

INTERNAL ASSESSMENT TEST 1 – MARCH 2017

SCHEME OF EVALUATION

Marks

 U' . Coulomb's law: The force between two voy small objects separated is vacuum or free space which is large compared to their size is proportunal to the change on each and invoxely proportional to the square of the distance by a distance F = K (G, G) > positie or regative quantitier of charge
proportionality is apported them. between $\frac{16^7}{36\pi}$ $\frac{1}{\pi}$ $k = \frac{1}{4\pi(\mathcal{E}_{0})}$ $\epsilon_{0.5}$ 8.854 $x_{10}^{5/2}$ F/m Permitanity of $k = \frac{4\pi\times15^{9}}{36\pi}$ $k = 9 \times 10^{9}$ $f = \frac{q_1 q_2}{4 \pi \epsilon_0 R^2}$

force acts along line joining two changes.
Like changes -> repulsive force. Vector form: 752 (Force on 62 due lo 0,) R_{12} = σ_2^2 - σ_1^2 \mathscr{C}_2 $\sum_{R|2}$ $a_{R_{12}}^{T} = \frac{R_{12}^{T}}{I R_{12}^{T}}$ aRIP $6₁$ γ_1 $F_2 = \frac{Q_1 Q_2}{4\pi \epsilon_0 (R_{12})^2}$, $Q_{R_{12}}$ $F_2 = 9.92 P_{12}$
 $Ar_E = 1 P_{12}$

1.b. Problem:

Find the electric fit
 $\theta = 0.55 \mu c$
 θ

 $\vec{F} = \frac{g}{4\pi\epsilon_o} \cdot \frac{(\vec{R})}{|\vec{R}|^3}$ = $0.35 \times 10^{-6} \times 9 \times 10^{7} \times (-4 \text{au})$ $(4)^3$ $= 0.196875 \times 10^3 (-\omega y)$ -0.196875×10^{3} org $\boxed{\vec{F}} = -196.845$ ay V_{f72}

Potentiel Gradient: 1.c. \mathbb{D} $\underset{\mathbf{f}}{\uparrow}$ \longrightarrow \mathbf{v} $\underset{\sim}{\downarrow}$ $\int \vec{\epsilon}^{\dagger} \cdot d\vec{t}^{\dagger}$. \bigcirc \int \int \int $\frac{1}{\sqrt{2\pi}}$ \int $\frac{1}{\sqrt{2\pi}}$ \int $\frac{1}{\sqrt{2\pi}}$ In poactical problems, neither \vec{F} , nor θ_Y is known. Description of two excipatential surfaces $\frac{g}{g}$: two II^{el} conductors of circular cross spolars ro final in capacitance between conductive.

2) change or current clististation on conductive

3) Losses moy be calculated.

4 a ... L'1. C_{inflo} and $A \in \mathcal{A}$ \uparrow $A \cup \uparrow$

$$
V = -\int \vec{E} \cdot d\vec{l}
$$
\n
$$
V = -\int \vec{E} \cdot d\vec{l}
$$
\n
$$
d\rho_{\text{r}} = \vec{E} \cdot d\vec{l}
$$
\n
$$
d\rho_{\text{r}} = \vec{E} \cdot d\vec{l}
$$
\n
$$
V = -\vec{E} \cdot d\vec{l}
$$
\n $$

Another derivative
$$
g = \frac{dV}{dt} = ?
$$
 $V \neq$ unique function $\begin{bmatrix} \frac{dV}{dV} = -E \csc \theta \\ \frac{dV}{dV} = -E \csc \theta \end{bmatrix}$

