
1
st
 Internals Solution (C & D sections)

1. a) What is O.S.? What are the common tasks performed by O.S. and when they are performed? (7M)

 An operating system (OS) is different things to different users. Each user's view is called

an abstract view because it emphasizes features that are important from the viewer‘s

perspective, ignoring all other features. An operating system implements an abstract view by

acting as an intermediary between the user and the computer system. This arrangement not

only permits an operating system to provide several functionalities at the same time, but also

to change and evolve with time.

 Common Tasks Performed by Operating Systems

Task When performed

Construct a list of resources during booting

Maintain information for security while registering new users

Verify identity of a user at login time

Initiate execution of programs at user commands

Maintain authorization information when a user specifies which

 Collaborators can access what programs

 or data.

Perform resource allocation when requested by users or programs

Maintain current status of resources during resource allocation/deallocation

Maintain current status of programs continually during OS operation

and perform scheduling

 b) Explain turnaround time in batch processing system (3M)

 A batch of jobs was first recorded on a magnetic tape, using a less powerful and cheap computer. The batch

processing system processed these jobs from the tape, which was faster than processing them from cards, and

wrote their results on another magnetic tape. These were later printed and released to users. Figure 1.2 shows

the factors that make up the turnaround time of a job.

2. a) Explain the resource preemption, resource allocation strategies of an O.S. (5M)

 The Resource Allocation function implements resources sharing by the users of a computer system. Basically it

performs binding of a set of resources with the requesting program-that is it associates resources with a

program. The related functions implement protection of users sharing a set of resources against mutual

interference.

 Resource Preemption: The scheduling technique used by a time-sharing kernel is called round-robin

scheduling with time-slicing. It works as follows The kernel maintains a scheduling queue of processes that

wish to use the CPU; it always schedules the process at the head of the queue. The kernel uses the notion of a

time slice to avoid this situation. We use the notation δ for the time slice.

 Time Slice: The largest amount of CPU time any time-shared process can consume when scheduled to execute

on the CPU. If the time slice elapses before the process completes servicing of a subrequest, the kernel preempts

the process, moves it to the end of the scheduling queue, and schedules another process. The preempted process

would be rescheduled when it reaches the head of the queue once again.

Resource Allocation & Related Functions:

The resource allocation function allocates resources for use by a user’s computation. Resources can be divided

into two types:

1. System Provided Resources – like CPU, memory and IO devices

2. User created Resources – like files etc.

Resource allocation depends on whether a resource is a system resource or a user created resource.

There are two popular strategies for resource allocation

 Partitioning of resources:. Using resource partition approach, OS decides priori what resources should be

allocated to a user computation. This is known as static allocation as the allocation is made before the execution

of the program starts.

Allocation from a pool: Using pool allocation approach, OS maintains a common pool & allocates resources

from this pool on a need basis. This is called dynamic allocation because it takes place during the execution of

program. It can lead to better utilization of resources because the allocation is made when a program

request a resource. An OS can use a resource table as a central data structure for resource allocation. The table

contains an entry for each resource unit in the system. The entry contains the name or address of the resource

unit and its present system i.e whether it is free or allocated to some program. When a program raises a request

for a resource, the resource should be allocated to it if it is presently free.

In the partition resource allocation approach, the OS decides on the resources to be allocated to a program based

on the number of the program in the system. For Example, an OS may decide that a program can be allocated 1

MB of memory, 200 disk blocks and a monitor. Such a collection of resources is referred to as a partition. The

resource table can have an entry for each resource partition. When a new program is to be started, an available

partition is allocated to it.

 b) Explain the benefits/features of distributed operating systems. (5M)

3. a) Explain the kernel based operating system with a structure of time sharing system. (6M)

Figure below shows an abstract view of a kernel-based OS. The kernel is the core of the OS; it provides a set of

functions and services to support various OS functionalities. The rest of the OS is organized as a set of

nonkernel routines, which implement operations on processes and resources that are of interest to users, and a

user interface.

