

Standard resistance values

Standard capacitor values

1(b)**Slew Rate** : The slew rate is the maximum rate of change of output voltage caused by a step input voltage and is usually specified in $V/\mu S$. For example $1 V/\mu S$ slew rate means that the output rises or falls by 1V in one microseconds. Ideally slew rate is infinite which means that op-amp's output should be changed instantaneously in response to input step voltage. Practical op-amps are available with slew rates from 0.1V/µS to well above 1000V/µS.

CMRR : It can be defined as the ratio of the differential gain A_D to the common mode gain A_{CM} that i s,*CMRR*= A ^{*D*}/ A _{*CM.*}

2.

From
$$
f_{12} = \sqrt{12}
$$

\n $\sqrt{32}$ if $= \sqrt{12}$
\n $\sqrt{32}$ If $= \sqrt{12}$
\n $\sqrt{62}$
\n $\sqrt{6$

J

3 .

Non-inverting amplyon $F_1 = \frac{F_1 - F_2}{F_1 - F_2} = \frac{F_1 + V_2}{F_1} = \frac{F_1 + V_1}{F_1}$ A $N_1^* \ge N$ A_{V-2} $R_{L-2} \ge R_{L-1}$ T_1
 $R_1 = 0.1V_{BE}$ = 0.1×0.7 T_2 $R_3 = 0.1 \times 0.7$ T_4 $T_5 = 0.1 \times 0.7$ $T_5 = 0.1 \times 0.7$ $T_6 = 0.1 \times 0.7$ $T_7 = 0.1 \times 0.7$ $T_8 = 0.1 \times 0.7$ $T_9 = 0.1 \times 0.7$ $T_1 = 0.1 \times 0.7$ Given $T_1 = 100$ Taura $R_3 = \frac{V_1}{T_1} = \frac{3}{57\mu} = 4.0 \text{ k} \cdot (39 \text{ k})$ k_{2z} $R_1 = 39k\Omega$ $1+\frac{R_{2}}{R_{1}} = 2$ \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} $\frac{1}{\sigma_1} = \frac{1}{\sqrt{2\pi}}$ $rac{t}{2\pi f'_1 - 10} = \frac{f_1}{10}$ $rac{10}{2\pi f_1 R_1}$ >
 $rac{10}{9.1 \mu F}$ C_1 = $xc_2 = R_L$
 $\frac{1}{2\pi f_1}c_2 = 2.2 k32$
 $c_2 = 0.6 \mu F$ (0.47 μF)

4.

$$
V_{01} = \left(\frac{R_1 + R_2}{R_1}\right) \left(\frac{R_4}{R_3 + R_4}\right) V_b
$$

$$
V_f = R_1 = R_2 \qquad \frac{R_2}{R_3 + R_4}
$$

$$
V_{01} = -V_a \qquad V_{02} = +V_b
$$

$$
V_0 = V_{01} + V_{02} = V_b - V_a
$$

$$
\frac{V_{02} = V_b - V_a}{V_b = V_b - V_a}
$$

5.

6.

Solution : Design the low pass filter,

 f_H = 2 kHz $C' = 0.01 \mu F$ and $f_H = \frac{1}{2 \pi R' C'}$ Let $R' = \frac{1}{2 \pi \times 2 \times 10^3 \times 0.01 \times 10^{-6}} = 7.957 k\Omega$ \mathcal{L}_c Design the high pass filter, f_L = 400 Hz C = 0.05 μF and $f_L = \frac{1}{2 \pi R C}$

R = $\frac{1}{2 \pi \times 400 \times 0.05 \times 10^{-6}}$ = 7.95 kΩ Let $\mathcal{L}_{\mathcal{L}}$ $A_{\text{FT}} = A_1 A_2$ Now A_1 = Gain of high pass section, A_2 = Gain of low pass section where

is given, $A_{PT} = 4$ $A_1 = A_2 = 2$ for the non inverting op-amp, $A_1 = A_2 = 1 + \frac{R_f}{R_1} = 2$ $R_f = R_1$ for both the sections $R_f = R_1 = 10 k\Omega$ Let Hence, the designed circuit is shown in Fig. 2.10.7. ™
www
10 kΩ + V_{oc} ᄴ C $7.95 k\Omega$ 0.05 0.01 R ≥ 7.95 kΩ μF ISS Section m. 7.Performance defined by 1ż (1) Line regulation I. (2) Load regulation 13 (3) Ripple rijulion t. Line regulation :lE. change in variation in of voltage that ocents when supply voltage inercal 旺 occurs when supply village in
or decreases by speuped anioust 臣 s Line Sepulations <u>No to the stoy Vichaner xlos</u>. F Load regulation: Regulator Œ performance in percelation. current changes. \star tond u from sento Long current changes Ľ full load soad the output change ٤ amout SV $\overline{\partial}$ the Load regulation = $\frac{\Delta V_0}{V_0} + \frac{1}{\Delta T_0} \frac{1}{x/m}$ x_{1} .

The supporte Python =
How much voltage support alternate
the supply voltage cipher
triplog rejection = do log
$$
[\frac{Vx}{V_{10}}]dB
$$
.

$$
V_{R_3} = V_Z
$$
\n
$$
V_Z = \frac{V_0 \times R_3}{R_{3} + R_3}
$$
\n
$$
V_0 = \frac{V_Z (R_2 + R_3)}{R_3}
$$
\n
$$
\Delta V_0 = \frac{\Delta V_Z (R_2 + R_3)}{R_1} (R_2 + R_3)
$$

Solution : I_{R1} must be much higher than I_{AD} .

Let
$$
I_{g_2} = 5 \text{ mA}
$$
 where $I_{ADJ} = 100 \mu\text{A}$

$$
R_1 = \frac{V_{ref}}{I_{R1}} = \frac{1.25}{5 \times 10^{-3}} = 250 \Omega
$$

\n(Use 270 Ω standard)
\n
$$
\therefore I_{R1} = \frac{1.25}{270} = 4.63 \text{ mA}
$$

\n
$$
R_2 = \frac{V_0 - V_{R1}}{I_{R1}} = \frac{9 - 1.25}{4.63 \times 10^{-3}}
$$

\n
$$
= 1.67 \text{ k}\Omega
$$

\n
$$
R_3 = \frac{V_0 - V_{R1}}{I_{R1}} = \frac{9 - 1.25}{4.63 \times 10^{-3}}
$$

\n
$$
= 1.67 \text{ k}\Omega
$$

$$
x\in\mathbb{R}^{n\times n}
$$

(Use 1.5 kQ and 220 Q in series) \sim

 $V_0 = 5$

ŧ

Fig. 3.13.4