
 CMR

INSTITUTE OF USN

TECHNOLOGY

Internal Assessment Test 1 – March 2017

Note: Answer any 5 questions. All questions carry equal marks. Total marks: 50

 Marks
OBE

CO RBT

1(a) Explain difference in C & C++. [05] CO1 L2

(b) Define the terms class & object. [05] CO2 L1

2(a) Explain preprocessor directives with suitable example. [08] CO2 L2

(b) Write output of following code:

#include <iostream.h>

#define max(a,b) a>b?a:b

main()

{

 int x=2, y=3;

 int z = 10+max(x,y);

 cout << z;

 return 0;

}

[02] CO2 L3

3. Explain all looping control statements with examples. [10] CO2 L2

4. Define i) typedef ii) enum iii) constant qualifier iv) volatile qualifier with

example.

[10] CO2 L2

5. Write a C++ program i) to reverse a integer whole number. ii) to reverse string

without using strrev() built-in function.

[10] CO3 L3

6. Explain switch statement. Write a program to perform simple calculator using

switch case statement.

[8+2] CO3 L3

7. Define array. Write a program to find largest element in set of elements. [10] CO3 L3

8. Explain pointer variable. What do you mean by dynamic memory allocation?

How it is implemented in C++.

[4+3+3] CO3 L3

Sub: Programming in C++ Code: 10TE661/10EC665

Date: 30/03/17 Duration:
90

mins
Max

Marks: 50
Sem: VI Branch:

TE- A & B

EC- C & D

Mapping COs(Course Outcome) to Program Outcome(Pos): Substantial - 3, Moderate – 2, Low – 1, No – 0/-

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

CO1:
Achieve Knowledge of design the solution

of the problem in C++
2 2 3 2 1 - - - 1 1 1 2

CO2:

Understand the data type, operators, I/O

statements & program constructs of C++

language

2 2 3 2 1 - - - 1 1 1 2

CO3:
Implement array & pointer to objects by

dynamic memory allocation
2 2 3 2 1 - - - 1 1 1 2

CO4:
Develop Object Oriented Programming

skills in C++ language using classes
2 2 3 2 1 - - - 1 1 1 2

CO5:
Design & develop effective utilization

inheritance & polymorphism
2 2 3 2 1 - - - 1 1 1 2

CO6:
Implement compile time & run time

polymorphism in C++
2 2 3 2 1 - - - 1 1 1 2

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,

experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,

conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;

PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-

Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work;

PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

Question # Description Marks

Distribution

Max Marks

1 a Comparison min 4 points 5M 5M 5M

1 b

Object

Class

example

1.5M

1.5M

1M

5M 5M

2 a
preprocessor directives with suitable example

8M 8M 8M

2 b
For correct output

2M 2M 2M

3

Looping statement: while , do..while, for

example

7M

1M each

10M 10M

4 a

Enumeration, typedef, constant qualifier, volatile

qualifier

Example

2M each

0.5 M

each

10M 10M

5 a Program to reverse a integer whole number 5M 5M 5M

5 b

Program to reverse string without using strrev() built-in

function.

5M 5M 5M

6
Switch statement with syntax

Program simple calculator

2M

8M
10M 10M

7
Array definition

program to find largest element in set of elements.

4M

6M
10M 10M

7

Pointer variable

DMA

New and delete operator

4M

3M

3M

10M 10M

1a)

C programming

C programming uses a list of instructions to tell the computer what to do step-by-step. Procedural

programming relies on - you guessed it - procedures, also known as routines or subroutines. A procedure

contains a series of computational steps to be carried out. Procedural programming is also referred to as

imperative programming. Procedural programming languages are also known as top-down languages.

Procedural programming is intuitive in the sense that it is very similar to how you would expect a program

to work. If you want a computer to do something, you should provide step-by-step instructions on how to do

it. It is, therefore, no surprise that most of the early programming languages are all procedural. Examples of

procedural languages include Fortran, COBOL and C, which have been around since the 1960s and 70s.

C++

Object-oriented programming, or OOP, is an approach to problem-solving where all computations are

carried out using objects. An object is a component of a program that knows how to perform certain actions

and how to interact with other elements of the program. Objects are the basic units of object-oriented

programming. A simple example of an object would be a person. Logically, you would expect a person to

have a name. This would be considered a property of the person. You would also expect a person to be able

to do something, such as walking. This would be considered a method of the person.

