USN					

Internal Assesment Test - I

Sub:	PRINCIPLES OF COMMUNICATION SYSTEMS Code							e:	15EC45					
Date:	30 / 03 /	2017	Duration:	90 mins	Max Marks:	50	Sem:	IV	Bran	nch:	B & C	& C		
Answer any three questions from Part A and any two questions from Part B														
								()BE					
	PART A						Mark	CO	RBT					
1	Modulate	ed using a ca Determine th	arrier $c(t) = A$	$A_c \cos(2f)$ $\log k_f = 1$	$\cos(10^3 2ft) + 3$ $f_c t).$ $5 \times 10^3 Hz/V.$,	$^44ft)$ is	Frequ	ency	[10]	СО	3 L3		
2	In a Frequency Modulation system the carrier frequency used is $25~MHz$. The transmitted signal is $m(t) = 10\sin(2f10^4t)$. a. Determine the BW for both phase modulation and Frequency modulation given that he modulation index S is 10 and the phase sensitivity k_p is 1. b. If the modulating frequency is doubled, determine the BW for both FM and PM							СО	2 L3					
3	In an Amplitude Modulation scheme using Suppressed Carrier principle, the modulating signal consists of three tones as shown below: $m(t) = \cos(2ff_it) + 2\cos(2ff_2t) + 3\cos(2ff_3t).$ The carrier used in this scheme is $c(t) = 100\cos(2ff_{ci}t)$. Plot the upper side band spectrum showing clearly the amplitude of each component. Assume that $f_3 > f_2 > f_1$.							[10]	СО	1 L4				
4	show that $a = \frac{A_{\text{max}}}{1}$	t the modul	he maximum ation index		num amplitude by:	s of a mo	odulated	d wave	,		СО	1 L4		
5	frequence expression $m(t) = 10$	$f_c = 1MF$ on. $0\cos(2f \times 1)$	dz is used. The d^6t	te modular $(2f \times 10^6 t)$	ission scheme is ted signal is given by $\cos(2f \times 10^3)$ mponents pres	en by the $t + 2 \cos t$	e follow $os(2f \times$	ing $10^6 t$)c	`	[10]	СО	1 L3		

modulation indices. b. Draw the line spectrum and the determine the bandwidth			
Part B			
Question No. 1	[10]	CO1	L2
Describe briefly the principle of superhetrodyning and explain why intermediate			
frequency is used.		CO2	1.2
Question No. 2			
State the properties of angle modulation.	[10]	CO3	L3
Question No. 3 With the help of a diagram, briefly explain stereo multiplexing	[10]		

1 AT- 1 1. I the for doubled New BW FM = 214+8fm = 2105+40KHZ- 240KHZ DM: 1-10.80KH2 = 800 KH2 BW = (84+ 8fm) = <100 KHZ+2.20: 440 KHZ IATI Portalem # 1 At = 8 ca (10 x 11 + 5 cas (10 2 11 + 5 cas (2 11 2 x 15 +) modulated with Az ev(21/4+) - Max freq is 2x18" +12 Bt = 12x+15/ Af=15x10x5=75-KHZ=Af. Am D alwington rates = 75kyz = 7.5% 1810 = 24[1+ =] = 2x75[1+2] = 190 K+1+

page 1

A'ZONE

120x -128 x 0 0 15 625 x . 5 AZONE

Problem # 2 mH= 10 8in (2Tx104)+ Af= Rg-Am B=10= Af = Rf. Am = kf. 10. 10= kf. 10 = S kf. 10" Af= Rg- Pm = 10910 = 10542 BO = 24f+2fm = 2x10+2,10 = 220K+12 PM. Ro=10 Pat = 1 doly at = Rp me 84-879,E+ AD fit = fet kp of 10. 8m (RTX104) + = fe + 10 10 2 T VIO COS(211 X10") E AAp= 105+12=1-10-104 Af= Rp. 18m. E BO - 84+ 2/m = 8×10+2×10 - 220 KHZ A'ZONE paye 2

TAT-I Date Question 10-5 We know M(t): [A+ mt) CO(27fet) mt = 10 cm (8 TI X10 E) +5 cm (2 TI X10 E) cos (8 TI X10 E) + 2 cm (27.10°+) cm (+17.10°+) mH)= 10 [1+0.5 cm(21.10+)+0.2 cm(21.2x13+)] x CTS (2T. 10° +) Company with Stand and Ean Ac= 10, M=0.5, M2=02 fc=10+2, f1= 10+12 f2= 2x13+12 Carrier freq = 10 +12

USB. forf, = 1000000+1000 = 1.001 MIME 7

Ton 1 LSB forf = 1000000 - 1000 = 0.999 MHZ USB: fetfz = 1000000 - 2000 = 1002 MHZ fe-f = 1000000 - 2000 = 0.998 MMZ Line Spectrum 10 0999 1.00 2 - 998 IMMZ

AZONE

Date

Problem #3

m(+)= cos(2 mf, +)+ 2 cos(2 mf, +) + 3 cos(2 mf, +)

(+) = 100 cos RTfe+)

Modulater output

St) = m(t)x cos (2 Tf. +)

- [CO(2Tf,t)+2CO(2Tf,t)+3CO(2Tf,t)] × CeO(2Tf,t)

= cos & Tf, b) · cos (2 Tfet) + 2 cos (2 Tfet) · cos (2 Tfet) +3 cos (2 Tf3 t) · cos (2 Tfet)

= \$101. [COS &T (f,+ fe)+ cos fe-fe)+]

+11.2 [CO 2T (Fi+Fi)++ a) [- Fi)+]

+ =11-3 [CA 21) (fets) (+ cos 21) (fe-fs)2]

pagera

A'ZONE

1 Each how band at f. O. SXID = 8.5V P2 - 0 2710 = 1V 13W: 2/2= 4KLIZ Problem # 4 Am - Amon-Ac = Ae-Amin By deportion M = Am 00 M= Amax-Ac Addung Subtracet 2M= Amox - Amin 0 = Amax - Ac - Ac + Am 2A = Amon - Amin M= Amax - Amin Sub we howe

pages

A'ZONE