
Page 1 of 5

CMR
INSTITUTE OF
TECHNOLOGY USN

Internal Assessment Test - I

Sub: Programming Languages Code: 10CS666

Date: 30/ 03 / 2017 Duration: 90 mins Max Marks: 50 Sem: VI Branch: CSE

Answer Any FIVE FULL Questions

Marks
OBE

CO RBT

1 What is data-type ? What are the advantages of data-type? Give some examples
of data-type.

[10] CO1 L1

ans Data-type is a tag or string that maps to some abstract data-structure and
corresponding functionality.

Advocates of static typing argue that the advantages of static typing include
earlier detection of programming mistakes (e.g. preventing adding an integer to
a boolean), better documentation in the form of type signatures (e.g.
incorporating number and types of arguments when resolving names), more
opportunities for compiler optimizations (e.g. replacing virtual calls by direct
calls when the exact type of the receiver is known statically), increased runtime
efficiency (e.g. not all values need to carry a dynamic type), and a better design
time developer experience (e.g. knowing the type of the receiver, the IDE can
present a drop-down menu of all applicable members). Static typing fanatics try
to make us believe that “well-typed programs cannot go wrong”. While this
certainly sounds impressive, it is a rather vacuous statement. Static type
checking is a compile-time abstraction of the runtime behavior of your program,
and hence it is necessarily only partially sound and incomplete. This means that
programs can still go wrong because of properties that are not tracked by the
type-checker, and that there are programs that while they cannot go wrong
cannot be type-checked. The impulse for making static typing less partial and
more complete causes type systems to become overly complicated and exotic as
witnessed by concepts such as “phantom types” [11] and “wobbly types” [10].
This is like trying to run a marathon with a ball and chain tied to your leg and
triumphantly shouting that you nearly made it even though you bailed out after
the first mile.
Advocates of dynamically typed languages argue that static typing is too rigid,
and that the softness of dynamically languages makes them ideally suited for
prototyping systems with changing or unknown requirements, or that interact
with other systems that change unpredictably (data and application integration).
Of course, dynamically typed languages are indispensable for dealing with truly
dynamic program behavior such as method interception, dynamic loading,
mobile code, runtime reflection, etc. In the mother of all papers on scripting [16],
John Ousterhout argues that statically typed systems programming languages
make code less reusable, more verbose, not more safe, and less expressive than

Page 2 of 5

dynamically typed scripting languages. This argument is parroted literally by
many proponents of dynamically typed scripting languages. We argue that this is
a fallacy and falls into the same category as arguing that the essence of
declarative programming is eliminating assignment. Or as John Hughes says [8],
it is a logical impossibility to make a language more powerful by omitting
features. Defending the fact that delaying all type-checking to runtime is a good
thing, is playing ostrich tactics with the fact that errors should be caught as early
in the development process as possible.

Examples: my_number (from class), basic data-types etc.
2 (a) Define and explain scope and lifetime of names. [5] CO1 L1

ans The scope of a variable defines the section of the code in which the variable is
visible. As a general rule, variables that are defined within a block are not
accessible outside that block.
The lifetime of a variable refers to how long the variable exists before it is
destroyed. Destroying variables refers to deallocating the memory that was
allotted to the variables when declaring it.

(b) Briefly describe the types of scopes. What type of scoping does C support ? [5] CO1 L1

ans Static and dynamic (at compile time v/s at run time)
C supports static scoping.
Partial marks for local/global scope, but not the correct answer.

3 Describe normal-order evaluation with an example (in any language). How is it
different from associative-order evaluation (with respect to substitution).

[10] CO1 L2

ans In normal-order, evaluation of the inputs are only done if their value is
required.
In associative-order (or applicative order), all input values are evaluated at the
beginning itself – 7 marks
Simple example to demonstrate the difference:
(define (try a b)

(if (= a 0) 1 b))

(try 0 (/ 1 0)) will give error if associative order (it will try to evaluate 0/1, even
though the value will not be required).

4 Briefly describe currying of a procedure with an example. What are its
advantages ?

[10] CO1 L1

ans Currying: converting a procedure that takes multiple inputs at once to a series
of procedures that each take 1 input and output the next procedure – 3 marks

example: curried addition of 3 numbers – 3 marks
(define add (lambda (a b) (+ a b)))
on currying:
(define cadd (lambda a (lambda b (+ a b))))
Advantages: partial application, etc.

Page 3 of 5

5 (a) What is functional programming ? List the constraints enforced in functional
programming.