A method in object-oriented programming is like a procedure in procedural programming. The key

difference here is that the method is part of an object. In object-oriented programming, you organize your

code by creating objects, and then you can give those objects properties and you can make them do certain

things.

A key aspect of object-oriented programming is the use of classes. A class is a blueprint of an object. You

can think of a class as a concept, and the object as the embodiment of that concept. So let's say you want to

use a person in your program. You want to be able to describe the person and have the person do something.

A class called 'person' would provide a blueprint for what a person looks like and what a person can do.

Examples of object-oriented languages include C#, Java, Perl and Python.

1b)

Class Object

Definition

Class is mechanism of binding data

members and associated methods in

a single unit.

Instance of class or variable of class.

Existence It is logical existence It is physical existence

Memory

Allocation

Memory space is not allocated ,

when it is created.

Memory space is allocated, when it is created.

Declaration

/definition

Definition is created once. it is created many time as you require.

2a) Explain all preprocessor directives with suitable example. (8)

Line that begin with # are called preprocessing directives.

Use of #include

Let us consider very common preprocessing directive as below:

#include <iostream.h>

Here, "iostream.h" is a header file and the preprocessor replace the above line with the contents of header file.

Use of #define

Preprocessing directive #define has two forms. The first form is:

#define identifier token_string

token_string part is optional but, are used almost every time in program.

Example of #define

#define c 299792458 /*speed of light in m/s */

The token string in above line 2299792458 is replaced in every occurance of symbolic constant c.

Complier control Directives

1. #if, #elif, #else, #endif

These preprocessing directives create conditional compiling parameters that control the compiling of the source code.

They must begin on a separate line.

Syntax:

#if constant_expression

#else

#endif

or

#if constant_expression

#elif constant_expression

#endif

The compiler only compiles the code after the #if expression if the constant_expression evaluates to a non-zero value

(true). If the value is 0 (false), then the compiler skips the lines until the next #else,#elif, or #endif. If there is a

matching #else, and the constant_expression evaluated to 0 (false), then the lines between the #else and the #endif are

compiled. If there is a matching #elif, and the preceding#if evaluated to false, then the constant_expression after that

is evaluated and the code between the #elif and the #endif is compiled only if this expression evaluates to a non-zero

value (true).

Examples:

int main(void)

 {

 #if 1

 printf("Yabba Dabba Do!\n");

 #else

 printf("Zip-Bang!\n");

 #endif

 return 0;

}

Only "Yabba Dabba Do!" is printed.

int main(void)

 {

 #if 1

 printf("Checkpoint1\n");

 #elif 1

 printf("Checkpoint2\n");

 #endif

 return 0;

}

Only "Checkpoint1" is printed. Note that if the first line is #if 0, then only "Checkpoint2" would be printed.

#if OS==1

 printf("Version 1.0");

#elif OS==2

 printf("Version 2.0");

#else

 printf("Version unknown");

#endif

Prints according to the setting of OS which is defined with a #define.

2. #define, #undef, #ifdef, #ifndef

The preprocessing directives #define and #undef allow the definition of identifiers which hold a certain value. These

identifiers can simply be constants or a macro function. The directives #ifdef and #ifndefallow conditional compiling

of certain lines of code based on whether or not an identifier has been defined.

Syntax:

#define identifier replacement-code

#undef identifier

#ifdef identifier

#else or #elif

#endif

#ifndef identifier

#else or #elif

#endif

#ifdef identifier is the same is #if defined(identifier).

#ifndef identifier is the same as #if !defined(identifier).

An identifier defined with #define is available anywhere in the source code until a #undef is reached.

A function macro can be defined with #define in the following manner:

#define identifier(parameter-list) (replacement-text)

The values in the parameter-list are replaced in the replacement-text.

Examples:

#define PI 3.141

printf("%f",PI);

#define DEBUG

#ifdef DEBUG

 printf("This is a debug message.");

#endif

#define QUICK(x) printf("%s\n",x);

QUICK("Hi!")

#define ADD(x, y) x + y

z=3 * ADD(5,6)

This evaluates to 21 due to the fact that multiplication takes precedence over addition.

#define ADD(x,y) (x + y)

z=3 * ADD(5,6)

This evaluates to 33 due to the fact that the summation is encapsulated in parenthesis which takes precedence over

multiplication.

