CMR INSTITUTE OF TECHNOLOGY

Internal Assessment Test-I – Mar. 2017

Sub:	Embedded Systems					Code:	10EE665		
Date:	30/03/2017	Duration:	90 mins	Max Marks:	50	Sem:	$\overline{ m VI}$	Branch:	EEE

Note: Answer for FIFTY marks.

			OBE	
		Marks	CO	RBT
1.(a)	Define embedded systems. Explain different main components	[6]	CO1	L1
	of embedded systems.			
1.(b)	Write a short note on SoC.	[4]	CO1	L1
- ()		F 3	- CI	-
2.(a)	Describe the architectural features of 6811 microcontroller with	[10]	CO1	L2
	a suitable block diagram.			
0		[10]	CO1	T 1
3.	Define addressing mode. Explain with an example, various types	[10]	COI	LTT
	of addressing modes of 68HC11 microcontroller.			

Page 1 of 2

CMR INSTITUTE OF TECHNOLOGY USN

OBE

Internal Assessment Test-I – Mar. 2017

 Sub:
 Embedded Systems
 Code:
 10EE665

 Date:
 30/03/2017
 Duration:
 90 mins
 Max Marks:
 50
 Sem:
 VI
 Branch:
 EEE

Note: Answer for FIFTY marks.

			OBE	
		Marks	CO	RBT
1.(a)	Define embedded systems. Explain different main components	[6]	CO1	L1
	of embedded systems.			
1.(b)	Write a short note on SoC.	[4]	CO1	L1
2.	Describe the architectural features of 6811 microcontroller with	[10]	CO1	L2
	a suitable block diagram.			
		F 3	- CI C .	
3.	Define addressing mode. Explain with an example, various types	[10]	CO1	$\lfloor L1 \rfloor$
	of addressing modes of 68HC11 microcontroller.			

	Marks		OI	3E
		Waiks	CO	RBT
	Classify the embedded systems and explain the skills required for an embedded system designer.	[10]	CO2	L4
5.(b)	Explain the necessity of sample and hold circuit? Explain the operation of a 3-bit DAC with R-2R ladder network with aid of neat diagram.	[4] [6]	CO3 CO3	L1 L1
	With a neat block diagram, explain data acquisition system for temperature measurement.	[10]	CO3	L1
$7.(\mathbf{b})$	Discuss the various issues for selecting a DAC. Discuss different interfacing approaches of 8-bit ADC to a microcontroller.	[4] [12]	CO3 CO3	L2 L2

Page 2 of 2

			CO	BE RBT
4.	Classify the embedded systems and explain the skills required for an embedded system designer.	[10]	CO2	L4
5.(a) 5.(b)	Explain the necessity of sample and hold circuit? Explain the operation of a 3-bit DAC with R-2R ladder network with aid of neat diagram.	[4] [6]	CO3 CO3	L1 L1
6.	With a neat block diagram, explain data acquisition system for temperature measurement.	[10]	CO3	L1
7.(a) 7.(b)	Discuss the various issues for selecting a DAC. Discuss different interfacing approaches of 8-bit ADC to a microcontroller.	$[4] \\ [12]$	CO3 CO3	L2 L2

- Embedded fixed to something
- It is a special-purpose computer system designed to control or support the operation of a larger technical system.
- Unlike a general-purpose computer, it performs a few specific, more or less complex pre-defined tasks.
- It has sensors and actuators.
 - o Components:
 - o Processor
 - Memory
 - System Clock
 - o Power Supply and Supervisor Unit
 - Peripherals
 - Software

Q1.b

- Single-functioned -- always a digital camera
- Tightly-constrained -- Low cost, low power, small, fast
- · Reactive and real-time -- only to a small extent

- The HCMOS MC68HC11 is an advanced 8-bit MCU with numerous on-chip peripheral capabilities.
- Up to 10MIPS Throughput at 10MHz
- 256 Bytes of RAM, 512 Bytes of In-System Programmable EEPROM.
- Eight channel 8-bit Analog to Digital Convertor
- One serial peripheral interface, with a speed up to 1M (baud rate)

Q3.

- 1. Immediate Addressing Mode
 - Data is part of the instruction itself.
 - This mode is specified with the use of the prefix "#" before the data byte or word.
 - Example:
 - LDAA #\$80
 - Loads the A register with the hex number \$80
- 2. Direct Addressing Mode

- Data is located in RAM (within addresses \$0000 to \$00FF).
- One byte is used to specify which RAM location is to be used.
- Example:
- STAA \$80
- Stores the A register to the memory location \$0080.

3. Extended Addressing Mode

- o Location of data is specified by a 16-bit address given in the instruction.
- o Example:
 - STAA \$1000
 - Stores the contents of the A register at memory location \$1000 (hex)

4. Indexed Addressing Mode

- Location of data is specified by the sum of a 16-bit index register (register X or Y) and an offset value that is part of the instruction.
- Example:
- LDAA 5,X
- Loads the A register with the memory byte located at the address that is the sum of the value currently in the X register and 5 (dec).
- Offsets range in value from 0 to 255.

5. Inherent Addressing Mode

- Data is "inherent" to the microprocessor and does not require an external memory address.
- Example:
 - TAB
 - Transfers the contents of the A register to the B register.
 - No external memory address is required.

6. Relative Addressing Mode

- Location is specified by an offset value from the address of the instruction currently being executed.
- o Example:
 - BRA 5
 - o Causes a branch that skips five bytes ahead in the instruction stream.
 - o Relative addressing is only used in branching instructions.
 - o allowing jumps both forward and backward in the instruction stream.
 - Offsets range in value from −128 to +127.

Q4.

Classification of Embedded Systems

- Small Scale Embedded Systems
 - Single 8/16 bit MC, simple hardware (using evaluation board) and software (IDE) assembly/'C' language
- Medium Scale Embedded Systems
 - Single or multi 16/32 bit MCs/DSPs/RISCs (Reduced instruction set computing), networking
 - Little more complexity in hardware and software (IDE) higher level language.
- Sophisticated Embedded Systems
 - Combination of MCs/DSPs/FPGA, networking
 - Hardware and software co-design, components that have to be integrated in the final system.

DAC Selection

- Precision/range/resolution
 - These three parameters affect the quality of the signal that can be generated by the system.
 - The more bits in the DAC, the finer the control the system has over the waveform it creates.
- Channels
 - Even though multiple channels could be implemented using multiple DAC chips, it is usually more efficient to design a multiple-channel system using a multiple-channel DAC.

DAC Selection

- Configuration
 - DACs can have voltage or current outputs.
 - Current-output DACs can be used in a wide spectrum of applications (adding gain and filtering) but do require external components.
 - DACs can have internal or external references.
 - External-reference DAC can be used often in variable-gain applications (multiplying DAC).

DAC Selection

Speed

- Dynamic behavior of the DAC settling time, maximum output rate
- Gain/BW product of the analog amplifier.
- The speed of the DAC together with the speed of the PC/software will determine the effective frequency components in the generated waveforms.

DAC Selection

- Power
 - The type of power required. (voltage levels)
 - The amount of power required.
 - The need for a low-power sleep mode. Shutdown command to the DAC.
- Interface
- Package