CMR INSTITUTE OF TECHNOLOGY

USN	
-----	--

Internal Assesment Test - I

meeting 10000ment 1000 1													
Sub:	OPERATIONAL AMPLIFIERS AND LINEAR ICS Coc							le:	15EE46				
Date:	30 / 03/ 2017	Duration:	90 mins	Max Marks:	50	Sem:	IV	Bra	anch: EEE				
	Answer Any FIVE FULL Questions												
										s CO	RBT		
1 (a)	With a block diagram	n explain the	different	stages of a typ	oical Op	-amp.			[5]	CO1	L2		
1 (b)	1 (b) Define slew rate and CMRR for an Op-amp with necessary expressions.									CO1	L2		
2	Derive the expression for closed loop gain of a voltage series and voltage shunt feedback amplifier with circuit diagrams.								[10]	CO1	L2		
3	Using an uA741 Op-amp design a capacitor coupled non inverting amplifier. The specifications of the circuit are :-Closed loop voltage gain =3,Input voltage =2V, load resistance =2.2k Ω and lower cut off frequency =120 Hz.								[10]	CO1	L3		
4	Explain how an Op-amp can be used as a summing amplifier and subtractor.								[10]	CO1	L2		
5	Demonstrate an Instrumentation amplifier with bridge input. Derive the expression of output voltage for the same.								[10]	CO1	L2		
6	Design a two stage wide- band band- pass Butterworth filter with a lower cut off frequency of 400 Hz and upper cut off frequency of 2 kHz. Calculate the value of Q and draw the frequency response curve.								[10]	CO6	L3		
7	Define the performance parameters of voltage regulators with necessary equations.								[10]	CO6	L2		
8	Explain the internal circuit of an adjustable voltage regulator and design a voltage regulator using LM317 IC to produce an output voltage of 9V.								[10]	CO6	L3		

Standard resistance values

10% Tolerance								
Ω	Ω	Ω	kΩ	kΩ	kΩ	мΩ	МΩ	
_	10	100	1	10	100	1	10	
_	12	120	1.2	12	120	1.2	12	
_	15	150	1.5	15	150	1.5	15	
_	18	180	1.8	18	180	1.8	18	
_	22	220	2.2	22	220	2.2	22	
2.7	27	270	2.7	27	270	2.7	-	
3.3	33	330	3.3	33	330	3.3	-	
3.9	39	390	3.9	39	390	3.9	-	
4.7	47	470	4.7	47	470	4.7	-	
5.6	56	560	5.6	56	560	5.6	-	
	68	680	6.8	68	680	6.8	-	
6.8 8.2	82	820	8.2	82	820	8.2	-	

Standard capacitor values

pF	pF	pF	pF	μF	μF	μF	μF	μF	μF	μF
5	50	500	5000	-	0.05	0.5	5	50	500	5000
-	51	510	5100	-	· ·	-	-	-	-	-
-	56	560	5600	_	0.056	0.56	5.6	56	_	5600
_	_	_	6000	-	0.06	_	6	-	_	6000
-	62	620	6200	-	-	-	_	_	_	_
-	68	680	6800	-	0.068	0.68	6.8	68	680	6800
_	75	750	7500	_	_	-	-	75	_	2
_	-	-	8000	-	_	-	8	80		-53
-	82	820	8200	_	0.082	0.82	8.2	82	4-0	-
_	91	910	9100	_	_	_	_	_	_	_
10	100	1000	_	0.01	0.1	1	10	100	1000	10000
-	110	1100	_	77.	_	_	_	-	-	-
12	120	1200	_	0.012	0.12	1.2	_	_		_
_	130	1300	_	_	_	-	_	_		
15	150	1500	-	0.015	0.15	1.5	15	150	1500	15000
_	160	1600	_	-	-	-	-	_	_	_
18	180	1800	-	0.018	0.18	1.8	18	180	-	-
20	200	2000	-	0.02	0.2	2	20	200	2000	-
22	220	2200	_		0.22	2.2	22-	220	2200	22000
24	240	2400	-	-	-	_		240	_	
-	250	2500	-	_	0.25	3773	25	250	2500	-11
27	270	2700		0.027	0.27	2.7	27	270	225	-9
30	300	3000	-	0.03	0.3	3	30	300	3000	-
33	330	3300		0.033	0.33	3.3	33	330	3300	-
36	360	3600	-	_						25
39	390	3900	-	0.039	0.39	20				- 1
7	-	4000	-	0.04	-	3.9	39	400	_	
43	430	4300	_							
47	470	4700	_	0.047	0.45		_	_	-	2 E
				0.047	0.47	4.7	47	470	4700	100

1(b)Slew Rate: The slew rate is the maximum rate of change of output voltage caused by a step input voltage and is usually specified in $V/\mu S$. For example $1V/\mu S$ slew rate means that the output rises or falls by 1V in one microseconds. Ideally slew rate is infinite which means that op-amp's output should be changed instantaneously in response to input step voltage. Practical op-amps are available with slew rates from $0.1V/\mu S$ to well above $1000V/\mu S$.

CMRR: It can be defined as the ratio of the differential gain A_D to the common mode gain A_{CM} that is, $CMRR = A_D/A_{CM}$.

2.