\nFor which $\frac{dS}{dV} = -E \csc \theta$

\nFor which $\frac{dS}{dV} = -E \csc \theta$

\nFor which $\frac{dS}{dV} = -E \csc \theta$

\nSubstituting S by θ and θ is defined. For θ is a constant, θ and θ is a constant, θ is a constant, θ and θ is a constant, θ

drection of

1) It is which maximum increase is potential

in toons of In torme of
potential field $(\text{rath}_o, \text{rash}_o, \text{r}^{\text{P}})$. α and normal vector de the
Equipotential surface of droected forecrals higher potatals $\int_{c}^{c} z \, dz \, d\theta$ mois space vote y change y V. $\frac{dv}{dt}\Big|_{max}$ and $\frac{dv}{dt}$ and $\frac{dv}{dt}$ (Gradeont)

 $d\mathbf{a}$ = \mathbf{a}_t de $dq = P_L dz$

 d c d

 int tand $rac{z-z^2}{\rho}$ $x-z' = \rho \tan \phi$

 $|\vec{R}| = \sqrt{\rho^{2}+(2-1)^{2}}$

$$
d\vec{t} = \frac{\rho_L}{4\pi\epsilon_0} \cdot \frac{dz' \cdot a\vec{r}}{(\vec{r})^2}
$$

\n
$$
d\vec{t} = \frac{\rho_L}{4\pi\epsilon_0} \cdot \frac{dz'}{(\vec{r})^2} \cdot \frac{ea^{-1} (z^{-2})a_2^2}{(\vec{r})^2 (z^{-2})^2}
$$

\n
$$
\vec{r} = \int \frac{\rho_L}{4\pi\epsilon_0} \cdot \frac{(qa^2 + (z^{-2})a_2^2)}{(q^2 + (z^{-2})^2)^{3/2}} dx
$$

\n
$$
= \int \frac{d\vec{a}}{4\pi\epsilon_0} \cdot \frac{(r\vec{r}) \cos d\vec{r} + \theta \tan \vec{a} \vec{b}}{r^2 \cosh \vec{a}}
$$

\n
$$
e^{-d} = \frac{\rho_L}{4\pi\epsilon_0} \int_{\alpha=0}^{\alpha=0} (\frac{Re \sec d \cos d}{\alpha} - \frac{a}{\alpha} + \theta \tan d \frac{a}{\alpha} - \frac{a}{\alpha} \tan d \frac{a}{\alpha}
$$

 $|\vec{R}| = \sqrt{\rho^{2}+(2-2^{1})^{2}}$

 $\left(\frac{1}{3/2}\right)$ $\frac{\rho}{\sqrt{g-1}} = \omega s d$ $\lceil \frac{f}{R} \rceil = \rho \sec \alpha$

 \sim

 $z' = 07 - \rho \tan \alpha$.
 $dz' = -\rho \sec^2 \alpha \, d\alpha$. $- \rho_{\text{Sec}}^2 d dV \frac{Z}{d q} \frac{Z_{A} 2B}{q^{2}+2Z}$

 $\frac{1}{2}$ daz) $\frac{1}{2}$ set d d d

 dd

Cammued...)

$$
\left[\frac{0.6 \text{ m}^2 \text{m} \cdot \text{m}^2}{\hat{f}^2} - \frac{\mu}{\text{m}^2} \left[\left(\frac{\text{m} \cdot \text{m}}{\text{m}^2} - \frac{\text{m} \cdot \text{m}}{\text{m}^2} \right) \frac{\text{m}^2}{\text{m}^2} - \frac{\mu}{\text{m}^2} \left[\frac{\text{m} \cdot \text{m} \cdot \text{m}}{\text{m}^2} \right] \right]
$$

$$
\mathbf{Special} \text{ case } \mathbf{f} \text{ or } \mathbf{a} \text{ infinite} \text{ hence } \mathbf{ch} \text{ angle}
$$
\n
$$
\mathbf{B} \text{ is at } (\mathbf{a}_1 \mathbf{a}_1 \mathbf{a}) \text{ } \mathbf{R} \text{ is at } (\mathbf{a}_1 \mathbf{a}_1 - \mathbf{a}).
$$
\n
$$
\mathbf{A} \text{ is at } (\mathbf{a}_1 \mathbf{a}_1 - \mathbf{b}_1 \mathbf{a}_1)
$$

$$
\vec{E} = \frac{\rho_L}{4\pi\epsilon_0} \cdot \vec{r} \cdot \vec{qp}
$$

Scaling the state of $\frac{1}{3}$, $x \, \rho$ as ϕ x^2 ϕ x^3 ϕ x^4 ϕ x^5 ϕ called by ϕ cannot by $=\frac{1}{3} \times \frac{\sqrt{y}}{2} \times 4$

