing: - One or more objects - A viewer with a projection surface - Projectors that go from the object(s) to the projection surface Classical views are based on the relationship among these elements. Each object is assumed to


constructed from flat principal faces

- Buildings, polyhedra, manufactured objects
- Front, top and side views.

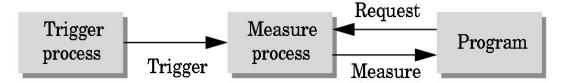
Perspective and parallel projections:

Parallel viewing is a limiting case of perspective viewing

Perspective projection has a COP where all the projector lines converge.

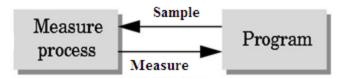
Orthographic Projections:

Projectors are perpendicular to the projection plane. Projection plane is kept parallel to one of the principal faces. A viewer needs more than 2 views to visualize what an object looks like from its


multiview orthographic projection.			
Discuss the request mode, sample mode and event mode with figures wherever required? Input devices contain a trigger which can be used to send a signal to the operating system Button on mouse Pressing or releasing a key When triggered, input devices return information (their measure) to the system o Mouse returns position information o Keyboard returns ASCII code	10	CO3	L2

Request Mode

Measure of the device is provided to the program only when user triggers the device.


Typical of keyboard input

- Can erase (backspace), edit, correct until enter (return) key (the trigger) is depressed

Simple Mode

In this mode the input is immediate. As soon as the function call in the user program is encountered, the measure is returned. Hence no trigger is needed.

Event Mode

Most systems have more than one input device, each of which can be triggered at an arbitrary time by a user. Each time a device is triggered, an *event* generated whose measure is put in an *event queue* which can be examined by the user program

		1	1	1
	Window: resize, expose, iconify Mouse: click one or more buttons Motion: move mouse Keyboard: press or release a key.			
8	<pre>Write an OpenGL program to, draw a rectangle using left click of a mouse device and the hierarchical menus to increase or decrease the size of rectangle? #include<std1b.h> #include<std1b.h> #include<gl gl.h=""> #include<gl glut.h=""> int wh=500,ww=500; int n=3; void display() { glClearColor(0,0,0,1); glClear(GL_COLOR_BUFFER_BIT); glFlush(); } void init() { glViewport(0,0,ww,wh); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0,ww,0,wh); glMatrixMode(GL_MODELVIEW); glColor3f(1,0,0); } void reshape(GLsizei w,GLsizei h) { glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); }</gl></gl></std1b.h></std1b.h></pre>	10	CO3	L1

```
glLoadIdentity();
    gluOrtho2D(0,w,0,h);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    ww=w;
    wh=h;
}
void drawSquare(int x,int y)
    y=wh-y;
    glBegin(GL_POLYGON);
    glVertex2f(x+n,y+n);
    glVertex2f(x-n,y+n);
    glVertex2f(x-n,y-n);
    glVertex2f(x+n,y-n);
    glEnd();
    glFlush();
}
void size_menu(int id)
    switch(id)
        case 2: n=n+1;
            break;
        case 3: n=n-1;
            break;
    }
}
void main_menu(int id)
    exit(0);
```

```
void mouse(int button, int state, int x, int y)
    if(button==GLUT_LEFT_BUTTON && state==GLUT_DOWN)
                                                       drawSquare(x,y);
    if(button==GLUT_RIGHT_BUTTON && state==GLUT_DOWN) exit(0);
}
int main(int argc,char **argv)
    int sub menu;
    glutInit(&argc,argv);
    glutInitDisplayMode(GLUT SINGLE|GLUT RGB);
    glutInitWindowSize(500,500);
    glutInitWindowPosition(0,0);
    glutCreateWindow("Menus n Interaction");
    glutDisplayFunc(display);
    init();
    glutMouseFunc(mouse);
    sub_menu=glutCreateMenu(size_menu);
    glutAddMenuEntry("Increase Size",2);
    glutAddMenuEntry("Decrease Size",3);
    glutCreateMenu(main menu);
    glutAddMenuEntry("Quit",2);
    glutAddSubMenu("Resize", sub_menu);
    glutAttachMenu(GLUT RIGHT BUTTON);
    glutKeyboardFunc(keyboard);
    glutReshapeFunc(reshape);
    glutMainLoop();
```

	Course Outcomes		PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1:	Describe pipeline architecture w.r.t two dimensional applications.	2	1	2	1	-	-	-	-	1	-	2	-
CO2:	Explain pipeline Hidden surface removal, implicit functions, color mechanism and demonstrate approximation of sphere	2	2	1	-	3	-	-	-	-	-	-	-
CO3:	Design and Develop CAD program using picking, Display List, Menu, Input and Output devices	3	-	3	2	3	-	-	-	-	-	1	-
CO4:	Experiment affine transformation activities w.r.t to Translation, Rotation and Scaling operations.	1	-	1	1	-	-	-	-	-	-	-	-
CO5:	List and summarize details of light sources and material properties	2	-		1	2	2	-	-	-	-	-	-
CO6:	Analyze implementation strategies w.r.t clipping and display consideration concepts	1	1	1	2	2	2	3	-	-	-	1	-

Cognitive level	KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7- Environment and sustainability; PO8 - Ethics; PO9 - Individual and team work; PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning