2

USN

OBE

RBT

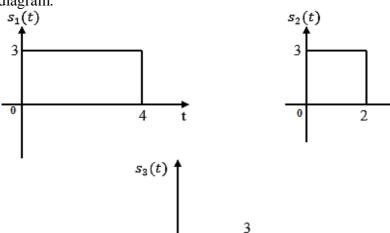
L2

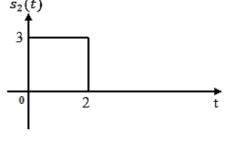
Internal Assesment Test - I

Sub:	Sub: DIGITAL COMMUNICATION							Code:	10EC/TE61		
Date:	ate: 27 / 03 / 2017 Duration: 90 mins Max Marks: 50 Sem: VI Branch: ECE(D)/TC						ECE(D)/TCE(B)				
Anguar Any EIVE EILL Questions											

Answer	Any F	IVE FU	JLL Qu	estions

- 1(a) With a neat block diagram, explain the conceptualized model of digital communication system.
- [05] CO1 L3


CO


CO₁

Marks

[05]

- (b) Consider the signal $x(t) = a_1\phi_1(t) + a_2\phi_2(t)$, $0 \le t \le T$, where $\phi_1(t), \phi_2(t)$ are basis functions and a_1, a_2 are the coordinates. Derive an expression for the energy of x(t) in terms of a_1, a_2 .
- [10] CO1 L3
- Apply Gram-Schmidt orthogonalization procedure to obtain a set of orthonormal basis functions for the following set of signals. Express the signals as a linear combination of basis functions. Draw the constellation diagram.

- 3 Show that the process of uniformly sampling the signal in the time domain results in a periodic spectrum with a period equal to sampling rate. Derive interpolation formula for the reconstruction of the original analog signal from its samples taken at Nyquist rate.
- [10] CO1 L3
- 4(a) Show that the shifted *sinc* functions sinc(2Wt n) and sinc(2Wt m), where $n \neq m$, used in the reconstruction of the original analog signal from its samples are mutually orthogonal.
- [05] CO1 L3

L3

[05] CO1

- (b) If E denotes the energy of a strictly band limited signal x(t), then prove that
 - $E = \frac{1}{2W} \sum_{n=\infty}^{\infty} \left| x \left(\frac{n}{2W} \right) \right|^2$

where W is the highest frequency component of x(t).

5(a)	The signal $g(t) = 10\cos(20\pi t)\cos(200\pi t)$ is sampled at the rate of 250 samples per second. Determine the spectrum of the resulting sampled signal. What is the Nyquist rate for $g(t)$?	[05]	CO1	L3	
(b)	A low pass signal has the spectrum given by $G(f) = \begin{cases} 1 - \frac{ f }{200}, & for f \leq 200, \\ 0, & otherwise \end{cases}$ Assuming that $g(t)$ is sampled at 300 Hz, plot the spectrum of the resulting signal.	[05]	CO1	L3	
6	Explain quadrature sampling of band pass signals with related block diagram, spectra and equations.	[10]	CO1	L2	

Course Outcomes		PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	PO12
CO1:	Explain the basic building blocks of digital communication systems and discuss the practical aspects of A2D conversion	3	3	3	3	3	-	-	-	-	-	3	3
CO2:	Explain the waveform coding techniques and design of maximum likelihood receivers	3	3	3	3	3	-	-	-	-	-	3	3
CO3:	Describe and analyze different digital modulation techniques	3	3	3	3	3	-	-	-	-	-	3	3
CO4:	Explain different spread spectrum modulation techniques	3	3	3	3	3	-	-	-	-	-	3	3

Cognitive level	KEYWORDS					
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.					
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend					
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.					
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.					
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.					

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7 - Environment and sustainability; PO8 - Ethics; PO9 - Individual and team work; PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

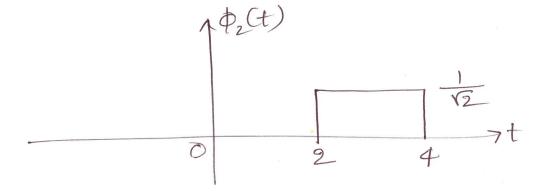
1 a

$$|b| E = \int |x(t)|^{2} dt$$

$$= \int x(t) x^{2}(t) dt$$

$$= \int [a_{1}\phi_{1}(t) + a_{2}\phi_{2}(t)] [a_{1}^{2}\phi_{1}^{2}(t) + a_{2}\phi_{2}(t)] dt$$

$$= \int |a_{1}\phi_{1}(t)|^{2} dt + \int |a_{2}\phi_{2}(t)|^{2} dt$$


$$= \int |a_{1}\phi_{1}(t)|^{2} dt + \int |a_{2}\phi_{2}(t)|^{2} dt$$

$$= |a_{1}\phi_{1}(t)|^{2} dt + \int |a_{2}\phi_{2}(t)|^{2} dt$$

Energy of
$$S_2(t) = \int 9 dt = 18$$

$$\phi_1(t) = \frac{S_2(t)}{\sqrt{18}} = \frac{S_2(t)}{3\sqrt{2}}$$

$$\phi_2(t) = \frac{S_3(t)}{\sqrt{18}} = \frac{S_3(t)}{3\sqrt{2}}$$

$$S_1(t) = 3\sqrt{2} \phi_1(t) + 3\sqrt{2} \phi_2(t)$$

$$S_2(t) = 3\sqrt{2} \phi_1(t) + 0 \phi_2(t)$$

$$S_{2}(t) = 3(2+1)(t)$$

 $S_{3}(t) = 0 + (t) + 3(2+2)(t)$

$$2_{S}(t) = 2(t) \stackrel{\text{log}}{\leq} S(t-nT_{S})$$

$$N = -\infty$$

$$X_{S}(f) = X(f) * \stackrel{\text{log}}{\leq} \frac{1}{T_{S}} S(f-kf_{S})$$

$$X_{S}(f) = X(f) * \stackrel{\text{log}}{\leq} \frac{1}{T_{S}} S(f-kf_{S})$$

$$= f_s \stackrel{\otimes}{\underset{k=-\infty}{\leq}} \times (f_- k f_s)$$

$$\alpha_s(t) = \sum_{n=-\infty}^{\infty} \alpha(nT_s) \delta(t-nT_s)$$

$$X_{8}(f) = \sum_{n=-\infty}^{\infty} \chi(nT_{8}) = \int_{-\infty}^{\infty} 2\pi f nT_{8}.$$