Hence

$\int_0^4 b^2$ the hyperbola $x = 8/(7-3y)$: We find $y = 7/3 - 8/3x$, and the work is

4.b. The choice disple:

Such by Concerner of distribution materials in whole fields.

Electric disple \rightarrow New point clarges of equal regulations that is
 $\frac{d}{dx} = \frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\pi} e^{-\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\frac{\$

For a	8, $P_1 = R_2 = r^{-3}$	8, $P_2 = r^{-3}$	8, $P_3 = r^{-2}$																																																																																	
For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a	For a

4 -0

$$
V = \sqrt{(x+1)^{2}} (y+2)^{2} (z+3)^{2} \qquad P(x,4,4)
$$
\n
$$
V = \sqrt{(x+1)^{2}} (y+2)^{2} (z+3)^{2} \qquad = \frac{880}{240}
$$
\n
$$
E = -\nabla V = -\left[\frac{0}{24} \int_{0}^{4} + \frac{3}{4} \int_{0}^{4} + \frac{3}{4} \int_{0}^{4} (x+1)^{2} (y+2)^{2} (x+3)^{2} (y+2)^{2} (y+2)^{2}
$$

 \mathbb{D} 5.

6.
$$
\frac{Aphudio & \theta \tan \theta \tan \theta}{2\pi \sinh y}
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta + \sec \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta + \sec \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta + \sec \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta + \sec \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta + \sec \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \theta \tan \theta
$$
\n
$$
h_{\text{new}} = \tan \theta \tan \
$$

Find face
$$
\Rightarrow
$$
 l then $\theta = \frac{1}{2}$ for $\theta = \frac{1}{2}$.

\n $\left[\frac{D_{\alpha, f} f_{\text{out}}}{\sqrt{2 \pi \pi \pi}} + \frac{D_{\alpha} + \frac{1}{2} \pi}{2 \pi} \right] \times$ Take $g \circ \theta$ charge $g \circ \theta$ with θ when $g \circ \theta$ is a point θ and θ is a point θ with θ when θ is a point θ with θ is

 \sim

$$
\int_{\text{mylat}} f \int_{\text{left}} f \frac{\partial p_y}{\partial y} \frac{\partial x \partial y \partial z}{\partial y}
$$
\n
$$
= \int_{\text{uplet}} f \int_{\text{right}} f \frac{\partial p_z}{\partial z} \frac{\partial x \partial y \partial z}{\partial x \partial y}.
$$