A system call may be made by the user interface to implement a user command, by a process to invoke a

service in the kernel, or by a nonkernel routine to invoke a function of the kernel. For example, when a user

issues a command to execute the program stored in some file, say file alpha, the user interface makes a system

call, and the interrupt servicing routine invokes a nonkernel routine to set up execution of the program. The

nonkernel routine would make system calls to allocate memory for the program‘s execution, open file alpha,

and load its contents into the allocated memory area, followed by another system call to initiate operation of the

process that represents execution of the program. If a process wishes to create a child process to execute the

program in file alpha, it, too, would make a system call and identical actions would follow. The historical

motivations for the kernel-based OS structure were portability of the OS and convenience in the design and

coding of nonkernel routines.

The scheduling technique used by a time-sharing kernel is called round-robin scheduling with time-slicing. It

works as follows: The kernel maintains a scheduling queue of processes that wish to use the CPU; it always

schedules the process at the head of the queue. When a scheduled process completes servicing of a subrequest,

or starts an I/O operation, the kernel removes it from the queue and schedules another process. Such a process

would be added at the end of the queue when it receives a new subrequest, or when its I/O operation completes.

This arrangement ensures that all processes would suffer comparable delays before getting to use the CPU.

However, response times of processes would degrade if a process consumes too much CPU time in servicing its

subrequest. The kernel uses the notion of a time slice to avoid this situation. We use the notation δ for the time

slice.

Time Slice The largest amount of CPU time any time-shared process can consume when scheduled to execute

on the CPU. If the time slice elapses before the process completes servicing of a subrequest, the kernel

preempts the process, moves it to the end of the scheduling queue, and schedules another process. The

preempted process would be rescheduled when it reaches the head of the queue once again.

b) Explain the functions of an O.S. (4M)

4. a) Explain the following: (6M)

 i) System generation

 System generation was widely used during 1960’s and 1970’s. A supervisor was generated using software

called the system generation program. The advantage of this approach was that the supervisors were not

individually designed, implemented and maintained. Only the supervisor generation program had to be

maintained.

 Steps to generate the supervisor:

 The description of the supervisor is given as input to the system generation program. This program constructs a

supervisor which matches the description.

 System generation does not construct the supervisor; instead it selects some code modules from the ready

library. All these modules are compiled and linked together to form the supervisor.

 Description of supervisor Generated supervisor

ii) Configuration tools

 A configuration tool takes the input from system administrator about the configuration of hardware during

installing O.S. and then prepares an appropriate version of the supervisor. This version is written on the disk

and the minimal version of supervisor copied from the distribution tape is deleted from the disk. After this is

done, the system admin is prompted to reboot the system so that the generated supervisor assumes control of the

system.

 iii) Dynamic configuration of supervisor

 Supervisor configuration approaches (both System generation and Configuration tools) both needs predefined

and corresponding options must be specified during supervisor generation. The main difficulty with both the

option is, it may be impossible to use a new kind of I/O device simply because the supervisor does not know

how to perform I/O on it.

System generation
library

System generation

program

System

generation

library

library

 This difficulty is solved by using device drivers, where it can be added to it at any time during system operation.

To enable this, the device handler and the supervisor must integrate together dynamical linking. After linking

the device handler is stored in a library and is loaded from this library when needed.

b) Explain with a figure the working of a two layered O.S. Structure. (4M)

The simulator, which is a program, executes on the bare machine and mimics a more powerful machine that has

many features desired by the OS. This new ―machine‖ is called an extended machine, and its simulator is

called the extended machine software. Figure below illustrates a two-layered OS. The extended machine

provides operations like context save, dispatching, swapping, and I/O initiation. The operating system layer is

located on top of the extended machine layer. This arrangement considerably simplifies the coding and testing

of OS modules by separating the algorithm of a function from the implementation of its primitive operations. It

is now easier to test, debug, and modify an OS module than in a monolithic OS. We say that the lower layer

provides an abstraction that is the extended machine. We call the operating system layer the top layer of the

OS. The layered structures of operating systems have been evolved in various ways—using different

abstractions and a different number of layers.

5.a) Explain: i) Monolithic OS and ii) Microkernel OS, specifying respective advantages and disadvantages.