3. #include

The #include directive allows external header files to be processed by the compiler.

Syntax:

#include <header-file>

or

#include "source-file"

When enclosing the file with < and >, then the implementation searches the known header directories for the file

(which is implementation-defined) and processes it. When enclosed with double quotation marks, then the entire

contents of the source-file is replaced at this point. The searching manner for the file is implementation-specific.

Examples:

#include <stdio.h>

#include "my_header.h"

Reference : http://www.acm.uiuc.edu/webmonkeys/book/c_guide/1.7.html

2b)

#include <iostream>

using namespace std;

#define max(x,y) x>y?x:y

int main ()

{

 int m=2,n=3;

 int z=10+max(m,n); 10+2>3?2:3

 cout<<z;

 return 0;

}

Output: 2

3) A while loop statement repeatedly executes a target statement as long as a given condition is true.

Syntax

The syntax of a while loop in C++ is:

while(condition){

 statement(s);

}

Here, statement(s) may be a single statement or a block of statements. The condition may be any expression, and true is any non-

zero value. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following the loop.

Flow Diagram

Here, key point of the while loop is that the loop might not ever run. When the condition is tested and the result is false, the loop body

will be skipped and the first statement after the while loop will be executed.

Example

#include <iostream>

using namespace std;

int main () {

 // Local variable declaration:

 int a = 10;

 // while loop execution

 while(a < 20) {

 cout << "value of a: " << a << endl;

 a++;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific

number of times.

Syntax

The syntax of a for loop in C++ is:

for (init; condition; increment) {

 statement(s);

}

Here is the flow of control in a for loop:

 The init step is executed first, and only once. This step allows you to declare and initialize any loop control

variables. You are not required to put a statement here, as long as a semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false, the body of the loop

does not execute and flow of control jumps to the next statement just after the for loop.

 After the body of the for loop executes, the flow of control jumps back up to the increment statement. This

statement allows you to update any loop control variables. This statement can be left blank, as long as a semicolon

appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and the process repeats itself (body of loop,

then increment step, and then again condition). After the condition becomes false, the for loop terminates.

Flow Diagram

Example

#include <iostream>

using namespace std;

int main () {

 // for loop execution

 for(int a = 10; a < 20; a = a + 1) {

 cout << "value of a: " << a << endl;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute at least one time.

Syntax

The syntax of a do...while loop in C++ is:

do {

 statement(s);

}while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in the loop execute once before

the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the loop execute again. This

process repeats until the given condition becomes false.

Flow Diagram

Example

#include <iostream>

using namespace std;

int main () {

 // Local variable declaration:

 int a = 10;

 // do loop execution

 do {

 cout << "value of a: " << a << endl;

 a = a + 1;

 }while(a < 20);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

4)

Constant and Volatile Qualifiers

const

 const is used with a datatype declaration or definition to specify an unchanging value

Examples:

 const int five = 5;

 const double pi = 3.141593;

 const objects may not be changed

The following are illegal:

 const int five = 5;

 const double pi = 3.141593;

 pi = 3.2;

 five = 6;

volatile

 volatile specifies a variable whose value may be changed by processes outside the current program

One example of a volatile object might be a buffer used to exchange data with an external device:

int

check_iobuf(void)

{

 volatile int iobuf;

 int val;

 while (iobuf == 0) {

 }

 val = iobuf;

 iobuf = 0;

 return(val);

}

if iobuf had not been declared volatile, the compiler would notice that nothing happens inside the loop and thus

eliminate the loop

 const and volatile can be used together

o An input-only buffer for an external device could be declared as const volatile (or volatile const, order

is not important) to make sure the compiler knows that the variable should not be changed (because it

is input-only) and that its value may be altered by processes other than the current program

Enum:

An enumeration provides context to describe a range of values which are represented as named constants

and are also called enumerators. In the original C and C++ enum types, the unqualified enumerators are

visible throughout the scope in which the enum is declared. In scoped enums, the enumerator name must be

qualified by the enum type name. The following example demonstrates this basic difference between the two

kinds of enums:

C++

namespace CardGame_Scoped

{

 enum class Suit { Diamonds, Hearts, Clubs, Spades };

 void PlayCard(Suit suit)