$$
\int_{0}^{1} \int_{0}^{1}
$$

 \mathbb{R}^n

Divergence of \vec{p} = div \vec{B} = lim $\frac{\oint \vec{p}^2 \cdot d\vec{s}}{\oint \vec{p} \cdot d\vec{s}}$ Divergnee of the technology of is the outflow of flow from a $\begin{array}{|c|c|c|c|}\hline \text{div } b & = & \frac{\partial D_{N,d}}{\partial n} & \frac{\partial D_{N}}{\partial y} & \frac{\partial D_{2}}{\partial z} \\\hline \end{array} \hspace{0.25cm} \begin{array}{|c|c|c|c|}\hline \text{Reofangular} \\\hline \end{array}$ Cylindrica/ $div \vec{p}$ $\frac{1}{6}\frac{\partial}{\partial\rho}(\rho p\rho) + \frac{1}{6}\frac{\partial p}{\partial\rho} + \frac{\partial p_2}{\partial\rho}$ $\int_{0}^{\infty} d^{3}r \, \rho^{3} = \int_{0}^{1} \frac{\partial}{\partial r} \left(\rho^{2} D_{r} \right) + \int_{0}^{1} \frac{\partial}{\partial s^{m} \rho} \left(\rho^{m} \rho^{m} \rho^{m} \right) + \int_{0}^{1} \frac{\partial \rho \phi}{\partial \phi^{m}}$ Sphonical at origin $\vec{D} = e^{-\gamma}$ sny $a_2 - e^{-\gamma}$ asy $a_3 - 1$ + 22 a_2 . Problem:
Find Dir D $\int dv \vec{D}^2 = 2 = Ry.$ When charge density.

16 For volume shows 6 zero,
\n
$$
lim_{x\to0} \frac{\sqrt[3]{b} \cdot d\vec{r}}{dx}
$$
, $lim_{x\to0} \frac{\vec{a}}{dx}$
\n $lim_{x\to0} \frac{\sqrt[3]{b} \cdot d\vec{r}}{dx}$, $lim_{x\to0} \frac{\vec{a}}{dx}$
\n $lim_{x\to0} \frac{\vec{r}}{\sqrt{x}}$
\n $lim_{x\to0} \frac{\vec{$

Vert ₁ operation	V (f ₁)	Upique theorem:
T (f ₂)	Opxule	Haxam:
T (g ₁)	Opxule	Hexman:
T : $\frac{5}{26}$ or $\frac{1}{4}$ or $\frac{2}{29}$ or $\frac{1}{4}$ or $\frac{2}{29}$ or $\frac{1}{3}$.		
18	opx	Opxule
19	Opxule	
10	Opx	
10	Opx	
11	Opx	
12	Opx	
13	Opx	
14	Eqx	
15	Eqx	
16	Opx	
17	Eqx	
18	Eqx	
19	29	
10	Eqx	
11	Eqx	
12	Eqx	
13	Eqx	
14	Eqx	
15	Eqx	
16	Eqx	
17	Eqx	
18	Eqx	
19	Eqx	
10		

7.3.
\nA) Transform F = 10ân - 8áy + 6áz to újelindural
\n(0-odd a) P(10, -8, -6)
\nF = F - Ap
\n= 106a. Ap - 8aY. ap +6az ag
\n= 1010ob - 8sh dp+O
\n
$$
\Phi = 4ar^3 (y|x) = 4ar^3(-\frac{e}{10}) = -38.66^\circ
$$
\nF = 10100(-38.66) - 9 sin (-38.66)
\n= 12.81
\nF = 10 6 a.24p - 8aY.6q +6 az.2p
\n= -10 sin d - 8sh and
\n= -10 sin (-38.60) - 810.66
\n= 4.28×10⁻⁵ 20
\nF = 2.281
\nF = 12.818p +4.28 X10⁻⁵ aB +6 az
\nF = 12.818p +4.28 X10⁻⁵ aB +6 az
\nF = 12.81a p +6 az

 $\overline{\mathbf{r}}$

7.1b.3) Find Aechapula: components of
\n
$$
H = 20 \hat{a}p - 10 \hat{a}q + 3 \hat{a}q + 9(\hat{5}, 2, -1)
$$

\n $d = 10n^{-1}(15)$
\n $= 21.8$
\n $n_x = 11.22$
\n $= 21.8$
\n $n_x = 11.22$
\n $= 20 \hat{a}p \cdot \hat{a}p - 10 \hat{a}p \cdot \hat{a}p + 3\hat{a}q \hat{a}p$
\n $= 20 \cos 10 + 10 \sin \hat{p} + 0$
\n $= 20 \cos 2(21.8) + 10 \sin(21.8)$
\n $= 22.28$
\n $Hy = H dy = 20 \hat{a}p \cdot \hat{a}q - 10 \hat{a}p \cdot \hat{a}q + 3\hat{a}q \cdot \hat{a}q$
\n $= 20 \sin \hat{q} - 10 \cos \hat{q} + 0$
\n $= -1.857$
\n $H_z = 3$
\n $h = 22.28 \hat{a}q - 1857 \hat{a}q + 3\hat{a}q$