$$9(Ct) = \int_{-W}^{W} x_{\delta}(f) e^{j2\pi ft} df$$

$$= \int_{-W}^{W} \sum_{n=-\infty}^{\infty} \chi(nT_s) e^{-j2\pi f} df$$

$$= \sum_{n=-\infty}^{\infty} (nT_s) \int_{-W}^{w} e^{j\omega n f} (t-nT_s) df$$

$$= \sum_{n=-\infty}^{\infty} x(nT_s) \sin c(2wt-n) \qquad 4/6$$

$$\int_{-\infty}^{\infty} y_{1}(t) x_{2}^{+}(t) dt = \int_{-\infty}^{\infty} x_{1}(f) x_{2}^{+}(f) df$$

$$= \frac{1}{2W} \int_{-\infty}^{\infty} e^{-j x_{1}^{-} f} \left(\frac{n-m}{2W} \right) df$$

$$= \frac{1}{2W} \int_{-\infty}^{\infty} e^{-j x_{1}^{-} f} \left(\frac{n-m}{2W} \right) df$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1}(f) x_{2}^{+}(f) df$$

$$= \int_{-\infty}^{\infty} x_{1}(f) x_{2}^{+}(f) df$$

The E=
$$\int_{-\infty}^{\infty} |\chi(t)|^2 dt$$

$$= \int_{-\infty}^{\infty} |\chi(t)|^2 dt$$

$$= \int_{-\infty}^{\infty}$$

$$= \sum_{n=-\infty}^{\infty} \chi(nT_s) \sum_{m=-\infty}^{\infty} \chi(mT_s) \int_{-\infty}^{\infty} \sin c(2wt-n) \sin c(2wt-m) dt$$

$$= \frac{1}{2w} \sum_{n=-\infty}^{\infty} |\chi(nT_s)|^2$$

$$= \frac{1}{2w} \sum_{n=-\infty}^{\infty} |\chi(nT_s)|^2$$

5a
$$g(t) = 10 \cos(2011t) \cos(20011t)$$

 $= 5 \cos(22011t) + 5 \cos(18011t)$
 $G(f) = \frac{5}{2} \left[8(f-110) + 8(f+110) + 8(f+10) + 8(f+10) + 8(f+10) \right]$
 $= \frac{5}{2} \left[8(f-110) + 8(f+10) + 8(f+10) + 8(f+10) + 8(f+10) + 8(f+10) \right]$
 $= \frac{5}{2} \left[8(f-110) + 8(f+10) + 8($

100 200 300

500

-560

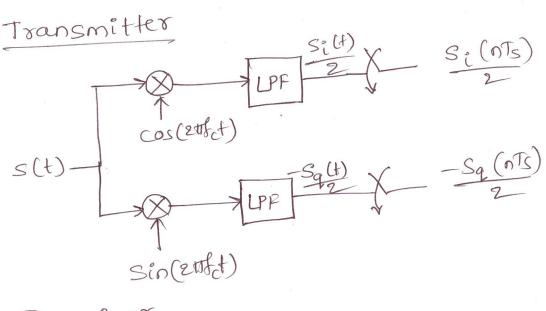
-206

6
$$S(t) = S_{1}(t) \cos(2\pi f_{t}) - S_{1}(t) \sin(2\pi f_{t})$$
 6 $S(t) \cos(2\pi f_{t}) - S_{2}(t) \sin(2\pi f_{t})$ 6 $S(t) \cos(2\pi f_{t}) - S_{2}(t) \cos^{2}(2\pi f_{t})$

$$s(t) \cos(2\pi f_c t) = s_i(t) \cos^2(2\pi f_c t) - s_i(t) \sin(2\pi f_c t) \cos(2\pi f_c t)$$

$$= \frac{S_{i}(t)}{2} + \frac{S_{i}(t)}{2} \cos(4\pi f_{c}t) - \frac{S_{q}(t)}{2} \sin(4\pi f_{c}t)$$

$$S(t)\sin(2\pi f_c t) = S_{\rho}(t)\cos(2\pi f_c t)\sin(2\pi f_c t)$$


$$-S_{q}(t)\sin^{2}(2\pi f_c t)$$

$$= S_{\rho}(t)\sin(4\pi f_c t) - \frac{S_{q}(t)}{2}t$$

$$= S_{q}(t)\cos(4\pi f_c t)$$

$$= S_{q}(t)\cos(4\pi f_c t)$$

$$= S_{q}(t)\cos(4\pi f_c t)$$

Receiver $S_{\ell}(nT_{S}) \rightarrow LPP \rightarrow S$ $Cos(2\pi f_{c}f) \rightarrow S(f)$ $S_{\ell}(nT_{S}) \rightarrow LPP \rightarrow S(f)$ $S_{\ell}(nT_{S}) \rightarrow LPP \rightarrow S(f)$ $S_{\ell}(nT_{S}) \rightarrow LPP \rightarrow S(f)$