[5] CO1 L1

ans In computer science, functional programming is a programming paradigm—a
style of building the structure and elements of computer programs—that treats
computation as the evaluation of mathematical functions and avoids changing-
state and mutable data. It is a declarative programming paradigm, which means
programming is done with expressions[1] or declarations[2] instead of
statements. In functional code, the output value of a function depends only on
the arguments that are passed to the function, so calling a function f twice with
the same value for an argument x will produce the same result f(x) each time;
this is in contrast to procedures depending on a local or global state, which
may produce different results at different times when called with the same
arguments but a different program state. Eliminating side effects, i.e. changes
in state that do not depend on the function inputs, can make it much easier to
understand and predict the behavior of a program, which is one of the key
motivations for the development of functional programming. Constraints: non-
mutability and stateless.

(b) List the advantages and disadvantages of functional programming. [5] CO1 L1

ans Advantages:
 The style of functional programming is to describe what you want,

rather than how to get it. ie: instead of creating a for-loop with an
iterator variable and marching through an array doing something to each
cell, you'd say the equivalent of "this label refers to a version of this
array where this function has been done on all the elements."

 Functional programming moves more basic programming ideas into the
compiler, ideas such as list comprehensions and caching.

 The biggest benefit of Functional programming is brevity, because code
can be more concise. A functional program doesn't create an iterator
variable to be the center of a loop, so this and other kinds of overhead
are eliminated from your code.

 The other major benefit is concurrency, which is easier to do with
functional programming because the compiler is taking care of most of
the operations which used to require manually setting up state variables
(like the iterator in a loop).

 Since a function can only output a value at most, testing debugging, etc
become very simple.

Disadvantages:
 Functional programming languages are typically less efficient in their

use of CPU and memory than imperative languages such as C and
Pascal.[59] This is related to the fact that some mutable data structures
like arrays have a very straightforward implementation using present
hardware (which is a highly evolved Turing machine). Flat arrays may
be accessed very efficiently with deeply pipelined CPUs, prefetched
efficiently through caches (with no complex pointer chasing), or handled
with SIMD instructions. It is also not easy to create their equally
efficient general-purpose immutable counterparts. For purely functional
languages, the worst-case slowdown is logarithmic in the number of

Page 4 of 5

memory cells used, because mutable memory can be represented by a
purely functional data structure with logarithmic access time (such as a
balanced tree).[60] However, such slowdowns are not universal.

 Modularity is harder. Simulating states is also non-trivial.

6 (a) Write a procedure to take 2 lists as input and output the list-merge of them. [5] CO2 L3

ans (define (list-merge l1 l2)
(if (null? l1)

l2
(cons (first l1) (list-merge (rest l1) l2))

)
)

(b) Write a procedure to take a list as input and reverse it. [5] CO2 L3

ans (define (list-rev l)
(if (null? l)

l
(list-merge (list-rev (rest l)) (cons (first l) '()))

)
)

7 Write a procedure to implement list-linear-search. Take a list and element as
input and output the first index of the element in the list. Make appropriate
assumptions as required. Write signature and some test cases to demonstrate
usage.

[10] CO2 L3

ans Signature: (list-search lst ele -1), this will output -1 if element ele is not there
in the list lst, else outputs the pos of ele in lst.
Example: (list-search `(1 3 2 4 5) 2 -1), this will output 2.

(define list-search
(lambda (lst ele pos)

(if (null? lst)
pos
(if (= (first lst) ele)

(+ pos 1)
(list-search (rest lst) ele (+ pos 1))))))

8 Evaluate the following expressions:
(a) (* (- 34 27) 11)

(b) (- 12 (- (- 7 11) 3))
(c) (/ 42 (* 24 5))
(d) (first (rest (cons 5 6)))
(e) (if (null? 5) (if (num? 5) “yes” “no”) “not null”)

[2*5] CO2 L2

ans a) 77, note that this is prefix notation.
b) 19

Page 5 of 5

c) 7/20
d) error, first and rest take lists as input but cons returns a pair, not list (its 2nd

input is not a list)
e) not null

9 Give inductive definitions for the following sets of data: [5+5] CO1 L3

(a) Set of lists of integers. Assume, definition for integer is provided.

(b) S = { 3n+2 | n in N, the set of natural numbers}

ans a) `() is a list of integers
if lst is a list of integers and ele is an integer, then (cons ele lst) is a list of
integers.
b) smallest value of n is 1 (natural numbers). Hence, the smallest element in S
is 5. Given a valid number, the next number is 3 more than previous. Therefore
5 is in S
if k is in S, then k+3 is in S.

10 Define a representation of all the integers (negative and nonnega-
tive) as diff-trees, where a diff-tree is a list defined by the grammar:
Diff-tree :: = (one) | (diff Diff-tree Diff-tree)
The list (one) represents 1. If t1 represents n1 and t2 represents n2 , then
(diff t1 t2) is a representation of n1 − n2 .
So both (one) and (diff (one) (diff (one) (one))) are representations of
1; (diff (diff (one) (one)) (one)) is a representation of − 1.
For this representation, give procedure to add two integers. The procedure
must do the addition in constant time (i.e.. no recursion).

[10] CO2 L3