 {

 if (suit == Suit::Clubs) // Enumerator must be qualified by enum type

 { /*...*/}

 }

}

namespace CardGame_NonScoped

{

 enum Suit { Diamonds, Hearts, Clubs, Spades };

 void PlayCard(Suit suit)

 {

 if (suit == Clubs) // Enumerator is visible without qualification

 { /*...*/

 }

 }

}

Every name in an enumeration is assigned an integral value that corresponds to its place in the order of the

values in the enumeration. By default, the first value is assigned 0, the next one is assigned 1, and so on, but

you can explicitly set the value of an enumerator, as shown here:

C++

enum Suit { Diamonds = 1, Hearts, Clubs, Spades };

The enumerator Diamonds is assigned the value 1. Subsequent enumerators, if they are not given an explicit

value, receive the value of the previous enumerator plus one. In the previous example, Hearts would have the

value 2, Clubs would have 3, and so on.

Every enumerator is treated as a constant and must have a unique name within the scope where the enum is

defined (for unscoped enums) or within the enum itself (for scoped enums). The values given to the names

do not have to be unique. For example, if the declaration of a unscoped enum Suit is this:

C++

enum Suit { Diamonds = 5, Hearts, Clubs = 4, Spades };

Then the values of Diamonds, Hearts, Clubs, and Spades are 5, 6, 4, and 5, respectively. Notice that 5 is used

more than once; this is allowed even though it may not be intended. These rules are the same for scoped

enums.

Casting rules

Unscoped enum constants can be implicitly converted to int, but an int is never implicitly convertible to an

enum value. The following example shows what happens if you try to assign hand a value that is not a Suit:

C++

int account_num = 135692;

Suit hand;

hand = account_num; // error C2440: '=' : cannot convert from 'int' to 'Suit'

A cast is required to convert an int to a scoped or unscoped enumerator. However, you can promote a

unscoped enumerator to an integer value without a cast.

Typedef:

The C programming language provides a keyword called typedef, which you can use to give a type, a new name.

Following is an example to define a term BYTE for one-byte numbers −

typedef unsigned char BYTE;

After this type definition, the identifier BYTE can be used as an abbreviation for the type unsigned char, for example..

BYTE b1, b2;

By convention, uppercase letters are used for these definitions to remind the user that the type name is really a symbolic

abbreviation, but you can use lowercase, as follows −

typedef unsigned char byte;

You can use typedef to give a name to your user defined data types as well. For example, you can use typedef with

structure to define a new data type and then use that data type to define structure variables directly as follows −

#include <stdio.h>

#include <string.h>

typedef struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

} Book;

int main() {

 Book book;

 strcpy(book.title, "C Programming");

 strcpy(book.author, "Nuha Ali");

 strcpy(book.subject, "C Programming Tutorial");

 book.book_id = 6495407;

 printf("Book title : %s\n", book.title);

 printf("Book author : %s\n", book.author);

 printf("Book subject : %s\n", book.subject);

 printf("Book book_id : %d\n", book.book_id);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

typedef vs #define

#define is a C-directive which is also used to define the aliases for various data types similar to typedef but with the

following differences −

 typedef is limited to giving symbolic names to types only where as #define can be used to define alias for values

as well, q., you can define 1 as ONE etc.

 typedef interpretation is performed by the compiler whereas #define statements are processed by the pre-

processor.

The following example shows how to use #define in a program −

#include <stdio.h>

#define TRUE 1

#define FALSE 0

int main() {

 printf("Value of TRUE : %d\n", TRUE);

 printf("Value of FALSE : %d\n", FALSE);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of TRUE : 1

Value of FALSE : 0

5) Write a C++ program i) to reverse a integer whole number. ii) to reverse string without using strrev()

built-in function.

#include <iostream>

using namespace std;

int main()

{

 int n, reversedNumber = 0, remainder;

 cout << "Enter an integer: ";

 cin >> n;

 while(n != 0)

 {

 remainder = n%10;

 reversedNumber = reversedNumber*10 + remainder;

 n /= 10;

 }

 cout << "Reversed Number = " << reversedNumber;

 return 0;

}

6) Explain switch statement. Write a program to perform simple calculator using switch case statement.

A switch statement allows a variable to be tested for equality against a list of values. Each value is called a case, and the

variable being switched on is checked for each case.