MONOLITHIC STRUCTURE

An OS is a complex software that has a large number of functionalities and may contain millions of

instructions. It is designed to consist of a set of software modules, where each module has a well-defined

interface that must be used to access any of its functions or data. Such a design has the property that a

module cannot ―see‖ inner details of functioning of other modules. This property simplifies design,

coding and testing of an OS.

Early operating systems had a monolithic structure, whereby the OS formed a single software layer

between the user and the bare machine, i.e., the computer system‘s hardware (see Figure). The user

interface was provided by a command interpreter. The command interpreter organized creation of user

processes. Both the command interpreter and user processes invoked OS functionalities and services

through system calls.

Two kinds of problems with the monolithic structure were realized over a period of time. The sole OS

layer had an interface with the bare machine. Hence architecture-dependent code was spread throughout

the OS, and so there was poor portability. It also made testing and debugging difficult, leading to high

costs of maintenance and enhancement. These problems led to the search for alternative ways to structure

an OS.

• Layered structure: The layered structure attacks the complexity and cost of developing and maintaining
an OS by structuring it into a number of layers.
The multiprogramming system of the 1960s is a well known example of a layered OS.

• Kernel-based structure: The kernel-based structure confines architecture dependence to a small section

of the OS code that constitutes the kernel, so that portability is increased. The Unix OS has a kernel-based

structure.

Figure : Monolithic OS.

Microkernel-based OS structure: The microkernel provides a minimal set of facilities and services for

implementing an OS. Its use provides portability. It also provides extensibility because changes can be

made to the OS without requiring changes in the microkernel.

MICROKERNEL-BASED OPERATING SYSTEMS

Putting all architecture-dependent code of the OS into the kernel provides good portability. However, in

practice, kernels also include some architecture independent code. This feature leads to several problems.

It leads to a large kernel size, which detracts from the goal of portability. It may also necessitate kernel

modification to incorporate new features, which causes low extensibility.

A large kernel supports a large number of system calls. Some of these calls may be used rarely, and so

their implementations across different versions of the kernel may not be tested thoroughly. This

compromises reliability of the OS.

The microkernel was developed in the early 1990s to overcome the problems concerning portability,

extensibility, and reliability of kernels. A microkernel is an essential core of OS code, thus it contains

only a subset of the mechanisms typically included in a kernel and supports only a small number of

system calls, which are heavily tested and used.

Figure :Structure of microkernel-based operating systems.

This feature enhances portability and reliability of the microkernel. Less essential parts of OS code are

outside the microkernel and use its services, hence these parts could be modified without affecting the

kernel; in principle, these modifications could be made without having to reboot the OS! The services

provided in a microkernel are not biased toward any specific features or policies in an OS, so new

functionalities and features could be added to the OS to suit specific operating environments.

Figure illustrates the structure of a microkernel-based OS. The microkernel includes mechanisms for

process scheduling and memory management, etc., but does not include a scheduler or memory handler.

These functions are implemented as servers, which are simply processes that never terminate. The servers

and user processes operate on top of the microkernel, which merely performs interrupt handling and

provides communication between the servers and user processes.

The small size and extensibility of microkernels are valuable properties for the embedded systems

environment, because operating systems need to be both small and fine-tuned to the requirements of an

embedded application. Extensibility of microkernels also conjures the vision of using the same

microkernel for a wide spectrum of computer systems, from palm-held systems to large parallel and

distributed systems. This vision has been realized to some extent.

 b) Define the following with respect to an OS: i) Policies and mechanisms. ii) Portability and Extensibility.

Policies and Mechanisms

In determining how an operating system is to perform one of its functions, the OS designer needs to think
at two distinct levels:

• Policy: A policy is the guiding principle under which the operating system will perform the function.

• Mechanism: A mechanism is a specific action needed to implement a policy.

A policy decides what should be done, while a mechanism determines how something should be done and

actually does it. A policy is implemented as a decision-making module that decides which mechanism

modules to call under what conditions. A mechanism is implemented as a module that performs a specific

action. The following example identifies policies and mechanisms in round-robin scheduling.