8. a.
$$
f^{\frac{1}{2}} = \frac{4}{r^{3}}
$$

\n $f^{\frac{1}{2}} = \frac{2}{r^{3}}$
\n $f^{\frac{1}{2}} = \frac{2}{r^{3}}$
\n $h = \frac{1}{r^{3}} \int \frac{1}{r^{3}} \int \frac{r^{3}e^{-r}}{r^{3}} dr$
\n $= \int_{r^{3}}^{r} \int \frac{1}{r^{3}} dr \int_{r^{3}}^{r} \frac{r^{3}sin\theta}{r^{3}} dr d\theta d\theta$
\n $= \int_{r^{3}}^{r} \int \frac{1}{r^{3}} dr \sin\theta d\theta d\theta$
\n $= \int_{r^{3}}^{r} \int \frac{1}{r^{3}} dr \sin\theta d\theta d\theta$
\n $= \int_{r^{3}}^{r} \int \frac{1}{r^{3}} dr \cos\theta^{3} \int_{r^{3}}^{r} \left[1 - \cos\theta\right]_{r^{3}}^{r} \left[1 - \cos\theta\right]_{r^{3}}^{r} \left[1 - \cos\theta\right]_{r^{3}}^{r^{3}}$
\n $= \frac{1}{r^{3}} \int_{r^{3}}^{r} \frac{1}{r^{3}} dr \cos\theta \times \frac{1}{r^{3}}$
\n $= \frac{1}{r^{3}} \int_{r^{3}}^{r^{3}} \frac{1}{r^{3}} dr \cos\theta}{r^{3}} dr$
\n $= \frac{1}{r^{3}} \int_{r^{3}}^{r^{3}} \frac{1}{r^{3}} dr \cos\theta}{r^{3}} dr \cos\theta d\theta$
\n $= \frac{1}{r^{3}} \int_{r^{3}}^{r^{3}} \frac{1}{r^{3}} dr \cos\theta}{r^{3}} dr \cos\theta d\theta$
\n $= \frac{1}{r^{3}} \int_{r^{3}}^{r^{3}} \frac{1}{r^{3}} dr \cos\theta}{r^{3}} dr$
\n $= \frac{1}{r^{3}} \int_{r^{3}}^{r^{3}} \frac{1}{r^{3}} dr \cos\theta}{r^{3}} dr$
\n $= \frac{1}{r^{3}} \int_{r^{3}}^{r^{3}} \frac{1}{r^{3}} dr \cos\theta}{r^{3}} dr$
\n $= \frac{1}{r^{3}} \$

 $\widetilde{\pi}$

 $\mathcal{P}_{\mathcal{R}} = \mathcal{P}$

 \mathcal{N}

 \vec{u} øÜ \mathcal{L}

=
$$
46.296x_{10}^{6}
$$
 J
 $46.296keJ$

8. b.
\n7) b)
$$
\frac{d_{11}}{dx}
$$

\n $\frac{d_{12}}{dx}$
\n $\frac{d_{13}}{dx}$
\n $\frac{d_{14}}{dx}$
\n $\frac{d_{15}}{dx}$
\n $\frac{d_{16}}{dx}$
\n $\frac{d_{17}}{dx}$
\n $\frac{d_{18}}{dx}$
\n $\frac{d_{19}}{dx}$
\n $\frac{d_{10}}{dx}$
\n $\frac{d_{10}}{dx}$
\n $\frac{d_{11}}{dx}$
\n $\frac{d_{11}}{dx}$