Syntax

The syntax for a switch statement in C++ is as follows:

switch(expression){

 case constant-expression :

 statement(s);

 break; //optional

 case constant-expression :

 statement(s);

 break; //optional

 // you can have any number of case statements.

 default : //Optional

 statement(s);

}

The following rules apply to a switch statement:

 The expression used in a switch statement must have an integral or enumerated type, or be of a class type in which

the class has a single conversion function to an integral or enumerated type.

 You can have any number of case statements within a switch. Each case is followed by the value to be compared to

and a colon.

 The constant-expression for a case must be the same data type as the variable in the switch, and it must be a

constant or a literal.

 When the variable being switched on is equal to a case, the statements following that case will execute until a

break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps to the next line following

the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall through to subsequent

cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of the switch. The default case

can be used for performing a task when none of the cases is true. No break is needed in the default case.

Flow Diagram:

Example

#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 char grade = 'D';

 switch(grade) {

 case 'A' :

 cout << "Excellent!" << endl;

 break;

 case 'B' :

 case 'C' :

 cout << "Well done" << endl;

 break;

 case 'D' :

 cout << "You passed" << endl;

 break;

 case 'F' :

 cout << "Better try again" << endl;

 break;

 default :

 cout << "Invalid grade" << endl;

 }

 cout << "Your grade is " << grade << endl;

 return 0;

}

Program to perform simple calculator:

include <iostream>

using namespace std;

int main()

{

 char op;

 float num1, num2;

 cout << "Enter operator either + or - or * or /: ";

 cin >> op;

 cout << "Enter two operands: ";

 cin >> num1 >> num2;

 switch(op)

 {

 case '+':

 cout << num1+num2;

 break;

 case '-':

 cout << num1-num2;

 break;

 case '*':

 cout << num1*num2;

 break;

 case '/':

 cout << num1/num2;

 break;

 default:

 // If the operator is other than +, -, * or /, error message is shown

 cout << "Error! operator is not correct";

 break;

 }

 return 0;

}

7. Define array. Write a program to find largest element in set of elements.

Arrays
An array is a series of elements of the same type placed in contiguous memory locations that can be individually

referenced by adding an index to a unique identifier.

That means that, for example, five values of type int can be declared as an array without having to declare 5 different

variables (each with its own identifier). Instead, using an array, the five int values are stored in contiguous memory

locations, and all five can be accessed using the same identifier, with the proper index.

For example, an array containing 5 integer values of type int called foo could be represented as:

where each blank panel represents an element of the array. In this case, these are values of type int. These elements are

numbered from 0 to 4, being 0 the first and 4 the last; In C++, the first element in an array is always numbered with a

zero (not a one), no matter its length.

Like a regular variable, an array must be declared before it is used. A typical declaration for an array in C++ is:

type name [elements];

where type is a valid type (such as int, float...), name is a valid identifier and the elements field (which is always

enclosed in square brackets []), specifies the length of the array in terms of the number of elements.

Therefore, the foo array, with five elements of type int, can be declared as:

 int foo [5];

NOTE: The elements field within square brackets [], representing the number of elements in the array, must be a

constant expression, since arrays are blocks of static memory whose size must be determined at compile time, before

the program runs.

Initializing arrays

By default, regular arrays of local scope (for example, those declared within a function) are left uninitialized. This

means that none of its elements are set to any particular value; their contents are undetermined at the point the array is

declared.

But the elements in an array can be explicitly initialized to specific values when it is declared, by enclosing those

initial values in braces {}. For example:

 int foo [5] = { 16, 2, 77, 40, 12071 };

This statement declares an array that can be represented like this:

The number of values between braces {} shall not be greater than the number of elements in the array. For example, in

the example above, foo was declared having 5 elements (as specified by the number enclosed in square brackets, []),

and the braces {} contained exactly 5 values, one for each element. If declared with less, the remaining elements are

set to their default values (which for fundamental types, means they are filled with zeroes). For example:

 int bar [5] = { 10, 20, 30 };

Will create an array like this:

The initializer can even have no values, just the braces:

 int baz [5] = { };

This creates an array of five int values, each initialized with a value of zero:

When an initialization of values is provided for an array, C++ allows the possibility of leaving the square brackets

empty []. In this case, the compiler will assume automatically a size for the array that matches the number of values

included between the braces {}:

 int foo [] = { 16, 2, 77, 40, 12071 };

After this declaration, array foo would be 5 int long, since we have provided 5 initialization values.