From fig
$$N_1 = V_{1M}$$
 $N_2 = V_1 = V_0 \times R_1$
 $R_1 + F_1 = V_0 = A$
 $V_0 = A$
 $V_$

closed loop voltage gain

$$A_F = \frac{V_0}{V_{in}} = \frac{A_K F}{R_1 + R_F + A_{F}}$$

$$A_{R_1} >> R_1 + R_F$$

$$\frac{v_{in}-v_2}{R_1} = \frac{v_2-v_0}{R_E}$$

$$v_1-v_2 = \frac{v_0}{R_E}$$

$$RF = \frac{3e}{Rr} = \frac{-RF}{RI}$$

$$\frac{v_1=0}{\sqrt{N}} \quad \frac{v_2=-\frac{v_0}{A}}{\sqrt{N}} = \frac{-\frac{v_0}{A}-\frac{v_0}{A}}{\sqrt{N}} = \frac{-\frac{v_0}{A}-\frac{v_$$

3.

If RF = R Vo= - (Va+Vb+Ve)

$$= \left(\frac{R_1 + R_2}{R_1}\right) \left(\frac{R_4}{R_3 + R_4}\right) V_b$$
If $R_1 = R_2$ $R_3 = R_4$.
$$V_{01} = -V_a \qquad V_{02} = +V_b$$

$$V_0 = V_{01} + V_{02} = V_b - V_a$$

$$\boxed{V_0 = V_b - V_a}$$

$$\begin{array}{c|c} V_{ab} := \frac{R \cdot V_{de}}{R + R + \Delta R} & R \cdot V_{de} \\ \hline R + R + \Delta R & R + R \\ \hline 2R + \Delta R & 2R \\ \hline 2R + \Delta R & 2R \\ \hline 2R + \Delta R & 2R \\ \hline 2R - \Delta R \\ \hline 2R (2R + \Delta R) \end{array}$$

$$= \cancel{k}. \text{Vole} \left[\frac{2R - 2R - DR}{2R(2R + DR)} \right]$$

$$= \cancel{k}. \text{Vole} \left[\frac{\Delta R}{2\cancel{k}(2R + DR)} \right] = -\left[\frac{DR. \text{Vole}}{2(2R + DR)} \right]$$

$$V_0 = V_{ab} \left(\frac{-R_F}{R_1} \right) = \left(\frac{-R_F}{R_1} \right) \left(\frac{-D_R.V_{de}}{2(2R+D_R)} \right)$$

$$2R + DR = 2R \quad V_0 = \frac{R_F}{R_1} \frac{D_R}{4R} V_{de}$$

$$V_0 \times DR$$

6.

Solution: Design the low pass filter,

$$f_H = 2 \text{ kHz}$$

Let
$$C' = 0.01 \,\mu\text{F} \text{ and } f_H = \frac{1}{2 \,\pi \,R' \,C'}$$

$$R' = \frac{1}{2 \pi \times 2 \times 10^{3} \times 0.01 \times 10^{-6}} = 7.957 \text{ kG}$$

Design the high pass filter.

$$f_L = 400 \text{ Hz}$$

Let
$$C = 0.05 \,\mu\text{F} \text{ and } f_L = \frac{1}{2 \,\pi\,R\,C}$$

$$R = \frac{1}{2\pi \times 400 \times 0.05 \times 10^{-6}} = 7.95 \text{ k}\Omega$$

Now
$$A_{FT} = A_1 A_2$$

where
$$A_1$$
 = Gain of high pass section, A_2 = Gain of low pass section

1 Performance defined by (1) Line Regulation 1: (2) Load Regulation 1 (3) hipphe hjulian U Line Regulation: l. change in variation in old voltage that ocents when supply voltage inercan Æ or deceased by spenfed usually 101. by amount Œ Line Regulation: OVO for ±10% Vichence XIOO. E Load regulation: Regulator performance in pe lelation. current chauses. load E. from Less to Load current changes £ lad sond the output change amount SVo the

Load signlation = DVo for DI-Imox

The supple sejection:

How much voltage signlator alternates

the supply voltage sipple

ripply rejection: do log [Vis] dB.

Adjustable voltage signletor

-> 0/p v greater than zener dirde voltage.

The second of the second o

$$VR_3 = VZ$$

$$VZ = \frac{V_0 \times R_3}{R_2 + R_3}$$

$$V_0 = \frac{V_Z (R_2 + R_3)}{R_3}$$

$$\Delta V_0 = \frac{\Delta V_6 Z_Z}{R_1} \left(\frac{R_2 + R_3}{R_3}\right)$$

Solution : $I_{\rm K1}$ must be much higher than $I_{\rm ADI}$

Let
$$I_{R1} = 5 \text{ mA}$$
 where $I_{ADJ} = 100 \mu\text{A}$

$$R_1 \ = \ \frac{V_{ref}}{I_{R1}} = \frac{1.25}{5 \times 10^{-3}} = 250 \, \Omega$$

(Use 270Ω standard)

$$\begin{array}{ll} : & I_{R1} \, = \, \frac{1.25}{270} = 4.63 \; mA \\ \\ R_2 \, = \, \frac{V_{\,0} - V_{\,R1}}{I_{\,R1}} = \frac{9 - 1.25}{4.63 \times 10^{-3}} \\ \end{array}$$

 $= 1.67 \, k\Omega$

(Use 1.5 kΩ and 220 Ω in series)

Fig. 3.13.4