INSTITUTE OF

Internal Assesment Test - I

Sub:	DSDV :- DIGITAL SYSTEM DESIGN USING VERILOG Code:							14EC666				
Date:	30 / 03 / 2017	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE/TCE			
	l	<u> </u>	Answer	Any FIVE FULL	Ques	tions	<u> </u>					
								Marks	OBE			
										СО	RBT	
1 Explain the systematic process of digital system from design to Embedded system design.									[10]	CO1	L1	
2 Develop a sequential circuit that has a single data input signal 'S' and produces an output 'Y'. The output is '1' whenever 'S' has the same value over three successive clock cycles, and '0' otherwise. Assume the value of 'S' for a given clock cycle is.									[10]	CO2	L2	
	Develop a digital design which down counts from '99' $-$ '10' and repeats till input ready signal is off.									CO4	L2	
4 Develop a verilog code to find a given year is a leap year or not and generate a leap year flag.									[10]	CO2	L2	
5 De	Develop a verification module for testing either 3 rd or 4 th question.								[10]	CO3	L2	
de ve ar tir	or FSM nown, evelop a erilog code nd plot the ming agram.	set (50 0 1	Si) 0 (Si) 0 (Di) 1	0	1	\$\$\ 0 \\ \[\] \[0 0 10 1		[10]	CO4	L3	

Fig 1 Illustrates a simple design methodology. Requirements and constraints are generated externally by marketing group of a company or by customer. They Pudude Junctional requirements, performance requirements, constraints on power construption, cost and parkaging. 3 Tasks:) Design 2) Synthesis [3 M] 3) physical packing Each of these are followed by a verification task. I verification foils at any stage, we must revisit a previous task to correct the error. Fig 2 Physrates hardware and software codesign. ocsiguing the hardware and software for a system together is alled hardware / software code sign. Delialing which parts to put in hardware and which it the software is called partitioning. Once the functionality has been particula blue hardware and software, development of the two can proceed concurrently For those aspects of the embedded system software that depends on hardware, the abstract behavioral models from the hordware design task can be used to verify septuare design. A similar approach can be used to

verify parts of hardware that suborface abroadly with a processor were. Develop a sequential chit that has a single data fip signal '9' and of produces on olp 'y'. The olp is '1' whenever if 3 has same rather for three sharesine choices and ,0, otherwise. Assume the value of 's' for the given cycle. To compare the value of PIP to 3 sucressive clock cycles, the value of PIP should be save for previous two yells To store previous values me use a The of y is 1 & olb is a standard only of 3 garcozzine fountly determine if 3 values are 1 93,94,95 negate 3 values. 96,97 determence 3 values are 0. 98 combines both to yield final ofp. [5M] The olp of a FF's follow value of s over 2 cycles (delayed) .: When either 1, or 10 is 1, the olp y changes to 1.

The circles and arrows habitate which signals are used to determine the values of other signals, leading to a 1 at the output.

When all S, SI and 92 are 1, N. changes to 1, Rudbathing that 3 has been 1 for 3 successive yeles. Shuflarly when all 9, SI and 32 are 0, No changes to 1, Rudbathing that 3 has been 0 for 3 successive cycles. When either N. or No 8, 1, the autput x changes to 1.

Dosign a digital system which down could from 99 to 00 and suspends when known ready signal is off.

Peg Counter (SM).

Verilog PGM (SM).

4) Dovelop a verilog code to flud a given year is a leap year or not and generate a leap year flag.

3)

Sol:-

```
module leapyear (output leap, Euput year);
began

( year 1.4 = = 0 & & year 1. 100 ! = 0 11 year 1. 400 = = 0)
             leap = 1'b1;
                                           [3M]
      else
 endmodule.
         verification for testing
code:
      module div-by 4();
      ( reg [3:0] Ym, Yn, YE, Yo;
       wine out;
      );
                                                   (2 m)
      der-by 4 four (out, ym, yu, yt, 10);
       Purfal
         begfu
             # 100 Jm= 4'60000;
            # 100 4 = 4 60000;
            # 100
                                                 [4n]
            # 100 /0: 4'6 0000;
           end
        endmodule
```

```
/ divisible by zero
     Bezono (a,b,c,d, ym, yh, yt, yo);
Ruput [3:0] ym, yh, yt, yo;
 output A.B.C.D;
 assign # 10 A = ~ yo(3) & ~ yo(5) & ~ yo(1) & ~ y(6);
 ausign # 10 B= nyt (3) & nyt (6) & nyt (6);
 assign # 10 (= 2/4 (3) & nyn (6) & nyn (6);
 ausign # 10 D = nym3] & nym6] & nym6];
endmodule
       bs se noth ();
module
( reg (3:0) ym, yu, yr, yo;
   whe leave;
 );
dr. by zero mer Cleave, ym, yu, yt, yo);
 Pur tral
      # 100 ym = 4'b0000;
         1000 y h= 41 6 0000;
                                         - (6H)
     endmodule
```

```
For FSM shown, develop verilig code.
code:
    module FSM (reset, q)
    ( Ruput reset;
     (2:0) q;
       100 (2:0) q;
    );
                                       [3M]
       3'do: q= 3'd1;
       3'd1: 9= 3'd2;
       3'd2: 9= 3'd3;
       3'd3: 9= 3'd4;
       3'd4: q= 3'd5;
       3'd5: 9= 3'd6;
                                  -[3m]
        3'd6 : 9= 3'd7;
        3'd7: 9= 3'd0;
    end case.
      else
        case (q)
       3'do: q = 3'd1;
       3'd1: 9=
                   3'd3;
```

3'd2 : q = 3'd6; 3'd3 : q = 3'd2; 3'd4 : 9 = 3'd0; 3'd5 : 9 = 3'd4; 3'd6 : 9= 3'd7; 3'd7 : q = 3'd5; end case

end

endmodule.

(4M)