Finally, the evolution of C++ has led to the adoption of universal initialization also for arrays. Therefore, there is no

longer need for the equal sign between the declaration and the initializer. Both these statements are equivalent:

1

2

int foo[] = { 10, 20, 30 };

int foo[] { 10, 20, 30 };

Static arrays, and those declared directly in a namespace (outside any function), are always initialized. If no explicit

initializer is specified, all the elements are default-initialized (with zeroes, for fundamental types).

Accessing the values of an array

The values of any of the elements in an array can be accessed just like the value of a regular variable of the same type.

The syntax is:

name[index]

Following the previous examples in which foo had 5 elements and each of those elements was of type int, the name

which can be used to refer to each element is the following:

For example, the following statement stores the value 75 in the third element of foo:

 foo [2] = 75;

and, for example, the following copies the value of the third element of foo to a variable called x:

 x = foo[2];

int main()

{

 int i, n;

 float arr[100];

 cout << "Enter total number of elements(1 to 100): ";

 cin >> n;

 cout << endl;

 // Store number entered by the user

 for(i = 0; i < n; ++i)

 {

 cout << "Enter Number " << i + 1 << " : ";

 cin >> arr[i];

 }

 // Loop to store largest number to arr[0]

 for(i = 1;i < n; ++i)

 {

 // Change < to > if you want to find the smallest element

 if(arr[0] < arr[i])

 arr[0] = arr[i];

 }

 cout << "Largest element = " << arr[0];

 return 0;

}

8) Explain pointer variable. What do you mean by dynamic memory allocation? How it is implemented in

C++.

C++ pointers are easy and fun to learn. Some C++ tasks are performed more easily with pointers, and other C++ tasks,

such as dynamic memory allocation, cannot be performed without them.

As you know every variable is a memory location and every memory location has its address defined which can be

accessed using ampersand (&) operator which denotes an address in memory. Consider the following which will print the

address of the variables defined:

#include <iostream>

using namespace std;

int main () {

 int var1;

 char var2[10];

 cout << "Address of var1 variable: ";

 cout << &var1 << endl;

 cout << "Address of var2 variable: ";

 cout << &var2 << endl;

 return 0;

}

When the above code is compiled and executed, it produces result something as follows:

Address of var1 variable: 0xbfebd5c0

Address of var2 variable: 0xbfebd5b6

What Are Pointers?

A pointer is a variable whose value is the address of another variable. Like any variable or constant, you must declare a

pointer before you can work with it. The general form of a pointer variable declaration is:

type *var-name;

Here, type is the pointer's base type; it must be a valid C++ type and var-name is the name of the pointer variable. The

asterisk you used to declare a pointer is the same asterisk that you use for multiplication. However, in this statement the

asterisk is being used to designate a variable as a pointer. Following are the valid pointer declaration:

int *ip; // pointer to an integer

double *dp; // pointer to a double

float *fp; // pointer to a float

char *ch // pointer to character

The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the same, a long

hexadecimal number that represents a memory address. The only difference between pointers of different data types is the

data type of the variable or constant that the pointer points to.

Using Pointers in C++:

There are few important operations, which we will do with the pointers very frequently. (a) we define a pointer variables

(b) assign the address of a variable to a pointer and (c) finally access the value at the address available in the pointer

variable. This is done by using unary operator * that returns the value of the variable located at the address specified by its

operand. Following example makes use of these operations:

#include <iostream>

using namespace std;

int main () {

 int var = 20; // actual variable declaration.

 int *ip; // pointer variable

 ip = &var; // store address of var in pointer variable

 cout << "Value of var variable: ";

 cout << var << endl;

 // print the address stored in ip pointer variable

 cout << "Address stored in ip variable: ";

 cout << ip << endl;

 // access the value at the address available in pointer

 cout << "Value of *ip variable: ";

 cout << *ip << endl;

 return 0;

}

When the above code is compiled and executed, it produces result something as follows:

Value of var variable: 20

Address stored in ip variable: 0xbfc601ac

Value of *ip variable: 20

Dynamic memory allocation and Implementation :

A good understanding of how dynamic memory really works in C++ is essential to becoming a good C++ programmer.

Memory in your C++ program is divided into two parts:

 The stack: All variables declared inside the function will take up memory from the stack.

 The heap: This is unused memory of the program and can be used to allocate the memory dynamically when

program runs.