Example 2.1 Policies and Mechanisms in Round-Robin Scheduling

In scheduling, we would consider the round-robin technique to be a policy. The following mechanisms
would be needed to implement the round-robin scheduling policy:

Maintain a queue of ready processes
Switch the CPU to execution of the selected process (this action is called dispatching).

Portability and Extensibility of Operating Systems

The design and implementation of operating systems involves huge financial investments. To protect

these investments, an operating system design should have a lifetime of more than a decade. Since several

changes will take place in computer architecture, I/O device technology, and application environments

during this time, it should be possible to adapt an OS to these changes. Two features are important in this

context—portability and extensibility.

Porting is the act of adapting software for use in a new computer system.

Portability refers to the ease with which a software program can be ported—it is inversely proportional to

the porting effort. Extensibility refers to the ease with which new functionalities can be added to a

software system.

Porting of an OS implies changing parts of its code that are architecture dependent so that the OS can

work with new hardware. Some examples of architecture-dependent data and instructions in an OS are:

• An interrupt vector contains information that should be loaded in various fields of the PSW to switch
the CPU to an interrupt servicing routine. This information is architecture-specific.

• Information concerning memory protection and information to be provided to the memory management
unit (MMU) is architecture-specific.

• I/O instructions used to perform an I/O operation are architecture-specific.

The architecture-dependent part of an operating system‘s code is typically associated with mechanisms

rather than with policies. An OS would have high portability if its architecture-dependent code is small in

size, and its complete code is structured such that the porting effort is determined by the size of the

architecture dependent code, rather than by the size of its complete code. Hence the issue of OS

portability is addressed by separating the architecture-dependent and architecture-independent parts of an

OS and providing well-defined interfaces between the two parts.

Extensibility of an OS is needed for two purposes: for incorporating new hardware in a computer

system—typically newI/O devices or network adapters— and for providing new functionalities in

response to new user expectations. Early operating systems did not provide either kind of extensibility.

Hence even addition of a newI/O device required modifications to theOS. Later operating systems solved

this problem by adding a functionality to the boot procedure. It would check for hardware that was not

present when the OS was last booted, and either prompt the user to select appropriate software to handle

the new hardware, typically a set of routines called a device driver that handled the new device, or itself

select such software. The new software was then loaded and integrated with the kernel so that it would be

invoked and used appropriately.

6. a) Why I/O bound programs should be given higher priorities in a multiprogramming environment? Illustrate

with a timing diagram, assuming 2 processes where P1 requires 40ms of CPU & 50ms I/O time and P2 requires

30ms of CPU & 30ms of I/O time to complete they execution.

The kernel assigns numeric priorities to programs. We assume that priorities are positive integers and a

large value implies a high priority. When many programs need the CPU at the same time, the kernel gives

the CPU to the program with the highest priority. It uses priority in a preemptive manner; i.e., it pre-empts

a low-priority program executing on the CPU if a high-priority program needs the CPU. This way, the

CPU is always executing the highest-priority program that needs it. To understand implications of

priority-based preemptive scheduling, consider what would happen if a high-priority program is

performing an I/O operation, a low-priority program is executing on the CPU, and the I/O operation of the

high-priority program completes—the kernel would immediately switch the CPU to the high-priority

program. Assignment of priorities to programs is a crucial decision that can influence system throughput.

Multiprogramming systems use the following priority assignment rule:

An I/O-bound program should have a higher priority than a CPU-bound program.

 b) What are the operations performed by kernel when an interrupt occurs?

7. a) Explain virtual machine operating system(VMOS). What are the advantages of using virtual machines? (6M)

 The VM OS creates several virtual machines. Each virtual machine is allocated to one user, who can use any

OS of his own choice on the virtual machine and run his programs under this OS. This way user of the computer

system can use different operating systems at the same time.

 Each of these operating systems a guest OS and call the virtual machine OS the host OS. The computer used by

the VM OS is called the host machine. A virtual machine is a virtual resource. Let us consider a virtual machine

that has the same architecture as the host machine; i.e., it has a virtual CPU capable of executing the same

instructions, and similar memory and I/O devices. It may, however, differ from the host machine in terms of

some elements of its configuration like memory size and I/O devices. Because of the identical architectures of

the virtual and host machines, no semantic gap exists between them, so operation of a virtual machine does not

introduce any performance, software intervention is also not needed to run a guest OS on a virtual machine.