Many times, you are not aware in advance how much memory you will need to store particular information in a defined

variable and the size of required memory can be determined at run time.

You can allocate memory at run time within the heap for the variable of a given type using a special operator in C++ which

returns the address of the space allocated. This operator is called new operator.

If you are not in need of dynamically allocated memory anymore, you can use delete operator, which de-allocates memory

previously allocated by new operator.

The new and delete operators

There is following generic syntax to use new operator to allocate memory dynamically for any data-type.

new data-type;

Here, data-type could be any built-in data type including an array or any user defined data types include class or structure.

Let us start with built-in data types. For example we can define a pointer to type double and then request that the memory

be allocated at execution time. We can do this using the new operator with the following statements:

double* pvalue = NULL; // Pointer initialized with null

pvalue = new double; // Request memory for the variable

The memory may not have been allocated successfully, if the free store had been used up. So it is good practice to check if

new operator is returning NULL pointer and take appropriate action as below:

double* pvalue = NULL;

if(!(pvalue = new double)) {

 cout << "Error: out of memory." <<endl;

 exit(1);

}

The malloc() function from C, still exists in C++, but it is recommended to avoid using malloc() function. The main

advantage of new over malloc() is that new doesn't just allocate memory, it constructs objects which is prime purpose of

C++.

At any point, when you feel a variable that has been dynamically allocated is not anymore required, you can free up the

memory that it occupies in the free store with the delete operator as follows:

delete pvalue; // Release memory pointed to by pvalue

Let us put above concepts and form the following example to show how new and delete work:

#include <iostream>

using namespace std;

int main () {

 double* pvalue = NULL; // Pointer initialized with null

 pvalue = new double; // Request memory for the variable

 *pvalue = 29494.99; // Store value at allocated address

 cout << "Value of pvalue : " << *pvalue << endl;

 delete pvalue; // free up the memory.

 return 0;

}

If we compile and run above code, this would produce the following result:

Value of pvalue : 29495

Dynamic Memory Allocation for Arrays

Consider you want to allocate memory for an array of characters, i.e., string of 20 characters. Using the same syntax what

we have used above we can allocate memory dynamically as shown below.

char* pvalue = NULL; // Pointer initialized with null

pvalue = new char[20]; // Request memory for the variable

To remove the array that we have just created the statement would look like this:

delete [] pvalue; // Delete array pointed to by pvalue

Following is the syntax of new operator for a multi-dimensional array as follows:

int ROW = 2;

int COL = 3;

double **pvalue = new double* [ROW]; // Allocate memory for rows

// Now allocate memory for columns

for(int i = 0; i < COL; i++) {

 pvalue[i] = new double[COL];

}

The syntax to release the memory for multi-dimensional will be as follows:

for(int i = 0; i < ROW; i++) {

 delete[] pvalue[i];

}

delete [] pvalue;

Dynamic Memory Allocation for Objects

Objects are no different from simple data types. For example, consider the following code where we are going to use an

array of objects to clarify the concept:

#include <iostream>

using namespace std;

class Box {

 public:

 Box() {

 cout << "Constructor called!" <<endl;

 }

 ~Box() {

 cout << "Destructor called!" <<endl;

 }

};

int main() {

 Box* myBoxArray = new Box[4];

 delete [] myBoxArray; // Delete array

 return 0;

}

If you were to allocate an array of four Box objects, the Simple constructor would be called four times and similarly while

deleting these objects, destructor will also be called same number of times.

If we compile and run above code, this would produce the following result:

Constructor called!

Constructor called!

Constructor called!

Constructor called!

Destructor called!

Destructor called!

Destructor called!

Destructor called!

	C programming
	C programming uses a list of instructions to tell the computer what to do step-by-step. Procedural programming relies on - you guessed it - procedures, also known as routines or subroutines. A procedure contains a series of computational steps to be c...
	C++
	Syntax
	Flow Diagram
	Example
	Syntax
	Flow Diagram
	Example
	Syntax
	Flow Diagram
	Example
	typedef vs #define
	Syntax
	Flow Diagram:
	Example

	Arrays
	Initializing arrays
	Accessing the values of an array
	What Are Pointers?
	Using Pointers in C++:
	The new and delete operators
	Dynamic Memory Allocation for Arrays
	Dynamic Memory Allocation for Objects