 Virtual machines are employed for diverse purposes:

• To use an existing server for a new application that requires use of a different operating system.

This is called workload consolidation; it reduces the hardware and operational cost of computing

by reducing the number of servers needed in an organization.

• To provide security and reliability for applications that use the same host and the same OS. This

benefit arises from the fact that virtual machines of different applications cannot access each

other‘s resources.

• To test a modified OS (or a new version of application code) on a server concurrently with

production runs of that OS.

• To provide disaster management capabilities by transferring a virtual machine from a server that

has to shut down because of an emergency to another server available on the network.

 b) Explain the goals of an O.S. (4M)

• Efficient use: Ensure efficient use of a computer‘s resources.

• User convenience: Provide convenient methods of using a computer system.

• Non-interference: Prevent interference in the activities of its users.

 1 Efficient Use

 An operating system must ensure efficient use of the fundamental computer system resources of memory, CPU,

and I/O devices such as disks and printers. Poor efficiency can result if a program does not use a resource

allocated to it, e.g., if memory or I/O devices allocated to a program remain idle. Such a situation may have a

snowballing effect: Since the resource is allocated to a program, it is denied to other programs that need it.

These programs cannot execute, hence resources allocated to them also remain idle. In addition, the OS itself

consumes some CPU and memory resources during its own operation, and this consumption of resources

constitutes an overhead that also reduces the resources available to user programs. To achieve good efficiency,

the OS must minimize the waste of resources by programs and also minimize its own overhead. Efficient use of

resources can be obtained by monitoring use of resources and performing corrective actions when necessary.

2 User Convenience

 In the early days of computing, user convenience was synonymous with bare necessity—the mere ability to

execute a program written in a higher level language was considered adequate. Experience with early operating

systems led to demands for better service, which in those days meant only fast response to a user request. Other

facets of user convenience evolved with the use of computers in new fields. Early operating systems had

command-line interfaces, which required a user to type in a command and specify values of its parameters.

Users needed substantial training to learn use of the commands, which was acceptable because most users were

scientists or computer professionals. However, simpler interfaces were needed to facilitate use of computers by

new classes of users. Hence graphical user interfaces (GUIs) were evolved. These interfaces used icons on a

screen to represent programs and files and interpreted mouse clicks on the icons and associated menus as

commands concerning them.

3. Non-interference

 A computer user can face different kinds of interference in his computational activities. Execution of his

program can be disrupted by actions of other persons, or the OS services which he wishes to use can be

disrupted in a similar manner. The OS prevents such interference by allocating resources for exclusive use of

programs and OS services, and preventing illegal accesses to resources. Another form of interference concerns

programs and data stored in user files. A computer user may collaborate with some other users in the

development or use of a computer application, so he may wish to share some of his files with them. Attempts by

any other person to access his files are illegal and constitute interference. To prevent this form of interference,

an OS has to know which files of a user can be accessed by which persons. It is achieved through the act of

authorization, whereby a user specifies which collaborators can access what files. The OS uses this information

to prevent illegal accesses to files.

8. a) Define process. List the different fields of a process control block. (5M)

 A program is a passive entity that does not perform any actions by itself; it has to be executed if the actions it

calls for are to take place. A process is an execution of a program. It actually performs the actions specified in a

program. An operating system shares the CPU among processes. This is how it gets user programs to execute.

 Process Control Block (PCB) The process control block (PCB) of a process contains three kinds of information

concerning the process—identification information such as the process id, id of its parent process, and id of the

user who created it; process state information such as its state, and the contents of the PSW and the general-

purpose registers (GPRs); and information that is useful in controlling its operation, such as its priority, and its

interaction with other processes. It also contains a pointer field that is used by the kernel to form PCB lists for

scheduling, e.g., a list of ready processes. Table below describes the fields of the PCB data structure.

 b) Explain the four fundamental states of a process with state transition diagram. (5M)

